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The notion of symmetric (non-linear) mappings has been introduced
by Vainberg [3, p. 56]. However, symmetric mappings of this type have not
played any important role in non-linear functional analysis. Naturally, as
in the case of linear mappings, the symmetric mappings should be defined
in such a way that they are easy to handle and belong to the most elementary
class of non-linear mappings.

In this paper, we shall introduce the notion of adjoint mappings of
non-linear mappings and define symmetric mappings as the mappings which
coincide with their adjoints. It will be seen that a mapping is symmetric
if and only if it is potential. (See Theorem 1.) This means that our definition
gives a natural generalization of the notion of symmetry for linear mappings,
because it is evident that a linear mapping is symmetric if and only if it is
potential.

An extensive study on the potential mappings can be found in Vain-
berg's book [3]. We shall spend most of this paper for the study on the
notion of adjoint mappings.

1. Preliminaries

Let E be a real Hilbert space. A mapping / of E into itself is said to
be (Fre'chet-)differentiableataeEii there exists a continuous linear mapping
I of E into E such that

f(a+x)—f(a) = l(x)+r(a, x) for every x e E
where

lim ||r(«.aj)||/||ar|| = O.

The linear mapping / is determined uniquely and depends on the element
a. We call it the derivative of f at a and denote it by f'(a).

If a mapping / is differentiable at every point of E, f is said to be
differentiate. In this case, f'(x) is a mapping of E into the set =Sf of all
continuous linear mappings of E into E. As is well known, the set ££ is a
Banach algebra with the norm:

||/|| = sup ||/(z)|| for every I e Se.
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If the mapping f'(x) is continuous with respect to this norm topology, /
is said to be continuously differentiable.

Throughout this paper, we denote by Si the set of all continuously
differentiable mappings / such that /(0) = 0. Real numbers are denoted by
the Greek letters.

2. *-admissibility

A mapping / e Si is said to be *-admissible if there exists g e Si such
that

(1) g'{x) = (/'(*))* for every x e B,

where (/'(*))* denotes the adjoint of the linear mapping f'(x). In other
words, / e Si is *-admissible if there exists g e Si such that

for any x, y and z in E. (f'(x)(z) is the value of f'{x) at z, and [y, f (x) (z))
is the inner product of y and f'{x)(z).)

(2) If f eS> is *-admissible, the mapping g in (1) is determined uniquely.

To prove this, we have only to prove generally that, if /, g e Si and

f'{x) = g'(x) for every x e E,

we have f{x) = g(x) for every x e E. Let us consider abstract functions
/(fx) and g(tix) of real variable f. Since

^f(Sx)=f'(ix)(x) and £-g(&)=g'(£x)(x),

it follows from [Theorem 2.7, p. 34, [3]] that

/(*) = £/'(£*)(*)# = J0V (!*)(*)# = g(x).
In the sequel, we denote this uniquely determined mapping by /* and

call it the adjoint of f.
A linear mapping I e 3? is always *-admissible because 5 " C S and

I' (x) = I for every x e E,

and /* defined in this way coincides with the usual adjoint.

The following properties of *-admissible mappings are easily proved:

(3) / / / is *-admissible, f* is also *-admissible and

(/*)* = /•
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(4) / / / and g are ^-admissible, f-\-g is ^-admissible and

(af+Pg)* = af*+pg*.

(5) / / / is ^-admissible,

f* (x) = £ (/'(|a;))* [x)dS for every x e E.

The following property will be used frequently.

(6) / / / is ^-admissible,
(f{x), x) = (/*(#), x) for every x e E.

In fact, by making use of properties of the abstract integral (§ 2,
Chapter I, [3]), we have

= (f*{x),x).

3. Symmetry and skew-symmetry

A mapping / e 3> is said to be symmetric if it is *-admissible and / = /*.
If / is *-admissible and /* = —/, it is said to be skew-symmetric.

From (3) and (4) it follows immediately that, if / is ""-admissible,
/ + / * is symmetric an4 /—/* is skew-symmetric.

The following theorem is a paraphrase of [Theorem 5.1, p. 56, [3]].

THEOREM 1. A mapping f is symmetric if and only if it is potential;
in other words, f is symmetric if and only if there exists a real-valued function
<j>(x) on E such that

4>{x+y)-4>{x) = {f(x),y)+r(x,y)

for any x and y in E and
lim|r(x, y)|/||y|| = 0.

Next, we give a characterization for skew-symmetric mappings.

THEOREM 2. A mapping f is skew-symmetric if and only if it is linear
and (f(x), x) = 0 for every x e E.

PROOF. Let / e £> be skew-symmetric. Then, it follows from (6) that
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for every x e E. Therefore, (f(x), x) = 0 for every x e E. Thus, we have
only to prove that / is linear. At first, we prove that, if / is skew-symmetric,
(f(x-\-gy), y) is constant with respect to f. In fact,

= -(f'(x+£y)(y),y)

hence it follows that
d
— (f(x+£y), y) = 0 for every f.
a?

Therefore, especially, we have

(/(*+*/). y) = (/(»)»«/) f o r any x and «/ in E.
Similarly,

(f(x+y), x) = (f{y), x) for any x and y in E.

On the other hand, we have

0 = (f(x+y), x+y) = (f(x+y), x) + (f(x+y), y).

These three equalities imply that

(/(»). y) = —(f{y), x) f o r any x and y in £,
from which the linearity of / follows.

Conversely, if / is linear and (l{x), x) = 0 for any x e E, we have

from which it follows that I* = —I.

4. Conditions for *-admissibility

The adjoints of non-linear mappings, unlike the adjoints of continuous
linear mappings, cannot always be defined. Theorem 1 suggests the existence
of close connection between *-admissibility and potentiality. The following
theorem makes the connection clear.

THEOREM 3. / € 3! is ^-admissible if and only if there exists a skew-
symmetric mapping I e £C such that f-\-l is potential.
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PROOF. If / e 3i is *-admissible, we have that

is symmetric (= potential by Theorem 1) and \{f—f*) is skew-
symmetric. Therefore, we can take \{f—f*) as the mapping / in the theorem.
Conversely, let us assume that / s § and / + / is potential for some skew-
symmetric mapping / e S£. Then, since / + / and / are ""-admissible, it follows
from (4) that / is *-admissible.

It should be remembered that, if / is ""-admissible, the skew-symmetric
mapping in the above theorem can be determined uniquely. In fact, if
there are two skew-symmetric mappings lx and l2 such that f-\-lt and /+ / 2

are symmetric, lx—12 = (/+^) — (f+h) *s also symmetric. Therefore,

/ 7 (] / \ * 7* 7* 7 7
^1 fr2 — r l "il — *l l2 — *2 fl>

from which it follows that /x = l2.
Thus, since non-zero skew-symmetric mappings are not symmetric, it

is meant by

f = w+n+w-n
that the set of all *-admissible mappings is the direct sum of the set of all
symmetric mappings and the set of all skew-symmetric mappings. In other
words, if we put

ts - *(/+/*) and /, = !(/-/*),
/ = fs+h

is the unique expression of a ""-admissible mapping / as the sum of a sym-
metric mapping and a skew-symmetric mapping, and it is easy to see that

(7) /* = f-2lf.

Now, we give another characterization for the *-admissibility.

THEOREM 4. / e 3i is *-admissible if and only if

is independent of x e E.

PROOF. If / is ""-admissible, we have by (7) that

/ - / * = 2/,.

Therefore, since lt is a linear mapping,

/ ' ( * ) - ( / » ) * = (/-/*)'(*) = 2l'f(x) = 2lf,

which means that f'(x) — (f'(x))* is independent of x e B. Conversely, if
f'(x) — (f'(x))* is independent of x e B, we can put
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/'(*)-(/»)* = /.

Then, for g = f—I, we have

g'(x) = (/-/)'(*) = f{x)-l = (/'(*))*.

Therefore, by the definition of the *-admissibility, / is *-admissible.
The following fact follows immediately from this theorem.

(8) / / / e ® is *'-admissible and f'(a) is symmetric for some a eE,
then f itself is symmetric.

In fact, if / satisfies this condition, we have / = fs, because

h = *(/'(«)-(/»)*) = 0.
In particular, a *-admissible mapping / is symmetric if f'(a) = 0 for

some a e E.

5. *-admissibility for the twice differentiable mappings

For the twice differentiable mappings, we can have a simpler criterion
for the *-admissibility. Let / be twice continuously differentiable; in other
words, there exists a continuous linear mapping f"(x) of E into JC such
that

f'(x+y)-f'(x) = f"(x)(y)+r(x,y)

for every x and y in E, where

and f"(x) is continuous with respect to xeE. (Therefore, f"(x)(y) e £C
for any x and y in E.)

THEOREM 5. Let f be twice continuously differentiable. Then, f is
^-admissible if and only if f"(x)(x) is a symmetric mapping for every xeE.

PROOF. Let / be *-admissible. Then, by Theorem 4,

f"(x)(x)-(f"(x)(x))*

= lim I [(f'(x+ex)-f'(x))-(f'(x+ex)-f'(x))*]
£->o e

= lim i [(f'(x+ex)-{f'(x + ex)*)-(f'(x)-{f'(x))*)]

= 0.

Conversely, if f"(x) (x) is symmetric for every xeE, since
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/'(*)-/'(0) =
we have

Therefore, by Theorem 4, / is *-admissible.

6. Products of ^-admissible mappings

The product fg of two mappings / e 3> and g e S is defined by

(/#) (*) = /(g(*)) f o r e v e rY xeE-

It is well-known that fg s 3> and

(/&)'(*) = /'(g(*))g'C»O f o r everY xeE-
As is easily seen from this equality, the product of two *-admissible mappings
is not always *-admissible. In this section, we hall take a deeper look into
this fact. We begin with some lemmas.

(9) Let ls£? and Ex = {fx| —oo < f < oo} be a one-dimensional closed
subspace generated by a single element x e B. If l(x) e Ex for every x e E,
there exists a number a. such that I = <xl, where 1 is the identity mapping.

PROOF. By the assumption, there exists a real-valued function <f>(x)
such that

l(x) = <f>(x)x for every x e E.

We have only to prove that <f>(x) is a constant function. Let x and y are
arbitrary non-zero elements. If (x, y) = 0, since

<f>(x)x+<f>(y)y = l(x)

= <f>(x+y)x+<j>(x+y)y,
we have

(<j>(x)x, x) + (<j>{y)y, x) = (<t>{x+y)x, x) + (<f>(x+y)y, x),

hence it follows that

(10) fa) = 4>(x+y).

If y e Ex, since y = OLX for some a and

https://doi.org/10.1017/S1446788700006091 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006091


404 S. Yamamuro [8]

Hv)y = i(y) = *(«*) = «.cf>(x)x = <j>{x){«x) = <f>(x)y,
we have

(11) <f,(x) = 4>{y).

Now generally, since Ex is a closed linear subspace, there exist yx e Ex

and y2 e E£ = {z e £ | (a;, z) = 0} such that

2/ =
Then,

(by
= +(*) (by (ii)),

which means that <f>(x) is a constant function.

(12) Let f be symmetric. If If is symmetric for every I e JS?, then f = 0.

PROOF. From the assumption that (//)* = //, we have

lf(x) = f'{x)l* for every x e E.

Now, let a be a fixed element. Since

If (a) = f'(a)l* for every I e SC

f'(a) cannot be in the form of al . Therefore, by (9), there exists a non-
zero element b such that

Since Eb is a closed linear subspace, there exists a non-zero element c such
that

(f'{a)(b),c) = 0 and (b, c) = 1.

Now, let x be an arbitrary element and consider the linear mapping
l(y) = (yt c)x, which is obviously symmetric. Then,

f'(a)(x)=f'(a)((b,c)x) =f'{a)W
= / / » ( & ) = (/'(«)(&), C)a = 0.

Since x is arbitrary, / ' (a) = 0, which is true for every a e E. Therefore,
/ = 0, because /(0) = 0.

Now, we can prove the following theorems.

THEOREM 6. Let f e S). If If is *-admissible for every I e £?, the mapping
f is linear.

PROOF. Let an element a be fixed and let us consider the mapping

g = / - /»•
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It is easy to see that g'(a) = 0 and Ig is ""-admissible for every I e ££. There-
fore, g is symmetric by (8), and it follows from Theorem 4 that

&)'(*)-((%)'(*))* = & ) » - ( & ) ' ( « ) ) • = k'(i)-(lg'(a))* = 0,

which means that Ig is symmetric for every / e =£?. Therefore, g = 0 by
(12), or / = f'{a); in other words, / is linear.

THEOREM 7. Let f e 3). If fl is *'-admissible for every I e £P, the mapping
f is linear.

PROOF. We consider the same g as in the proof of Theorem 6. It is
clear that g'(a) = 0 and gl is *-admissible for every I e 3?. Therefore, for
any I e JS? such that

ael(B),
we have, for a = l(b),

= g'(a)l-l*g'(a) = 0.
In other words, we have

g'(l{x)) I = l*g'(l{x)) for every I e & such that a e 1{E),
or

(13) g'(y)l = l*g'{y) for every / e =S? such that a e l(E)
and y e 1{E).

Now, let c be an arbitrary element and let us consider the following sym-
metric linear mapping

l(x) = x-\-(c, x)c.
Since

- ^ ) =y for every ysE,

we have l(E) = E. Therefore, for this mapping I, we have

g'{y)l{x) = lg'(y){x) f o r e v e r y x e E a n d y e E ,

which is equivalent to

g'(y)(x) + (c,x)g'(y)(c)=g'(y)(x) + {c,g'(y)(x))c,
or

Therefore, g'(y) has the following property: if (c, x) = 0, then
(c,g'(y)(x)) = 0. Now, let us assume that g'(y) ^ 0. Then, g'(y) satisfies
the condition of (9). Therefore, g'[y) should be in the form of al for some
a. However, this is impossible, because it should satisfy the equality (13).
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REMARK. Let / be *-admissible and / e =5? be symmetric. Let us consider
the mapping

g = Ifl.

This is *-admissible, because, since

g'{x)=lf'(l{x))l,
we have

(£',(*))* = {lf'{l{x))l)* = l(f(l(x))*l
= l(f*y{l(x))l=(lf*l)'(z),

which means that

Although the mappings of Hammerstein type are not always *-admissible,
we can sometimes associate the mapping of the above type to the original
mapping of Hammerstein type. In fact, if / is a positive definite, symmetric
mapping, to the mapping //, which is the general form of the mapping of
Hammerstein type, we can associate the mapping lxflx where lt is the square
root of /. This method has been effectively used in § 10 of [3].

7. Ranges and null sets

For a mapping f oi B into itself we denote its range and null set by
R(f) and N(f), respectively; in other words, we put

R(f) = f(E) and N(f) = {xeB\f(x) = 0}.

For a linear mapping /, it is well known that

(14)
) ± = N(l), R(l*) =

Naturally, in the case of non-linear mappings, we cannot have such precise
relations like these.

(15) For any f e 3), we have the following relations:

PROOF. Let a e i?(/)x. Then, for any x e E and y e B, we have

(«. /'(*)&)) = Mm - [(«, f(x+ey)-f(x))] = 0,
e->0 £

which means that a e R(f'(x))x for every x e E. Conversely, if a e R(f'(x))x

for every x e E,
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(a,/(*)) = (fljo
1/'(!*)(*)

hence it follows that a e R (/)-"-. The second equality follows immediately
from (14).

For any subset M of E, we denote the smallest linear subset containing
M by [M]. Then, it is obvious that the following equalities follow from (15).

(16) For any f e 3) we have

= \J R(f'(x)) = \JN((f'(x))*)\
xeE xeE

On the other hand, as to the relation between N(f) and N(f'(x)), we
have only the following inequality.

(17) For any f e S we have

r\N(f'(x))CN(f).
xeE

PROOF. If f'(x) (a) = 0 for every x e B, since

f'{ia) (a) = 0 for every f,
we have

which means that aeN(f).
By the relations (15), (16) and (17), the following theorem can be

easily proved.

THEOREM 8. Let f be *-admissible. Then,

REMARK. Each of the relations of the above theorem cannot be
replaced by the equality. For example, for the mapping

/(*) = (£i>£i) where x= fo, £,)

of a two-dimensional Euclidean space into itself, we have

£(/)-<- = {0} and N{f*) = {x= (flf | a ) | g+f 2 = 0}.

As is easily seen, Theorem 8 can be expressed in the following form.

(18) Let f be a *l-admissible mapping such that R(f) (resp. R(f*)) is closed.
Then, either

https://doi.org/10.1017/S1446788700006091 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006091


408 S. Yamamuro [12]

1° for any y e E there exist x(e E (i = 1, 2, • • •, n) and numbers a.€
(i = 1, 2, • • •, n) such that

n n

V = 2, (tiffa) (respectively y = £ <*,•/*(*<))

or
2° there exists an element a ^ 0 swcA £&«£

/*(«) = 0 (respectively f(a) = 0).

In fact, if [#(/)] = £, we have 1° and, if [R(f)] ^ £, since R(f) ^ 0,
any non-zero element in R(f) satisfies 2°.

8. The mapping degree

For the definition of the mapping degree we refer to [2], in which the
following theorem has been proved:

Let f e2> be completely continuous (i.e., continuous and transforms
every bounded set into a compact set). For a real number X which is not a
proper value of f'(0), we consider the vector field

fx(x) — Xx—f(x) for every xeE.

Then, there exists a sphere S = Sr — {x e E\ \\x\\ 5S r} such that the mapping
degree d(fx, S, 0) of fK at 0 relative to S is equal to (—1)^, where /S is the sum
of the multiplicities of all the proper values X' of /'(0) such that XX' > 0 and
\X'\ < \X\. (cf. Theorem 4.7, p. 136, [1]).

The purpose of this section is to obtain a relation between the mapping
degrees of / and /* by making use of the above theorem of Leray and
Schauder. We begin with the following theorem.

THEOREM 9. Let f be *-admissible. Then, f is completely continuous if
and only if f* is completely continuous.

PROOF. Let / be completely continuous. Then, by [Theorem 7, p. 51,
[3] ],/'(*) is a completely continuous linear mapping for each xeE. Therefore,
(f*)'(x) = (/'(*))* is also completely continuous for each xeE. On the other
hand, by Theorem 4, we have

/ _ / * = /'(X)-(/'(x))* for every xeE.

Therefore, /* is completely continuous. The converse can be proved
similarly.

Now, let / be a ""-admissible completely continuous mapping. Since /*
is also completely continuous, (/*)'(0) = (/'(0))*, (/'(0))* has the same
proper value as those of /'(0) and the multiplicities of the common proper
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values coincide, the following theorem follows from the above theorem of
Leray and Schauder.

THEOREM 10. Let f be a *-admissible completely continuous mapping.
For a real number A which is not a proper value of /'(0), let us consider the
vector field fx(x) = kc—f(x) for every z e E. Then,

fl{x) = he—f*(x) for every xeE,

and there exists a sphere S such that

d(fx,S,O)=d(f*,S,O).
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