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We derive a model equation describing electrostatic plasma turbulence in general
(inhomogeneous and curved) magnetic fields by analysing the effect of curved geometry
on the ion fluid polarization drift velocity. The derived nonlinear equation generalizes
the Hasegawa–Mima equation governing drift wave turbulence in a straight homogeneous
magnetic field, and may serve as a toy model for the description of turbulent plasmas.
The equation is most appropriate for configurations with a small E × B drift velocity
divergence, or a mild spatial change in E × B drift velocity. We identify the conserved
energy of the system, and obtain conditions on magnetic field topology for conservation of
generalized enstrophy. Through numerical examples, we further show how the curvature
of the magnetic field reshapes self-organized steady turbulent states.
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1. Introduction

The Hasegawa–Mima equation (Hasegawa & Mima 1977a,b) describes two-dimensional
electrostatic plasma turbulence in a straight homogeneous magnetic field. Mathematically,
it is related to the quasi-geostrophic equation for atmospheric dynamics on rotating
planetary surfaces (Charney 1948; Charney & Drazin 1961), and it reduces to the
vorticity equation for a two-dimensional incompressible fluid in the limit of high electron
temperature (Horton & Hasegawa 1994). As such, the Hasegawa–Mima equation exhibits
properties analogous to two-dimensional fluid turbulence (Batchelor 1969; Kraichnan &
Montgomery 1980; Dritschel, Qi & Marston 2015), including inverse cascade of energy
(Kraichnan 1967; Rivera et al. 2003; Xiao et al. 2009) associated with the presence of
two inviscid invariants, energy and generalized enstrophy (Hasegawa & Mima 2018).
Furthermore, in the inviscid limit the system is endowed with a non-canonical Hamiltonian
structure (Weinstein 1983; Morrison 1998), where energy and generalized enstrophy play
the roles of Hamiltonian and Casimir invariant, respectively (Tassi, Chandre & Morrison
2009). These properties combined with a relative simplicity make the Hasegawa–Mima
equation an effective tool in the study of two-dimensional fluid and plasma turbulence.
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Applications include the investigation of turbulence in geophysical flows (Nazarenko &
Quinn 2009) and magnetically confined plasmas (Horton 1999; Fujisawa et al. 2004),
and more generally the characterization of self-organized turbulent states and zonal flows
(Diamond, Hasegawa & Mima 2011; Singh & Diamond 2021).

Several generalizations of the Hasegawa–Mima equation exist. On the one hand,
the Hasegawa–Wakatani system (Hasegawa & Wakatani 1983; Wakatani & Hasegawa
1984) consists of coupled nonlinear equations for the electrostatic potential and the
ion density. These equations reveal the interplay between drift wave turbulence and
zonal flow mediated by the Kelvin–Helmholtz instability (Numata, Ball & Dewar
2007). Hasegawa and Wakatani also included the effect of field curvature in cylindrical
geometry in their equations (Hasegawa & Wakatani 1987). On the other hand, reduced
magnetohydrodynamics (Hazeltine 1983) and the four-field model (Hazeltine, Hsu &
Morrison 1987) take into account the time evolution of magnetic flux, parallel ion velocity
and electron pressure. Nevertheless, these models are two-dimensional, any deviation
from a straight magnetic field being treated as a higher-order correction in the relevant
ordering. Hence, a closed equation for the electric potential describing electrostatic plasma
turbulence in a general magnetic field is not available at present. This deficiency, which
can be ascribed to the rather elusive nature of the polarization drift (Cary & Brizard 2009;
Kaufman 1986) in non-trivial magnetic fields, has made the understanding of the impact
of topology on the evolution of turbulence a difficult task because one usually needs to
resort to complete models, such as gyrokinetic theory. In this context, the development
of a pertinent toy equation may allow a simplified modelling of turbulence in complex
plasma systems, and therefore help to elucidate the nonlinear physics of two-dimensional
turbulence in non-uniform magnetic fields. Indeed, the Hasegawa–Mima equation and
similar two-dimensional fluid equations have been useful in studying long-term evolution
of coherent structures in Rossby wave turbulence including zonal flows (Yoden & Yamada
1993; Obuse, Takehiro & Yamada 2010).

The purpose of this paper is to fill such theoretical gap by deriving an equation
describing the evolution of electrostatic turbulence in a general magnetic field for the
simplest plasma system consisting of cold ions and a cloud of electrons obeying the
Boltzmann distribution. As in the classical construction, in principle two approaches
could be followed to obtain such an equation: gyrokinetic theory or a fluid description.
In the former, one proceeds by integration of the guiding centre distribution function
to obtain an equation for ion density fluctuations that leads to Hasegawa–Mima-type
electrostatic turbulence by coupling with the gyrokinetic Poisson equation upon suitable
assumptions including cold ions and an adiabatic electron response (Dubin, Krommes &
Oberman 1983; Krommes 2002). It should be noted that, in this context, turbulence is
mediated by a polarization density (Brizard & Hahm 2007) rather than a polarization drift
velocity. By contrast, in the fluid approach one starts from the ion continuity equation
and substitutes the relevant ion E × B and polarization drift velocities (which are fluid
and not guiding centre velocities) obtained from ion fluid momentum balance, and derives
a closed equation for the electrostatic potential (see e.g. Hazeltine & Waelbroeck (1998)
on the treatment of drift motion within the fluid formalism). In this paper we follow the
fluid formalism, sticking to the original derivation carried out by Hasegawa and Mima
(Hasegawa & Mima 1977a), although we expect an equivalent construction to be possible
within the gyrokinetic framework as well.

2. Electrostatic potential in curved magnetic fields

Consider a plasma system consisting of ions and electrons. Let ne denote the
electron density. We assume that ne follows a Boltzmann distribution with constant
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temperature Te > 0:

ne = Ae exp
{
− qφ

kBTe

}
. (2.1)

Here, Ae (x) is a positive spatial function, φ denotes the electric potential, q = −e is the
electron charge and kB is the Boltzmann constant. It is convenient to introduce the constant

λ = e
kBTe

. (2.2)

Let B = B (x) denote a static magnetic field. Recall that B must be solenoidal, ∇ · B = 0.
In the following, we demand that B �= 0 throughout the domain of interest V . Let n denote
the ion density. Assuming quasi-neutrality, ne = Zn with Z the number of protons in the
ions. Using (2.1), the ion continuity equation reads

λφt = −∇ · v − λv · ∇φ − ∇ log Ae · v. (2.3)

Here, v denotes the ion fluid velocity. On the other hand, denoting with m the ion mass,
the ion fluid equation of motion can be written as

mn
dv

dt
= Zen (v × B + E) − ∇P, (2.4)

where P represents pressure and E = −∇φ the electric field. It is convenient to decompose
the ion fluid velocity as

v = v‖ + v⊥, (2.5)

where v‖ denotes the velocity component along the magnetic field and v⊥ the
perpendicular one. In the two-dimensional drift turbulence setting, the parallel velocity
component is neglected because the time scale of fluctuations td is faster than the time scale
tb of ion dynamics along the magnetic field, td � tb. In the following, we will therefore
put

v‖ = 0, (2.6)

and discard the dynamics along B. In this context, it is of interest to study the long-term
evolution of coherent structures. It is worth noticing that in the opposite regime td � tb
the parallel motion v‖ gets averaged out as well due to the fast bounce oscillation, although
the polarization drift becomes neoclassically enhanced due to a large orbit size, leading
to a neoclassically modified turbulence model with a dominant Hasegawa–Mima-type
polarization nonlinearity (Hahm & Tang 1996). To proceed, we introduce a reference time
scale tc and a reference length scale L⊥ across B, and take kBTe as reference value for the
energy. In the standard drift turbulence ordering tc = 2π/Ωc, with Ωc = ZeB/m the ion
cyclotron frequency, while L⊥ corresponds to the sound radius ρs = csΩ

−1
c ∼ k−1

⊥ , where
cs = (ZkBTe/m)1/2 is the sound speed and k⊥ a characteristic perpendicular wavenumber
for the turbulence. In this study we further consider a regime of plasma where the electric
potential energy is small compared with the electron kinetic energy, and the ratio between
the component of the electric field perpendicular to the magnetic field and the magnetic
field itself is small: ∣∣∣∣ eφ

kBTe

∣∣∣∣ ∼ ε,
tcE⊥
L⊥B

∼ ε, (2.7a,b)

where ε � 1 is a small ordering parameter, E⊥ = |E⊥|, with E⊥ the component of the
electric field E perpendicular to B, and B = |B|. The remaining perpendicular component
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v⊥ can be expanded into a first-order term v1, which will correspond to first-order E × B
drift dynamics, a second-order term v2, which will be identified with second-order E ×
B drift dynamics plus the polarization drift encountered in guiding centre theory, and
higher-order corrections. At second order in ε we therefore have

v = v⊥ = εv1 + ε2v2. (2.8)

To proceed, a further working assumption is needed on the rate of change of v, which may
only evolve on time scales long relative to a gyroperiod:

tc

|v|
∂v

∂t
� 1. (2.9)

Recalling the decomposition (2.8), (2.9) leads to

t2
c

L⊥

∣∣∣∣∂v1

∂t

∣∣∣∣ ∼ ε,
t2
c

L⊥

∣∣∣∣∂v2

∂t

∣∣∣∣ ∼ ε. (2.10a,b)

Furthermore, we enforce the cold ion hypothesis T = 0, with T the ion temperature,
implying that ions are not subject to thermal fluctuations, and therefore

P = 0. (2.11)

To obtain expressions for v1 and v2, consider again the equation of motion (2.4), which at
second order in ε now reads as

εZe (B × v1 − E1) = ε2

[
−m

dv1

dt
+ Ze (v2 × B + E2)

]
. (2.12)

Here, we used (2.10a,b) to extract the order of ∂v1/∂t according to ∂v1/∂t → ε∂v1/∂t. In
addition, the electric potential φ and electric field E have been decomposed into first-order
and second-order components according to

φ = εφ1 + ε2φ2, E = εE1 + ε2E2 = −ε∇φ1 − ε2∇φ2. (2.13a,b)

Hence, the cross product of (2.12) with B/B2 can be cast in the form

ε

(
E1 × B

B2
− v1

)
= ε2

⎡
⎢⎣−σ

B × dv1

dt
B2

+ v2 + B × E2

B2

⎤
⎥⎦ , (2.14)

where we introduced the physical constant

σ = m
Ze

. (2.15)

Notice that all terms on the left-hand side of (2.14) are first order in ε, while those on the
right-hand side are second order. The first-order E × B flow vE1 can be obtained from the
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left-hand side:

v1 = vE1 = E1 × B
B2

. (2.16)

Similarly, the second-order fluid drift is given by

v2 = vpol + vE2 = σ

B × dv1

dt
B2

+ E2 × B
B2

. (2.17)

Evidently, the second term on the right-hand side is a second-order E × B drift vE2 , while
the first term is nothing but a polarization drift vpol (see Hazeltine & Waelbroeck 1998).
Indeed, in a straight magnetic field B = B0∇z with B0 ∈ R one has

vpol = σ

B × dv1

dt
B2

= σ

B2
0

dE1⊥
dt

, (2.18)

with E1⊥ the component of E1 perpendicular to B. Combining equations (2.16) and (2.17),
the total ion velocity has the expression

v = εvE1 − ε2σ
B × [

vE1 × (∇ × vE1

)]
B2

− ε2σ
∂

∂t
∇⊥φ1

B2
+ ε2σ

B × ∇ (
v2

E1
+ φ2

)
2B2

= ε

(
1 − εσ

B · ∇ × vE1

B2

)
vE1 − ε2σ

∂

∂t
∇⊥φ1

B2
+ ε2σ

B × ∇ (
v2

E1
+ φ2

)
2B2

, (2.19)

where we introduced the orthogonal gradient operator

∇⊥f = B × (∇f × B)

B2
, (2.20)

with f some function. Then, we have

∇ · v = ∇ ·
[
ε

(
1 − εσ

B · ∇ × vE1

B2

)
vE1

]
− ε2σ

∂

∂t
∇ ·

(∇⊥φ1

B2

)

+1
2
ε2σ∇ (

v2
E1

+ φ2
) · ∇ ×

(
B
B2

)
. (2.21)

Defining the total E × B drift velocity as

vE = εvE1 + ε2vE2 = E × B
B2

, (2.22)

at second order equation (2.19) can be expressed solely in terms of φ as

v = vE − σ
B × [vE × (∇ × vE)]

B2
− σ

∂

∂t
∇⊥φ

B2
+ σ

B × ∇v2
E

2B2

=
(

1 − σ
B · ∇ × vE

B2

)
vE − σ

∂

∂t
∇⊥φ

B2
+ σ

B × ∇v2
E

2B2
. (2.23)

We remark that this same result can also be obtained by a simple iteration method where,
regarding the left-hand side of (2.4) as a smaller term than the right-hand side, we have the
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lowest-order solution as v = vE and the next-order solution as given by (2.23). Similarly,
in terms of φ, (2.21) can be written as

∇ · v = ∇ ·
[(

1 − σ
B · ∇ × vE

B2

)
vE

]
− σ

∂

∂t
∇ ·

(∇⊥φ

B2

)

+ 1
2
σ∇v2

E · ∇ ×
(

B
B2

)
. (2.24)

On the other hand, the term

λv · ∇φ = ε3λ (v1 · ∇φ2 + v2 · ∇φ1 + εv2 · ∇φ2) (2.25)

appearing on the right-hand side of (2.3) is a third-order contribution that can be neglected.
Using (2.24) and (2.25) to evaluate (2.3), at second order we thus obtain

∂

∂t

[
λAeφ − σ∇ ·

(
Ae∇⊥φ

B2

)]
= ∇ ·

[
Ae

(
σ

B · ∇ × vE

B2
− 1

)
vE − σAe

B × ∇v2
E

2B2

]
.

(2.26)

To check the consistency of the ordering assumptions leading to (2.26) we must verify
that the ion fluid conservation laws are satisfied by the derived equation. First consider the
total mass

MV = m
∫

V
n dV. (2.27)

In this notation V ⊂ R
3 is a bounded domain occupied by the plasma and dV the volume

element in R
3. The constancy of M follows immediately by noting that at leading order

in φ

MV = m
∫

V
Ae (1 + λφ) dV. (2.28)

Then, using (2.26) and (2.23) we have

dMV

dt
= −m

∫
∂V

Aev · n dS, (2.29)

where n is the unit outward normal to the boundary ∂V , dS is the surface element on ∂V
and v is given by (2.23). This boundary integral vanishes if the system is periodic or the
fluid velocity v is tangential to the bounding surface, v · n = 0 on ∂V , or Ae = 0 on ∂V .
Next, consider the fluid energy

EV =
∫

V
n

(
1
2

mv2 + Zeφ
)

dV. (2.30)

To study conservation of energy it is convenient to subtract from EV the total mass MV and
define a new quantity:

HV = EV

Ze
− MV

mλ
=

∫
V

n
(

1
2
σλv2 + λφ2 − 1

λ

)
dV. (2.31)

At leading order in φ we therefore obtain

HV = 1
2

∫
V

Ae

(
σv2

E + λφ2 − 2
λ

)
dV. (2.32)
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Since Ae (x) is independent of time, the quantity HV can be further simplified to

HV = 1
2

∫
V

Ae

(
λφ2 + σ

|∇⊥φ|2
B2

)
dV. (2.33)

Using (2.26), the rate of change in HV is

dHV

dt
=

∫
V

Ae

(
λφφt + σ

B2
∇φ · ∇⊥φt

)
dV

=
∫

V
φ

[
λAeφt − σ∇ ·

(
Ae∇⊥φt

B2

)]
dV + σ

∫
∂V

Aeφ
∇⊥φt

B2
· n dS

=
∫

V
φ∇ ·

[
Ae

(
σ

B · ∇ × vE

B2
− 1

)
vE − σAe

B × ∇v2
E

2B2

]
dV

+ σ

∫
∂V

Aeφ
∇⊥φt

B2
· n dS

=
∫

∂V
Aeφ

[(
σ

B · ∇ × vE

B2
− 1

)
vE − σ

B × ∇v2
E

2B2
+ σ

∇⊥φt

B2

]
· n dS

− 1
2
σ

∫
V

AevE · ∇v2
E dV

= −
∫

∂V
Aeφ v · n dS − 1

2
σ

∫
V

AevE · ∇v2
E dV. (2.34)

Here, v is given by (2.23) and the notation φt = ∂φ/∂t has been used. Notice that boundary
integrals vanish if the system is periodic or v · n = 0 on ∂V or Aeφ = 0 on ∂V .

However, the last term on the right-hand side cannot be written as a boundary integral.
Hence, an additional ordering condition is needed to ensure that energy is preserved. This
term originates from the quantity

σ∇ ·
(

Ae
B × ∇v2

E

2B2

)
= 1

2
σ∇v2

E · ∇ ×
(

AeB
B2

)
(2.35)

appearing on the right-hand side of (2.26). We therefore demand that

tcσ

2Ae

∣∣∣∣∇v2
E · ∇ ×

(
AeB
B2

)∣∣∣∣ ∼ ε3. (2.36)

Observe that the scaling above reflects the degree of accuracy of the ordering assumption
t2
cL−1

⊥ ∂v2/∂t ∼ ε adopted in (2.10a,b) which led to the omission of this term from fluid
momentum balance. Recalling that v2

E is second order in ε, if the density gradient is small
L⊥ |∇⊥Ae| /Ae ∼ ε the condition (2.36) is automatically satisfied for those magnetic fields
such that B0L⊥

∣∣∇ × (
B−2B

)∣∣ ∼ ε, with B0 ∈ R a reference magnetic field, or equivalently

B = B2 (∇ζ + εξ) (2.37)

for some potential ζ and vector field ξ . This condition implies that the quantity B/B2

does not depart largely from a potential field, physically implying that the divergence
of the E × B velocity scales as tc∇ · vE = tcε∇ × ξ · ∇φ ∼ ε2. This is the case of the
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standard Hasegawa–Mima equation, where L⊥ |∇⊥Ae| /Ae ∼ ε and (2.36) is satisfied with
ζ = B−1

0 z, B0 ∈ R and ξ = 0 so that ∇ · vE = 0. An alternative way to fulfil (2.36) is to
assume that

L⊥
∣∣∇v2

E

∣∣ ∼ εv2
E, (2.38)

implying a mild change in E × B drift velocity across B as in the case for large-scale
coherent structures studied in § 3.

Once the prescription (2.36) is enforced, the last term in (2.26) can be neglected since
it scales as ε3, and we obtain a consistent equation for the potential φ,

∂

∂t

[
λAeφ − σ∇ ·

(
Ae∇⊥φ

B2

)]
= ∇ ·

[
Ae

(
σ

B · ∇ × vE

B2
− 1

)
vE

]
, (2.39)

which preserves the total mass (2.28) and the energy (2.33) exactly under suitable
boundary conditions. In particular, one obtains

dMV

dt
= −m

∫
∂V

Aev
′ · n dS,

dHV

dt
= −

∫
∂V

Aeφ v′ · n dS, (2.40a,b)

with the effective ion fluid velocity

v′ =
(

1 − σ
B · ∇ × vE

B2

)
vE − σ

∂

∂t
∇⊥φ

B2
. (2.41)

The conditions on magnetic field topology for the existence of an additional conserved
quantity (generalized enstrophy) are discussed in § 4.

We suggest that (2.39) is appropriate to describe electrostatic turbulence in magnetic
fields with arbitrary topology. In particular, considering the ordering condition (2.36),
the equation is best suited for magnetic fields of the type (2.37) so that tc∇ · vE ∼ ε2,
or for configurations (2.38) such that the spatial change in E × B drift velocity scales as
t2
cL−1

⊥ ∇v2
E ∼ ε3.

It should be noted that (2.39) can be derived from the standard drift turbulence ordering
eφ/kBTe ∼ Ω−1

c ∂/∂t ∼ ε, k⊥L′
⊥ ∼ k⊥Lne ∼ k⊥/k‖ ∼ ε−1 and k⊥ρs ∼ 1, where L′

⊥ is a
large perpendicular scale associated with the spatial change in B, Lne ∼ Ae/ |∇⊥Ae| the
characteristic spatial scale associated with the density ne, k‖ a characteristic wavenumber
along the magnetic field, ρs = csm/ZeB the sound radius and cs = (ZkBTe/m)1/2 the sound
speed. With such ordering the last term in (2.26) can be discarded from the outset, being a
third-order contribution. However, this comes at the price of additional constraints on the
spatial change allowed for B, since all its spatial derivatives L⊥∇ ∼ 1/k⊥L′

⊥ ∼ ε must be
small.

Regarding the physical interpretation of the terms appearing in the equation, it is worth
observing that the quantity ∇ · (

B−2∇⊥φ
)

arises from the component of the vorticity ∇ ×
vE along B. Indeed,

B
B2

· ∇ × vE = ∇ ·
(∇⊥φ

B2

)
+

[
∇ ×

(
B
B2

)]
× B

B2
· ∇⊥φ. (2.42)

In addition, a term ∇ · (
nB−2∇⊥φ

)
is often encountered in modern gyrokinetic and

gyrofluid theories as the ion polarization charge density in Poisson’s equation for the
electric potential (Strinzi & Scott 2004; Hahm, Wang & Madsen 2009). The factor
1 − σB−2B · ∇ × vE on the right-hand side of (2.39) is similarly predicted by gyrokinetic

https://doi.org/10.1017/S0022377822000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000514


Hasegawa–Mima equation in curved magnetic fields 9

theory as a correction caused by the polarization charge-like term to the effective magnetic
field strength:

B∗
‖ � B

(
1 + σ

B · ∇ × vE

B2

)
, (2.43)

which corresponds to the Jacobian determinant of the guiding centre phase space when
parallel dynamics is ignored. This correction causes a net drift velocity (see equation (4)
of Hahm (1996) or the discussion in Littlejohn (1981)):

ṽE = B × ∇φ

BB∗
‖

�
(

1 − σ
B · ∇ × vE

B2

)
vE. (2.44)

3. Limit to the Hasegawa–Mima equation and curvature effects

In this section we show that (2.39) reduces to the Hasegawa–Mima equation (Hasegawa
& Mima 1977a) when the magnetic field is straight, B = B0∇z with B0 ∈ R. In the
remainder of this paper, we restrict our attention to the constant density case Ae ∈ R. In
tokamak turbulence this condition can occur in the core of H-mode plasmas (Bernert et al.
2015) where density is often well approximated by a flat profile.

Before proceeding further, it should be noted that in many cases of practical interest
the magnetic field varies on spatial scales L⊥ that are larger than the sound radius ρs, i.e.
ρs/L⊥ ∼ ε. If both magnetic field and electric potential vary on the macroscopic spatial
scale L⊥, the terms ∇ · (AevE) and ∇ · (

(σ/2)(AeB/B2) × ∇v2
E

)
on the right-hand side of

(2.26) become comparable third-order terms because

∇ ·
(

σ

2
AeB
B2

× ∇v2
E

)
∇ · (AevE)

=
σ

2
∇v2

E · ∇ ×
(

AeB
B2

)
∇ · (AevE)

∼ ε3 Ωc

vE/L⊥
∼ ε3 ΩceBL2

⊥
mc2

s/Z
kBTe

eφ
∼ ε2 L2

⊥
ρ2

s

.

(3.1)

Hence, in this scenario the ordering breaks down. However, physical settings with ρs/L⊥ ∼
ε can still be handled by invoking the standard Hasegawa–Mima ordering (which leads to
the same (2.39) as previously explained) where the magnetic field changes on the large
spatial scale L⊥, while the electric potential is characterized by the smaller scale length ρs.

To elucidate how a curved inhomogeneous magnetic field modifies the Hasegawa–Mima
equation, it is convenient to study (2.39) in the limit of a magnetic field of the type

B = B0∇z + εBa, (3.2)

where εB � 1 is an ordering parameter and a = (
ax, ay, az

)
a vector field such that

∇ · a = 0. For simplicity, we assume that az = a · ∇z = 0. Notice that the magnetic field
(3.2) satisfies (2.37) and thus (2.36) as well. Furthermore, at the first order in εB the
curvature of the magnetic field (3.2) is given by

κ = B
B

· ∇
(

B
B

)
= εB

B0

∂a
∂z

. (3.3)

It is convenient to introduce the two-dimensional gradient and Laplacian operators:

∇(x,y)f = ∂f
∂x

∇x + ∂f
∂y

∇y, 	(x,y)f = ∂2f
∂x2

+ ∂2f
∂y2

, (3.4a,b)
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where f = f (x, y, z) is some function. Then, at first order in εB we have

B2 = B2
0, (3.5a)

∇⊥φ = ∇(x,y)φ − εB

B0

[
(a · ∇φ)∇z + ∂φ

∂z
a
]

, (3.5b)

vE = ∇z × ∇φ

B0
+ εB

B2
0
a × ∇φ, (3.5c)

∇ · vE = εB

B2
0
∇φ · ∇ × a, (3.5d)

∇ × vE = 	(x,y)φ

B0
∇z + εB

B2
0
∇ × (a × ∇φ) − 1

B0
∇(x,y)

∂φ

∂z
. (3.5e)

Hence, defining the bracket

[
f , g

]
(x,y) = ∂f

∂x
∂g
∂y

− ∂f
∂y

∂g
∂x

, (3.6)

with f , g some functions, (2.39) becomes

∂

∂t

[
λφ − σ

B2
0
	(x,y)φ + εBσ

B3
0

∂a
∂z

· ∇φ + 2εBσ

B3
0

a · ∇
(

∂φ

∂z

)]

= σ

B3
0

[
φ,	(x,y)φ − 2εB

B0
a · ∇

(
∂φ

∂z

)]
(x,y)

− εB

B2
0

(
1 − σ

B2
0
	(x,y)φ

)
∇φ · ∇ × a

+ σεB

B4
0

∇φ · ∇ (
	(x,y)φ

) × a. (3.7)

Recalling (3.3), we see that the third term on the left-hand side of (3.7) arises from
the curvature of the magnetic field. Terms involving ∂φ/∂z describe the effect of the
inhomogeneity of the electric potential along the vertical axis. The term including ∇ ×
B = εB∇ × a can be ascribed to the presence of electric current in the system. Finally,
the last term on the right-hand side results from the polarization drift associated with the
component of the magnetic field εBa. Observe that (3.7) reduces to the Hasegawa–Mima
equation when εB = 0:

∂

∂t

(
λφ − σ

B2
0
	(x,y)φ

)
= σ

B3
0

[
φ,	(x,y)φ

]
(x,y) . (3.8)

The effect of the field curvature (3.3) can be made explicit by expanding a in Taylor
series around z = 0, and by considering the dynamics on such a plane. At first order in z,
one has

a = a0 + za1, κ = εB

B0
a1, (3.9a,b)

where a0 = (
a0x, a0y, 0

)
and a1 = (a1x, a1x, 0) are vector fields independent of z. Using

(3.9a,b) and setting ∂φ/∂z = 0, all terms in (3.7) lose the dependence on z, giving a
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two-dimensional equation:

∂

∂t

(
λφ − σ

B2
0
	(x,y)φ + σ

B2
0
κ · ∇φ

)
= σ

B3
0

[
φ,	(x,y)φ

]
(x,y)

− 1
B0

(
1 − σ

B2
0
	(x,y)φ

)
κ × ∇φ · ∇z. (3.10)

In many applications, the curvature of the magnetic field is not small. It is therefore
instructive to examine how the Hasegawa–Mima equation is modified when curvature is
a leading-order term. To this end, consider a circular magnetic field B = B0r∇ϕ, where
(r, ϕ, z) are cylindrical coordinates and B0 ∈ R. Notice that B2 = B2

0 is constant (unlike
the usual dependence |∇ϕ|2 = 1/r2), and that the curvature of the magnetic field is given
by κ = −∇ log r. Assuming that the condition (2.36), which in this case can be explicitly
written as r−1∂ |∇⊥φ|2 /∂z ∼ ε3, is initially satisfied by the electric potential φ, (2.39) can
be written as

∂

∂t

(
λφ− σ

B2
0
	(z,r)φ

)
= κ

B0

∂φ

∂z

(
σ

B2
0
	(z,r)φ − 1

)
− σκ

B3
0

[
φ,

∂φ

∂r

]
(z,r)

+ σ

B3
0

[
φ,	(z,r)φ

]
(z,r) ,

(3.11)
where we introduced the differential operators

∇(z,r)f = ∂f
∂z

∇z + ∂f
∂r

∇r, 	(z,r)f = 1
r

∂

∂r

(
r
∂f
∂r

)
+ ∂2f

∂z2
,

[
f , g

]
(z,r) =

∂f
∂z

∂g
∂r

− ∂g
∂z

∂f
∂r

.

(3.12a–c)

Notice that the field curvature modifies the Hasegawa–Mima equation through the
modulus κ2 = 1/r2, and that (3.11) is two-dimensional if axial symmetry ∂φ/∂ϕ = 0 is
assumed. Furthermore, since we expect the electric potential φ, the electric field −∇(z,r)φ
and the electric charge −	(z,r)φ to be bounded, the Hasegawa–Mima equation can be
recovered in the limit r → ∞ (κ → 0) where field lines become progressively straight.
Next, observe that in the Hasegawa–Mima equation (3.8) steady states are given by the
equation [φ,	(x,y)φ] = 0, or simply 	(x,y)φ = −f (φ) with f some function of φ. Since the
electric charge −	(x,y)φ should vanish when φ = 0, for small φ we may set f = f0φ with
f0 a positive real constant (the positive sign physically means that charge density gradients
−∇(x,y)	(x,y)φ are directed in the opposite direction to the electric field −∇(x,y)φ). Then,
considering a two-dimensional domain (x, y) ∈ V = [0,π]2 such that the electric potential
is grounded on the boundary, i.e. φ = 0 on ∂V , solution of the steady Hasegawa–Mima
equation gives self-organized states of the type φ = φ0 sin (mx) sin (ny) with φ0 ∈ R,
m, n ∈ Z and f0 = m2 + n2. Since f0 corresponds to the ratio between enstrophy and energy
in the fluid limit λ = 0, at equilibrium the minimum possible value f0 = 2 corresponding
to m = n = 1 is expected to be preferentially selected (see e.g. Hasegawa (2004) on
this point). Let us see how the situation changes in a curved magnetic field. Since the
right-hand side of (3.11) can be written as

1
r

[
φ,− r

B0
− σ

B3
0

∂φ

∂r
+ σ

B3
0

r	(z,r)φ

]
(z,r)

, (3.13)

steady states in the circular magnetic field B = B0r∇φ are described by the equation

σ

B3
0

(
∂2φ

∂r2
+ ∂2φ

∂z2

)
= 1

B0
− f (φ)

r
. (3.14)
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(a) (b)

(c) (d )

FIGURE 1. (a,b) Contour plots of the self-organized steady electric potential φ in a straight
magnetic field B = B0∇z (Hasegawa–Mima equation) and in a circular magnetic field B =
B0r∇ϕ. (c,d) Contour plots of the respective vorticities ω = ∇ × v · ∇z and ω = ∇ × v · r∇ϕ
with the ion fluid velocity v defined by (2.41). In this simulation, B0 = 1 and f0 = 2 for the
Hasegawa–Mima case, while B0 = 1, σ = 0.1 and f0 = 1 for the circular magnetic field case.

Considering the case f = f0φ and taking a two-dimensional toroidal domain with
squared cross-section (r, z) ∈ V = [1, 2]2 and Dirichlet boundary conditions φ = 0 on
the boundary ∂V , solution of (3.14) results in a self-organized steady state sustained by
the curvature of the magnetic field. Figure 1 shows contour plots of the steady electric
potential φ and vorticity ω = ∇ × v · r∇ϕ with v given by (2.41) obtained by numerical
solution of (3.14) as compared with the Hasegawa–Mima case. The corresponding fluid
drifts vE and v are given in figure 2. From these figures, one sees that contours of electric
potential φ, vorticity ω and fluid drifts |vE| and |v| tend to accumulate in regions of higher
curvature (small radius r), implying the onset of steeper gradients, while inhomogeneities
are suppressed where the curvature is weaker. Figure 2 also reveals that the fluid drifts vE
and v are enhanced where the curvature is stronger. We remark that the observed behaviour
is not caused by the gradient or curvature drifts of the guiding centre framework because
the cold ions approximation is being considered. In addition, the background magnetic
field has uniform strength in this example. Hence, curvature affects self-organized states
through the E × B drift, as clear from (2.39).
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(a) (b)

(c) (d )

FIGURE 2. (a,b) Vector plots of the E × B drift velocity vE associated with the steady states of
figure 1 and contour plots of the modulus |vE |. (c,d) Vector plots of the corresponding total ion
fluid velocity v of (2.41) and contour plots of the modulus |v|.

The effect of vertical inhomogeneity in the potential φ can be further examined by
setting φ = q + sin (mz) p, with q (r) and p (r) radial functions and m ∈ Z. Then, (3.14)
reduces to the system

σ

B3
0

∂2p
∂r2

+
(

f0

r
− m2 σ

B3
0

)
p = 0,

σ

B3
0

∂2q
∂r2

+ f0

r
q − 1

B0
= 0. (3.15a,b)

A plot of the electric potential φ obtained by solution of system (3.15a,b) for different
values of m and B0 is given in figure 3. Notice that for a sufficiently large magnetic field
strength B0, structures arise in the radial direction as well. The size and spacing of these
radial structures appear to be modulated by the background strength and curvature of the
magnetic field rather than the constant m associated with the vertical oscillation.

4. The case of curved magnetic fields crossing a surface perpendicularly

The Hasegawa–Mima equation is endowed with two inviscid invariants, the total energy
and the generalized enstrophy. The generalized enstrophy is an invariant arising from the
two-dimensional nature of the governing equation, which is restricted to the flat (x, y)
plane with normal given by the straight vertical magnetic field B = B0∇z. It is useful
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(a) (b) (c)

(d) (e) ( f )

FIGURE 3. Contour plots of the electric potential φ obtained by solution of (3.15a,b) for
different values of m and B0. Dirichlet boundary conditions p(1) = p(2) = 1 and q(1) = q(2) =
1 are used. The case m = 1 for (a) B0 = 1 and (d) B0 = 5. The case m = 3 for (b) B0 = 1 and (e)
B0 = 5. The case m = 6 for (c) B0 = 1 and (f ) B0 = 5. In this simulation σ = 0.5 and f0 = 1.

to consider the conditions under which the same kind of topological invariant persists
in general magnetic fields. A condition for the analogy with two-dimensional vorticity
dynamics to apply is that the magnetic field defines the normal direction of a general (not
necessarily flat) two-dimensional surface Σ ⊂ R

3. In this case, the dynamics is restricted
to the surface Σ because the drift velocity (2.23) satisfies B · v = 0. The geometric
condition for a vector field B to locally define the normal of a surface Σ is given by
the Frobenius integrability condition (Frankel 2012):

B · ∇ × B = 0. (4.1)

In particular, if the magnetic field B has vanishing helicity density then there exist locally
defined functions α, C such that

B = α∇C. (4.2)

The magnetic field B thus defines the normal to the surface C = constant. When α =
α (C), the magnetic field B becomes a vacuum magnetic field because ∇ × B = 0. In
this section, we are concerned with magnetic fields of the type (4.2). We will assume
that the functions α and C exist in the domain V , and that B �= 0 in V . It is worth
noticing that for time-independent magnetic fields the constraint (4.1) corresponds to
the requirement that the electric current J = ∇ × B is always perpendicular to the
magnetic field, J · B = 0. In tokamaks this condition will be rarely satisfied because
most of the plasma current is aligned with the magnetic field. In addition, we remark that
adiabatic electron response underlying the generalized Hasegawa–Mima equation (2.39)
may impose additional constraints on the magnetic field configuration. Indeed, one expects
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adiabatic electron response to hold only when the integral curves of the magnetic field
form closed surfaces, with generally non-rational rotational transform.

Next, recall that the magnetic field B must be solenoidal. Hence, the Lie–Darboux
theorem (Arnold 1989; de Léon 1989) applies: locally there exist functions Ψ, θ such that

B = ∇Ψ × ∇θ. (4.3)

Again, we will assume that the functions Ψ and θ are well defined in the domain V .
A typical example of vacuum magnetic field is the magnetic field generated by a point
dipole. In this case

α = 1, C = −M
z(

r2 + z2
)3/2 , Ψ = M

r2(
r2 + z2

)3/2 , θ = ϕ, (4.4a–d)

where (r, ϕ, z) are cylindrical coordinates and M a physical constant with units of T m3.
The functions (C, Ψ, θ) can be used as a system of curvilinear coordinates. The Jacobian
determinant of the coordinate transformation is given by

J = ∇C · ∇Ψ × ∇θ = B2

α
. (4.5)

Given two functions f , g it is convenient to introduce the bracket

[
f , g

]
(Ψ,θ)

= ∂f
∂Ψ

∂g
∂θ

− ∂f
∂θ

∂g
∂Ψ

. (4.6)

Using (4.6), the derived (2.39) can be written as

∂

∂t

[
λφ − σ∇ ·

(∇⊥φ

B2

)]
= B2

α

[
φ,− α

B2
+ σ

α2

B4
∇ ·

(∇⊥φ

α

)]
(Ψ,θ)

. (4.7)

One can verify that under appropriate boundary conditions on the surface boundary ∂Σ
the surface energy

HΣ = 1
2

∫
Σ

(
λφ2 + σ

|∇⊥φ|2
B2

)
α

B2
dΨ dθ (4.8)

is a constant of (4.7). The condition for conservation of generalized enstrophy,

WΣ = 1
2

∫
Σ

{
λ
|∇⊥φ|2

B2
+ σ

[
∇ ·

(∇⊥φ

B2

)]2
}

α

B2
dΨ dθ, (4.9)

can be obtained by noting that the second argument of the bracket on the right-hand side
of (4.7) must be a function of ∇ · (

B−2∇⊥φ
)

up to a function of φ. The condition is

α = k
|∇C|2 = B2

k
, k ∈ R, (4.10)

which is equivalent to

∇ ×
(

B
B2

)
= 0. (4.11)
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In this case, ∇ · vE = ∇φ · ∇ × (
B−2B

) = 0. Notice also that ∇ · B = 0 implies that
configurations of the type (4.10) must satisfy

∇ ·
( ∇C

|∇C|2
)

= 0. (4.12)

In spherical geometry, denoting with R the spherical radius, a magnetic field satisfying
(4.10) and (4.12) can be obtained by setting

α = B0

R4
, B0 ∈ R, C = R3

3
. (4.13a–c)

Similarly, in cylindrical geometry, magnetic fields compatible with (4.10) and (4.12)
include those generated by

α = B0

r2
, B0 ∈ R, C = r2

2
, (4.14a)

α = B0r2, B0 ∈ R, C = ϕ. (4.14b)

Observe that when λ = 0 (4.7) with either (4.13a–c) or (4.14a) gives the usual
two-dimensional vorticity dynamics on a sphere or cylinder respectively. The case
of (4.14b) corresponds to a circular magnetic field B = B0r2∇ϕ with curvature κ =
−∇ log r. Assuming axial symmetry φ = φ (r, z), the corresponding form of (2.39) is
again two-dimensional:

∂

∂t

[
λφ − σ

B2
0
∇ · (

κ2∇(z,r)φ
)] = σ

B3
0

κ
[
φ,∇ · (

κ2∇(z,r)φ
)]

(z,r) . (4.15)

5. Concluding remarks

In conclusion, we have derived a model equation (2.39) describing electrostatic plasma
turbulence in a general magnetic field. The equation preserves the mass (2.28) and the
energy (2.33), and reduces to the Hasegawa–Mima equation in the limit of a straight
magnetic field. The ordering adopted in the derivation of the equation is slightly different
from the classical one. On the one hand, both the magnetic field and the electrostatic
potential are allowed to vary on the same spatial scale. On the other hand, the requirement
(2.36), which is automatically satisfied in the standard setting of the Hasegawa–Mima
equation, ensures the consistency of the ordering with respect to preservation of energy.
This latter condition implies that the derived equation is best suited for magnetic fields
satisfying (2.37), implying a second-order E × B drift velocity divergence, or for spatial
scales such that the change in v2

E represents a third-order contribution (2.38). Nevertheless,
as discussed at the end of § 2 the same (2.39) can be obtained from the standard ordering,
at the price of more stringent constraints on the spatial behaviour of the magnetic field.

Conservation of generalized enstrophy holds when the magnetic field defines the normal
of a surface and it is compatible with two-dimensional vorticity dynamics. It should be
noted that inverse energy cascades are expected to occur for all magnetic configurations
such that generalized enstrophy is constant. Indeed, the order of φ derivatives appearing in
(4.8) and (4.9) is not changed by the geometry of the background magnetic field. Detailed
analysis of the effect of magnetic topology on inverse cascades and zonal flows is left for
future work.
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As a physical application of the obtained equation, we have studied how the curvature
of a circular magnetic field with uniform strength modifies self-organized steady states by
comparison with analogous equilibria in a straight magnetic field. A strong curvature tends
to attract level sets of electric potential and vorticity, and to enhance fluid drift velocity. A
higher curvature also appears to contribute to higher heterogeneity in the electric potential.
This behaviour cannot be ascribed to gradient and curvature drifts occurring in the guiding
centre picture because the model relies on the cold ions approximation. Hence, the effect
of curvature is mediated by the E × B drift.

Finally, the results reported in this paper may be useful for constructing simplified
models of turbulence in complex plasma systems of practical interest. In particular, we
expect the derived equation to serve as a toy model of turbulence in tokamak and stellarator
plasmas.
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