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THE TOPOLOGICAL DEGREE OF A-PROPER MAPPING
IN THE MENGER PN-SPACE (I)

HuUANG XI1AOQIN, WANG MIANSEN AND ZHU CHUANXI

In this paper, we introduce the concept of A-proper topological degree in Menger
PN-space and study some of its properties. Utilising its properties, we obtain a new
fixed point theorem.

1. INTRODUCTION

In 1940s, Menger advanced the concept of probabilistic metric space. In his theory,
the distance between two points was represented by a distribution function. Obviously,
compared with the structure of metric space, it further conformed to reality. Moreover,
the ordinary metric space can be looked upon as its special cases. So, the study of
probabilistic metric space has important practical significance. As everyone knows, the
A-proper topological degree theory is a forceful tool in the research of operator theory
in normed spaces. Then, how to establish and study the A-proper topological degree in
probabilistic metric space? In this paper, we introduce the concept of A-proper topologi-
cal degree in Menger PN- space and study some of its properties. Utilising its properties,
we obtain a new fixed point theorem.

For the sake of convenience, we recall some definitions and properties of PN-space.

DEeFINITION 1: (Chang [1].) A probabilistic normed space (shortly a PN-space) is
an ordered pair (E,F), where E is a real linear space, F is a mapping of E into D (Dis
the set of all distribution functions. We shall denote the distribution function F(z) by
F;, F(t) denotes the value F; for ¢t € R) satisfying the following conditions:
(PN-1) F.(0) =0;
(PN-2) F.(t) = H(t) for all t € R if and only if z = 6, where H(t)=0 when ¢ < 0,
and H(t)=1 when ¢ > 0;

(PN-3) For all @ # 0, Fo(t) = F;(t/|);

(PN-4) Forany z,y € E and t),t; € R, if F;(t1) = 1 and F,(t;) = 1, then we have
Fopy(ti +t2) = 1.
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LEMMA 1. (Chang [1].) Let (E,F,A) be a Menger PN-space with a continuous
t-norm A, then z, C E is said to be convergent to x € E if for any t > 0, we have
lim F,,_-(t) = H(t).

n—o0

Let (E, F,A) be a Menger PN-space with a continuous ¢-norm A, then (E, F, A)

with the induced family of neighbourhoods

{Uy(e, V) :y € E,e >0,A> 0} = {y + Us(e,N) : y € E,e > 0,1 > 0}

is a Hausdorff linear topological space.

Sherwood has proved that every Menger space with a continuous ¢-norm must have
a completion (See Chang [1].) Hence, without generalisation, for Menger space with a
continuous t-norm, we always think that the space is complete.

We can refer to Chang [1, 2], Guo [3] and Petryshyn([4] for the properties of PN-space
and A-proper mapping.

2. MAIN REsuLTS

DEFINITION 2: (E, F, A) is said to be a projected complete Menger PN-space, where

A is a continuous ¢-norm, if the following conditions are satisfied:
(i) X, is a sequence of finite dimensional subspace of E and Q,, : E = X,, is
a linear bounded projection operator satisfying Qn(E) = Xn, Q2 = Qp;
(ii) For any z € E, we have "1_141{.10 Fouz—z(t) = H(t), Vt > 0;
(iii) (E,F,A) is a Menger PN-space. In here, I' = {X,,Q,} is called a proba-
bilistic metric approximation scheme of (E, F, A).

DEFINITION 3: Let (E, F,A) be a projected complete Menger PN-space; A be a
continuous t-norm; £ be a bounded open set of E and f : & — E be a continuous
bounded mapping. Q, = QN X, (n = 1,2,...). f is said to be an A-proper mapping
with respect to the probabilistic metric approximation scheme I' if for any sequence
T, € On, satisfying klg{.lo FQ,, f(zny)-@n ) ()= H(t), Yt > 0 (where y € E), there exists
a convergent subsequence {zy, } of {zn, }, such that z,, — z € Qand f(z) =y. When
T is fixed, f is said to be A-proper.

Throughout this paper, we assume that I is fixed.

DEFINITION 4: Let (E,F,A) be a projected complete Menger PN-space; A be a
continuous ¢-norm:  be a bounded open set of E; and f : § — E be an A-proper
mapping, p € E\ f(9Q). Z denotes the set of integers. Z* = ZU{—00, +00}. Generalised
topological degree Deg(f, 2, p) is defined to be:

Deg(f,Q,p) = {z € Z* | there exists a subsequence {n;} of {n}

such that degg(Qn, f, Uy, Qn,(p)) — z}.
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The degree deg R(Q,, £, Q,,(p)) which is used in the above definition is the topo-
logical degree of the continuous mapping Qn f : Q, — X, in a finite dimensional space.
It is easy to see that when = is sufficiently large, we have Q.(p) ¢ Qnf(99,) (otherwise,
there exists an z, € 99, C 9% such that Q. f(z,) = Qn(p), then we have

lim Fy, 1(z.)-Qa()(t) = H(2).

n—o00

Because f is an A-proper mapping, by the definition, there exists a subsequence {z,,}
of {z,} satisfying z,, = = € Q and f(z) = p. This contradicts p ¢ f(8Q)). Thus,
when n is sufficiently large, degg(Qnf, n, @n(p)) is significant. Therefore Deg(f, 2, p)
is a nonempty subset of Z*.

THEOREM 1. The generalised topological degree Deg(f,2,p) has the following
properties:

(i) Deg(l,Q,p) =1,Vp € Q, where I is an identity operator;
(i) If Deg(f,5,p) # {0}, then the equation f(z) = p has a solution in Q;
(iii) IfL:[0,1]xQ — E is continuous and for any fixedt € [0,1], L(¢,.) : @ = E
is an A-proper mapping satisfying

lim inf Frez)-100e)(€) = He), Ve >0,
and p ¢ hy(32), 0 < t < 1, where hy(z) = L(t,z), then we have
Deg(h:, 2, p) = Deg(ho,,p), VOt L

(iv) IfQy is an open subset of Q and p ¢ f(Q\b), then we have Deg(f,, p)
= Deg(fr QO)p)y
(v) IfQq) and Q) are two disjoint open subsets of 2 and
p¢ f(ﬁ\ Qumu 9(2))),

then
Deg(f’ va) c Deg(f, Q(l)’p) + Deg(fv 9(2),17)-
If either Deg(f, 1), p) or Deg(f,$2), p) is single-valued, then

Deg(f, 2, p) = Deg(f, 1), p) + Deg(f, Qz),p);

(vi) Ifp ¢ f(09), then Deg(f,Q,p) = Deg(f —p,Q,8);
(vii) If p varies on every connected component of E \ f(0%), then Deg(f,Q, p)
is a constant.
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PROOF: (i) Because

Deg(1,Q,p) = {z € Z* | there exists a subsequence {ni}of {n}
such that degp(Qn,1, M, Qn,(p)) — z}

and degg(Qn, I, 0n,, Qn,(p)) =1, ¥p € Qn,, then we have Deg(I,Q,p) =1, Vpe Q.

(ii) Because Deg(f,Q,p) # {0}, there must exist a subsequence {ni} of { n} such
that degg(Qn, S, n,, Qn,(p)) # 0. Hence, there exists an {z,,} € Q,, C Q such that
Qn,f(Tn,) = Qn,(p) (k=1,2,...), and klgg FQu, 7(2n)~@n, 0 (1) = H(t), ¥t > 0. By the
A-proper property of f, there exists the convergent subsequence {:c,.,“,} of {z,, } satisfying
ZTn,, = To € Q and f(zo) = p. By the definition of Deg(f,(,p), we have p ¢ f(39).
Hence zy € Q. Hence f(z) = p has a solution in .

(ili) For any 2y € [0, 1], we prove that there exists a dp > 0 such that
Qn(p) ¢ tha(aﬂn)s Vs € N(to, 60)

Otherwise, for any §; > d; > -+ > § > - -+ > 0, there exists an s,, € N(ty, §;) such that
Qn.(p) € Quihs,, (0Qn,) (k=1,2,...). Therefore there exists an z,, € 3Q,, C 0Q such
tha‘t' Qn;, (p) = Qﬂkh.?nk (xﬂk)' SO

kliélgo Fanh-n,‘ (3n1‘)—an(P) (E) = H(E) V€ >0

Hence

FQu, hq(@ny)~@ny @) (€) = FQn,heo(2n,)-Qnyhan, (30, )+Qnyhan, (T )~@ny () (€)
£ 13
= A (FQ,.,,heo(:,,k)-o,.,‘ Ban (Zag) (5) s FQuyhen, (20 )~ Qny (5) (5))

Because lim inf Fr(z)-r(t0,2)(€) = H{e) and inf Friz)-L(to,2)(€) < FLit,z)-Lito,z)(€)s
t=to zefl _ zefl
we have zllf?,, Friz)-Liton(€) = H(e), VT € Q,e > 0. Hence hy(z,,) = hy,(zn,) (t = to)-

By the continuity of Qn.,, we have Qn, hy(Tn,) = Qn he(Zn,) (t — to). Because s,,
€ N(to,0x), we have sn, — tp (k — 00). Hence Qn,hs,, (Tn,) = Qnhuo(2n,) (k = 00),

and .
kl-i—)ngo Fanhto(znk)—an h"‘k (Ink) (5) = H(E)

Therefore

,}LH;O Fanh‘o(‘t"k )"Qﬂk (» (E)

. € . 3
2 A (kllpl{.lo Fan hto(znk)‘“anhmb (znk) (5) ] kllg“l; Fan h'ﬂk (znk)_an (P) (5))

= A(H(e), H(e))
= H(e)
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Thus kllg}o FQn, hig(zn)-Qny () (€) = H(€), Ve > 0. By the A-proper property of hy,,
there exists a convergent subsequence {z,, } of {zs,} satisfying z,, — zo € Q and
he(zo) = p. It contradicts p ¢ h, (). Hence Qn(p) ¢ Qnhs(09,). By the homotopy
invariance property of topological degree in finite dimensional space, we have

dEgR(tht; Qm Qn(p)) = degR(thto) Qm Qn(p))v vn > N(t)

So Deg(h:, 2, p) = Deg(hy,, 2, p), Vt € N(to,80). Hence we prove that for any ty € [0,1],
there exists a neighbourhood N(tg, &), when t € N(ty, &), Deg(he, 2, p) is a constant.
By the arbitrariness of to, we have Deg(h,, 2, p) = Deg(ho, Q, p), Vt € [0, 1].

(iv) Let O = QN X,. There must exist a N > 0 satisfying Qn(p) € Qnf (T \
Q™),Vn > N. Otherwise, there exist a subsequence {ns} of {n} and an z,, € ,, \
QY ¢ T\ 0 such that Qg f(zn,) = Qu,(P), (k =1,2,...), hence klixg FQu, f(2ny)~Quy (9)
(¢) = H(e). Because f is an A-proper mapping, then we have z,, — zo and f(zo) =»p.
Because Q \  is a closed set, we have zo € 2\ Q. It contradicts p ¢ f(€7\ ). Hence

Qnip) & Qnf , \QS,O)). By the properties of topological degree in finite dimensional
space, we have

degR(Q,.f, Qn, Qn(p)) = degp (an, 95.0), Qn(P))y Vn > N.
Hence
Deg(f: Q’p) = Deg(fv QO; p)

(v) Let O = QuyN X, and QP = Q) N X, then O and O are two disjoint
open subsets of 2, = 2 N X,. In the following, we prove that when n is sufficiently
large, Qn(p) ¢ Qnf(Q \ (O U Qs.z))). Otherwise, there exist a subsequence {n}
of {n} and an {z,,} € Q,, \ (Qs.l,‘) U Qg‘?) C O\ (Qu) U Q) such that Qn, f(zn,)
= Qn,(p)(k = 1,2,...). Hence ’CILI&FQM,(,“)_Q“(,)(E) = H(e), Ve > 0. Because f
is an A-proper mapping, then we have z,, — zo and f(zo) = p. Because Q\ Qu
U Q) is a closed set, we have zg € 0\ (Q(1) U Q). This contradicts p ¢ f(Q\ (Qq)
Uf)). Hence Q. (p) ¢ @nf (T \ (0 UQY)), Vn > N. Hence degp(Qnf, Un, Qu(p))
= degg(Qnf, O, Qu(p)) + dega(Qnf, O, Qu(p))-

For any z € Deg(f,,p), there exists a subsequence {nx} of {n} such that

degp (Q"k 5 Qﬂw Qﬂg (p)) -+ 2z

Obviously, there exists a subsequence {ng,} of {ng} such that

degR(Qng‘. f) ngl,,)l, y Q"ki (p)) 21 € Deg(f) Q(l), p)

There exists a subsequence {nk‘.]_} of {ng,} such that

degR (Q""i,- f’ QS‘Z")‘I y Q""i,- (P)) —> 22 € Deg(f) Q(2)11’)
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Hence z = 21 + 22 € Deg(f, 1, p) + Deg(f, Q(2),p). By the arbitrariness of z, we have
Deg(f, 2, p) C Deg(f, ), p) + Deg(f, 2, p)-

On the other hand, if either Deg(f,Q),p) or Deg(f,Q),p) is single-valued, for
example, Deg(f,Q),p) = {a}, then we have

degp(Qnf, 2, Qu(p)) = @ (n = ).

If z € Deg(f, Qq), p) + Deg(f, Q2), p), then we have z = a + 2, and the subsequence {n;}
of {n} such that

degp(Qn, f, Qs.":.),Qn,-(p)) — 2, (j = 00).
Hence
degr(Qn,; f,n;, Qn;(p)) = a+ 2, = 2,
then z € Deg(f,,p), and

Deg(fa Q(l)7p) + Deg(fa Q(2),p) Cc Deg(f! Q) p)

So
Deg(fr Q(1)1 p) + Deg(f, Q(2)vp) = Deg(fa va)'

(vi) Deg(f,82,p) = {z € Z*| there exists the subsequence {ng} of {n} such that
degr(Qn, f, Uy, @ni () — z}, Deg(f—p,Q,0) = {z € Z*| there exists the subsequence

{ny} of {n} such that deg g (Qn, (f—P), n,, @n, 0) - z}. By the property of topological
degree in finite dimensional space and @y, is continuous and linear, we have

degR (Qng (f - p)a an Qn,, (0)) = degR(anf - Qn,, (P); Qnu 0)
= degR(an fa Qn,, ) Qn;, (P)) .

Hence Deg(f,2,p) = Deg(f —p,Q,8).

(vii) We assume that V' is a connected region of E'\ f(9Q2) and p € V. Then there
must exist a neighbourhood u(gg, Ag) of 8 such that (p+ u(eo, Ao)) N F(IN) = ¢. We take
g€ (p + u(eo, /\0)) and denote hi(z) = f(z) — t(g — p), t € [0,1], z € Q. Obviously, h, is
continuous. If there exist ¢y € [0,1] and zo € 9 such that f(zo) —to(g — p) = p, then we
have Fy(z4)-p(€0) = Figq—p)(€0) > 1 — Ao. This contradicts p ¢ f(052). Hence p ¢ h(89),
Vvt € [0, 1. If for any subsequence {z,} satisfying nllvnolo FQu(f(n)~t(g-p))-Qn(w)(€) = H(e),
that is, lim Fg, f(z.)-Qn(t(e-p)+w)(€) = H(€), then by the A-proper property of f, there
exists a g;l;;equence {zn,} of {zs} such that z,, — o and f(z,) = t(¢ — p) + w. Hence
f(zo) ~ t(¢ — p) = w, and h, is an A-proper mapping. Because

Yim inf Fis)-vio.) (€) = i inf Fra)-e-p-(st2)-to(a-r (€)
= lim Fieo-t)(q-p)(€)
= H(e), Ve >0,
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by Theorem 1 (iii), we have

Deg(f: Q’p) = Deg(f - (q - p)a Qa p) = Deg(f —-q, Q’ o) = Deg(f1 Q, Q)

This implies that the mapping ¥ : p — Deg(f,f,p) is a continuous mapping on V.
Because V is connected, then ¥ (V) is a connected set in R. Since ¥ is an integer-valued
function, then Deg(f,$2, p) is the same when p € V. 0

3. APPLICATION

THEOREM 2. Let (E,F,A) be a projected complete Menger PN-space, A be a
continuous t-norm, and §} be a bounded open set of E, § € , and A : Q@ — E be
a continuous bounded mapping. For any A € [0,1], I — AA is an A-proper mapping.
Moreover A satisfies the following condition:

(1) Fu,(t) > Fi(t), V2 €09, t>0

then A must have a fixed point in Q.

ProoF: By condition (1), A does not have a fixed point on 8Q, that is, Az # z,
Vz € 0. Let hy(z) = z — sAz, Vs € [0,1], Vz € Q. In the following, we prove that
0 ¢ hy(39), Vs € [0,1]. In fact, if 6 € h,(O), then there exist an sp € [0,1] and an
z, € 0Q such that § = z; — spAz,. We have sy # 0 (If 39 = 0, then we have § = z;, that
is, @ € 9. It contradicts § € 2) and so # 1 (If 3p = 1, then we have § = z; — Az, that
is, z; = Az,. It contradicts Az # z, Vz € 9Q). Hence sy € (0,1). By 0 = z, — soAz,,
we have
(10) A.’El = lzl

S0

By (1), we have F{i/5)z,(t) > Fr,(t), V& > 0, that is, Fy,(tsq) > F;, (t). By the
nondecreasing property of F,,, we have sgt > t. So sy > 1. This contradicts
sp € (0,1). Hence 6 ¢ h,(02). When t — t;, we have = — tAx — = — tyAz.
Thus tl:rg Frtaz-(z-toazr)(€) = H(e), Ve > 0, Vz € Q. Thus for any A > 0, we have

Fitaz—(z-t0az)(€) > 1 — A (t = to). It is easy to prove that
inf Foiaz—(z-t04z)(€) 21— X (t = tp).
€N

By the arbitrariness of A, we have

lim inf F:_g,u-_(,_go,qz)(E) = H(E),VE >0,Vz € Q.

t—to zeﬁ

Because h;(z) = z — tAz is an A-proper mapping, by Theorem 1(iii), we have
Deg(] — A,9,0) = Deg(I,Q,0) = 1.

Therefore, A has a fixed point z* in Q such that Az* = z*. 0
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