ON THE DISTRIBUTION OF $n \theta$ MODULO 1

R. L. GRAHAM AND J. H. VAN LINT

Introduction. In recent work of E. Arthurs and L. A. Shepp on a problem of H . Dym concerning the existence of an ergodic stationary stochastic process with zero entropy (cf. 1), the function $d_{\theta}(n)$ was introduced as follows:

For an irrational number θ, let

$$
0=a_{0}<a_{1}<a_{2}<\ldots<a_{n}<a_{n+1}=1
$$

be the sequence of points $\{l \theta\}, 1 \leqq l \leqq n$, (where $\{x\}$ denotes $x-[x]$, the fractional part of x) and define*

$$
d_{\theta}(n)=\max \left(a_{i}-a_{i-1}\right), \quad 1 \leqq i \leqq n+1
$$

It is our purpose in this paper to establish several asymptotic results for $d_{\theta}(n)$. In particular, we prove that

$$
\sup _{\theta} \liminf _{n \rightarrow \infty} n d_{\theta}(n)=\frac{1+\sqrt{2}}{2}
$$

and

$$
\inf _{\theta} \limsup _{n \rightarrow \infty} n d_{\theta}(n)=1+\frac{2 \sqrt{5}}{5}
$$

(cf. Theorems 1 and 2).
Notation. We consider an irrational number θ. $\left[b_{0}, b_{1}, b_{2}, \ldots\right]$ is the simple continued fraction expansion of θ, i.e.,

$$
\theta=b_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\ldots
$$

The convergents h_{n} / k_{n} of θ satisfy (cf. 3)

$$
\begin{aligned}
& h_{-1}=1, \quad h_{0}=b_{0}, \quad h_{i}=b_{i} h_{i-1}+h_{i-2}, \quad i \geqq 1, \\
& k_{-1}=0, \quad k_{0}=1, \quad k_{i}=b_{i} k_{i-1}+k_{i-2}, \quad i \geqq 1 .
\end{aligned}
$$

We define θ_{n} by

$$
\theta_{0}=\theta, \quad \theta_{i+1}=1 /\left(\theta_{i}-\left[\theta_{2}\right]\right), \quad i \geqq 0 .
$$

[^0]We have (cf. 3)

$$
b_{n}=\left[\theta_{n}\right]
$$

and

$$
\theta-\frac{h_{n}}{k_{n}}=\frac{(-1)^{n}}{k_{n}\left(k_{n} \theta_{n+1}+k_{n-1}\right)} .
$$

Finally, we define x_{n} and y_{n} by

$$
x_{n}=k_{n+1} / k_{n}, \quad y_{n}=1 / \theta_{n+2} .
$$

We then have

$$
x_{n+1}=\left[1 / y_{n}\right]+1 / x_{n}, \quad y_{n+1}=-\left[1 / y_{n}\right]+1 / y_{n}, \quad n \geqq 0 .
$$

It follows easily from the definitions that

$$
\begin{equation*}
x_{n}=\left[b_{n+1}, b_{n}, \ldots, b_{1}\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n}=1 /\left[b_{n+2}, b_{n+3}, b_{n+4}, \ldots\right] \tag{2}
\end{equation*}
$$

We shall use the following basic lemma.
Lemma 1.

$$
d_{\theta}(m)=\left|k_{n} \theta-h_{n}+\alpha\left(k_{n+1} \theta-h_{n+1}\right)\right|
$$

if

$$
k_{n}+(\alpha+1) k_{n+1}-1 \leqq m \leqq k_{n}+(\alpha+2) k_{n+1}-2
$$

and $0 \leqq \alpha \leqq b_{n+2}-1$.
The proof of this result appears implicitly in (5) and (7) and will not be given here. It depends upon the somewhat surprising and apparently littleknown fact that the set of numbers $\left\{a_{i+1}-a_{i}: 0 \leqq i \leqq n\right\}$ (using the notation in § 1) always consists of at most three elements.

We are now prepared to prove the statements given in the introduction.

The main results.

Theorem 1.

$$
\sup _{\theta} \liminf _{n \rightarrow \infty} n d_{\theta}(n)=\frac{1+\sqrt{2}}{2} .
$$

Proof. We observe that, for $n \rightarrow \infty$,

$$
\begin{aligned}
\lim \inf n d_{\theta}(n) & \leqq \lim \inf \left(k_{n}+k_{n+1}\right)\left|k_{n} \theta-h_{n}\right| \\
& =\lim \inf \left(1+x_{n}\right)\left(y_{n}+x_{n}\right)^{-1} .
\end{aligned}
$$

We first show that

$$
\begin{equation*}
\lim \inf \left(1+x_{n}\right)\left(y_{n}+x_{n}\right)^{-1} \leqq \frac{1}{2}(1+\sqrt{ } 2), \quad n \rightarrow \infty . \tag{3}
\end{equation*}
$$

Equivalently, we must show that
(4) $\lim \sup \left(y_{n}+x_{n}\right)\left(1+x_{n}\right)^{-1} \geqq 2(1+\sqrt{ } 2)^{-1}=2(\sqrt{ } 2-1), \quad n \rightarrow \infty$.

We prove (4) by establishing
Lemma 2. Let $\theta=\left[b_{0}, b_{1}, b_{2}, \ldots\right]$ where $b_{n} \leqq M$ for all n. Then

$$
\lim \sup x_{n} y_{n} \geqq 1, \quad n \rightarrow \infty
$$

with equality if and only if the b_{n} are eventually constant.
Proof. By (1) and (2) we have

$$
\begin{aligned}
x_{n} y_{n} & =\left[b_{n+1}, b_{n}, \ldots, b_{1}\right] /\left[b_{n+2}, b_{n+3}, \ldots\right] \\
& >\left(b_{n+1}+(M+1)^{-1}\right)\left(b_{n+2}+1\right)^{-1}
\end{aligned}
$$

(i) If $b_{n+1}>b_{n+2}$ infinitely often, then $b_{n+1} \geqq 1+b_{n+2}$ infinitely often and hence, for $n \rightarrow \infty$,

$$
\begin{aligned}
\lim \sup x_{n} y_{n} & \geqq \lim \sup \left(b_{n+1}+(M+1)^{-1}\right)\left(b_{n+2}+1\right)^{-1} \\
& \geqq \lim \sup \left(b_{n+2}+1+(M+1)^{-1}\right)\left(b_{n+2}+1\right)^{-1} \\
& \geqq 1+(M+1)^{-2}>1
\end{aligned}
$$

(ii) If $b_{n+1}>b_{n+2}$ for just a finite number of values of n, then there is an N such that $b_{m}=N$ for all sufficiently large m. Hence, if $\alpha=[N, N, N, \ldots]$ then

$$
\lim x_{n} y_{n}=\left(\lim x_{n}\right)\left(\lim y_{n}\right)=\alpha \cdot(1 / \alpha)=1, \quad n \rightarrow \infty
$$

This proves Lemma 2.
It follows that, for any $\epsilon>0$, infinitely many of the pairs $\left(x_{n}, y_{n}\right)$ lie in the hyperbolic region given by $x \geqq 0$ and $x y \geqq 1-\epsilon$. We observe that this region is contained in that defined by $x \geqq 0$ and $(y+x) /(1+x) \geqq 2(\sqrt{ } 2$ $-1)-\epsilon$, since the last boundary line passes below the hyperbola, for all sufficiently small ϵ; and (4) now follows. Thus (4) holds in case the b_{n} are bounded. On the other hand, if the b_{n} are unbounded, then the x_{n} are unbounded and
$\lim \sup \left(y_{n}+x_{n}\right)\left(1+x_{n}\right)^{-1} \geqq \lim \sup x_{n}\left(1+x_{n}\right)^{-1}=1>2(\sqrt{ } 2-1)$, $n \rightarrow \infty$. This proves (4).

Finally, suppose that $\theta=1+\sqrt{ } 2$. Then $b_{n}=2$ for $n=0,1,2, \ldots$ The relations for h_{n} and k_{n} can be solved to give

$$
\begin{aligned}
& h_{n}=(2 \sqrt{ } 2)^{-1}\left[(1+\sqrt{ } 2)^{n+2}-(1-\sqrt{ } 2)^{n+2}\right] \\
& k_{n}=(2 \sqrt{ } 2)^{-1}\left[(1+\sqrt{ } 2)^{n+1}-(1-\sqrt{ } 2)^{n+1}\right]
\end{aligned}
$$

and all $\theta_{n}=1+\sqrt{ } 2$. Hence, we have

$$
k_{n} \theta-h_{n}=(-1)^{n}(\sqrt{ } 2-1)^{n+1}
$$

By Lemma 1,

$$
d_{\theta}(m)=(\sqrt{ } 2-1)^{n+1}[1-\alpha(\sqrt{ } 2-1)]
$$

if $m=k_{n}+(\alpha+1) k_{n+1}+c$, where $0 \leqq \alpha \leqq b_{n+2}-1$ and $-1 \leqq c \leqq k_{n+1}-2$; that is, if, for large n,

$$
m \sim(2 \sqrt{ } 2)^{-1}(1+\sqrt{ } 2)^{n+1}[1+(\alpha+1)(1+\sqrt{ } 2)]
$$

where $\alpha=0$ or 1 and $-1 \leqq c<(2 \sqrt{ } 2)^{-1}(1+\sqrt{ } 2)^{n+1}-1$. When $m \rightarrow \infty$, $n \rightarrow \infty$; therefore

$$
\begin{aligned}
\liminf _{m \rightarrow \infty} m d_{\theta}(m) & =\inf _{\alpha}(2 \sqrt{ } 2)^{-1}[1-\alpha(\sqrt{ } 2-1)][1+(\alpha+1)(1+\sqrt{ } 2)] \\
& =\inf _{\alpha}(2 \sqrt{ } 2)^{-1}\left[2+\sqrt{ } 2+\alpha-\alpha^{2}\right]=\frac{1+\sqrt{ } 2}{2} .
\end{aligned}
$$

This completes the proof of the theorem.
Theorem 2.

$$
\inf _{\theta} \limsup _{n \rightarrow \infty} n d_{\theta}(n)=1+\frac{2 \sqrt{ } 5}{5} .
$$

Proof. By Lemma 1, it is sufficient to prove

$$
\begin{align*}
\lim \sup \left(k_{n}+2 k_{n+1}\right)\left|k_{n} \theta-h_{n}\right| & =\lim \sup \left(1+2 x_{n}\right)\left(y_{n}+x_{n}\right)^{-1} \\
& \geqq 1+2 \sqrt{ } 5 / 5, \quad n \rightarrow \infty, \tag{5}
\end{align*}
$$

in order to show that

$$
\lim \sup n d_{\theta}(n) \geqq 1+2 \sqrt{ } 5 / 5, \quad n \rightarrow \infty .
$$

If $y_{n} \leqq \frac{1}{2}$ infinitely often, then

$$
\left(1+2 x_{n}\right)\left(y_{n}+x_{n}\right)^{-1} \geqq 2
$$

infinitely often and we have

$$
\lim \sup \left(1+2 x_{n}\right)\left(y_{n}+x_{n}\right)^{-1} \geqq 2, \quad n \rightarrow \infty .
$$

If $y_{n}>\frac{1}{2}$ for all sufficiently large n, then $b_{n}=1$ for all sufficiently large n. Hence, as $n \rightarrow \infty$,

$$
\lim x_{n}=[1,1,1, \ldots]=(1+\sqrt{ } 5) / 2, \quad \lim y_{n}=(-1+\sqrt{ } 5) / 2
$$

and

$$
\lim \left(1+2 x_{n}\right)\left(y_{n}+x_{n}\right)^{-1}=1+2 \sqrt{ } 5 / 5 .
$$

This proves (5). An easy calculation shows that

$$
\lim n d_{\theta}(n)=1+2 \sqrt{ } 5 / 5, \quad n \rightarrow \infty,
$$

for $\theta=(1+\sqrt{ } 5) / 2$, and Theorem 2 is proved.
We note that if

$$
k_{n}+k_{n+1}-1 \leqq m \leqq k_{n}+(\alpha+2) k_{n+1}-2,
$$

where $\alpha=b_{n+2}-1$, we have

$$
\max _{m} m d_{\theta}(m)=\max _{0 \leqq \mu \leqq b_{n+2^{-1}}}\left(1+(\mu+2) x_{n}\right)\left(1-\mu y_{n}\right)\left(x_{n}+y_{n}\right)^{-1}
$$

We conclude with
Theorem 3.

$$
\lim \sup n d_{\theta}(n)=\infty \Leftrightarrow \lim \sup b_{n}=\infty, \quad n \rightarrow \infty
$$

Proof. (i) If $\lim \sup _{n \rightarrow \infty} b_{n}=\infty$, then $\lim \inf _{n \rightarrow \infty} y_{n}=0$. If y_{n} is sufficiently small, then we can take $\mu=\left[1 / 2 y_{n}\right]-1$ (since this is less than $b_{n+2}-1$) and we find

$$
\left(1+(\mu+2) x_{n}\right)\left(1-\mu y_{n}\right)\left(x_{n}+y_{n}\right)^{-1} \geqq x_{n}\left(2 y_{n}\right)^{-1}\left(\frac{1}{2}\right)\left(x_{n}+1\right)^{-1} \rightarrow \infty
$$

for a subsequence of y_{n} which tends to 0 .
(ii) If $\lim \sup _{n \rightarrow \infty} n d_{\theta}(n)=\infty$, then certainly

$$
\lim \sup \left(1+\left(\mu^{*}+2\right) x_{n}\right)\left(1-\mu^{*} y_{n}\right)\left(x_{n}+y_{n}\right)^{-1}=\infty, \quad n \rightarrow \infty,
$$

where

$$
\mu^{*}=\left(2 y_{n}\right)^{-1}-\left(2 x_{n}\right)^{-1}-1
$$

(the expression considered is a quadratic form in μ with a maximum for $\left.\mu=\mu^{*}\right)$. Hence, as $n \rightarrow \infty$,
$\lim \sup 2^{-1}\left[\left(x_{n}+y_{n}\right)\left(2 x_{n} y_{n}\right)^{-1}+1\right]\left[1+2 x_{n} y_{n}\left(x_{n}+y_{n}\right)^{-1}\right]=\infty$
and this implies $\lim \inf _{n \rightarrow \infty} y_{n}=0$, i.e., $\lim \sup _{n \rightarrow \infty} b_{n}=\infty$ and the theorem is proved.

The authors would like to acknowledge several helpful comments of a referee.

References

1. H. Dym, On the structure and the Hausdorff dimension of the support of a class of distribution functions induced by ergodic sequences, Mitre Corp., T.M.-4155 (1965).
2. J. H. Halton, The distribution of the sequence $\{n \xi\}(n=0,1,2, \ldots)$, Proc. Cambridge Philos. Soc. 61 (1965), 665-670.
3. A. Ya. Khinchin, Continued fractions (Univ. Chicago Press, Chicago, 1964).
4. A. Ostrowski, Bemerkungen zur Theorie der diophantischen Approximationen, Abh. Math. Sem. Univ. Hamburg 1 (1921), 77-98.
5. Vera T. Sós, On the theory of diophantine approximations. I, Acta Math. VIII (1957), 461472.
6. On the distribution Mod 1 of the sequence $n \alpha$, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 127-134.
7. N. B. Slater, The distribution of the integer N for which $\{\theta N\}<\phi$, Proc. Cambridge Philos. Soc. 46 (1950), 525-537.
8. J. Surányi, Über die Anordnung der Vielfachen einer reellen Zahl mod 1, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 107-111.
9. S. Swierczkowski, On successive settings of an arc on the circumference of a circle, Fund. Math. 46 (1958), 187-189.

Bell Telephone Laboratories, Murray Hill, N.J.;
Technological University, Eindhoven, The Netherlands

[^0]: Received July 15, 1966 and in revised form, December 13, 1966.
 *It should be noted that the related function $d^{\prime}{ }_{\theta}(n)=\min _{1 \leqslant i \leqslant n+1}\left(a_{i}-a_{i-1}\right)$ has been extensively studied by Sós, Halton, and others (cf. 2; 4; 5; 6;7;8; and 9).

