THE ADJOINTS OF DIFFERENTIABLE MAPPINGS

S. YAMAMURO
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The notion of symmetric (non-linear) mappings has been introduced
by Vainberg [3, p. 56]. However, symmetric mappings of this type have not
played any important réle in non-linear functional analysis. Naturally, as
in the case of linear mappings, the symmetric mappings should be defined
in such a way that they are easy to handle and belong to the most elementary
class of non-linear mappings.

In this paper, we shall introduce the notion of adjoint mappings of
non-linear mappings and define symmetric mappings as the mappings which
coincide with their adjoints. It will be seen that a mapping is symmetric
if and only if it is potential. (See Theorem 1.) This means that our definition
gives a natural generalization of the notion of symmetry for linear mappings,
because it is evident that a linear mapping is symmetric if and only if it is
potential.

An extensive study on the potential mappings can be found in Vain-
berg’s book [3]. We shall spend most of this paper for the study on the
notion of adjoint mappings.

1. Preliminaries

Let E be a real Hilbert space. A mapping f of E into itself is said to
be (Fréchet-)differentiable at a e E if there exists a continuous linear mapping
! of E into E such that

fla+z)—f(a) = l(x)+7(a, x) for every x € E
where
Hlinmollf(a» )|/l = o.

The linear mapping / is determined uniquely and depends on the element
a. We call it the derivaiive of f at a and denote it by f'(a).

If a mapping f is differentiable at every point of E, f is said to be
differentiable. In this case, f'(z) is a mapping of E into the set % of all
continuous linear mappings of E into E. As is well known, the set £ is a
Banach algebra with the norm:

1] = sup ||}(z)|| for every le &Z.
[l#]|=1
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If the mapping f'(z) is continuous with respect to this norm topology, f
is said to be continuously differentiable.

Throughout this paper, we denote by 2 the set of all continuously
differentiable mappings f such that f(0) = 0. Real numbers are denoted by
the Greek letters.

2. *-admissibility
A mapping f e Z is said to be *-admisstble if there exists g € @ such
that :
(1) g (@) = (' (@)* for every z e E,

where (f'(x))* denotes the adjoint of the linear mapping f'(r). In other
words, f € & is *-admissible if there exists g € 2 such that

(&' @) @), 2) = (v, ' (@)(2))

for any z, y and z in E. (f'(x)(z) is the value of f'(z) at z, and (y, f'(x)(2))
is the inner product of y and f'(x)(z).)

(2) If feZ s *-admissible, the mapping g in (1) is determined uniquely.
To prove this, we have only to prove generally that, if f, g€ 2 and
fx) =g for every z e E,

we have f(z) = g(x) for every 2 € E. Let us consider abstract functions
f(éx) and g(éx) of real variable £. Since

d 7 d ’
¢ [67) = /(=) (=) and 72 86x) = g'(E2) ),
it follows from [Theorem 2.7, p. 34, [3]] that

) = [, e @3t = [ g () @)t = g(a).

In the sequel, we denote this uniquely determined mapping by f* and
call it the adjoint of f.
A linear mapping / € .Z is always *-admissible because # C 2 and

U(x) =1 for every x € E,

and /* defined in this way coincides with the usual adjoint.
The following properties of *-admissible mappings are easily proved:

(3) If fis *-admissible, {* is also *-admissible and

() =1
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(4) If f and g are *-admissible, f4-g 1s *-admissible and
(of +B8)* = af*+-Bg*.
(6) If fis *-admaissible,
*z) = fol (1 (&x))* (x)dé& for every z e E.
The following property will be used frequently.

(6) If fis *-admissible,
(f(x), z) = (f*(x), =) for every z ¢ E.

In fact, by making use of properties of the abstract integral (§ 2,
Chapter I, [3]), we have

((z), ®) =

1

f (€2) (@)ds, )

f (E2) (@), @)de

(F (2))* @), =)de

= ( [L (7€) @)ag, 2) = (@),

© -

3. Symmetry and skew-symmetry

A mapping f € 9 is said to be symmetric if it is *-admissible and f = f*.
If f is *-admissible and f* = —/, it is said to be skew-symmetric.

From (3) and (4) it follows immediately that, if f is *-admissible,
f+7* is symmetric and f—f* is skew-symmetric.

The following theorem is a paraphrase of [Theorem 5.1, p. 56, [3]].

THEOREM 1. A mapping f is symmetric if and only if it is potential;
in other words, | is symmetric if and only if there exists a real-valued function
¢(x) on E such that

$e+y)—d(@) = (f@), y)+r(. y)

for any x and y in E and

Lim |7(z, y)|/Ilyl| = 0.
{lvl|—0

Next, we give a characterization for skew-symmetric mappings.

THEOREM 2. A mapping [ is skew-symmetric if and only if it is linear
and (f(x), x) = O for every x € E.

Proor. Let fe 2 be skew-symmetric. Then, it follows from (6) that

(f(@), ) = (f*(2), 2) = —({(=x), )
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for every z € E. Therefore, (f(z), ) = 0 for every z € E. Thus, we have
only to prove that f is linear. At first, we prove that, if f is skew-symmetric,
(f(xz+&y), y) is constant with respect to &. In fact,

d(f(w+£y y) = (' (@+&y) (¥). v)

d&

= ((F'( "3+5?/1) ), v)
((f*) (=+-&y) (y,y)
—(f'(=+£&9)(v), v)

d
T (flx+&y), v),

i

hence it follows that

d
dE (fx+Ey),y) =0 for every &.

Therefore, especially, we have

(f@+y),y) = (f(x),y) for any z and y in E.
Similarly,
(fe+y), ) = (f(y),*) for any z and y in E.

On the other hand, we have
0 = (f(x+y), z+y) = (fx+y), z)+(/(x+v), y).
These three equalities imply that

(fx),y) = —(/(y),x) for any z and y in E,

from which the linearity of f follows.
Conversely, if / is linear and (/(z), ) = 0 for any « € E, we have

(U=), 9)+ (), z) = (Lx+y), z+y)— (=), 2)—({(y), y) = O

from which it follows that /* = —I/.

4. Conditions for *-admissibility

The adjoints of non-linear mappings, unlike the adjoints of continuous
linear mappings, cannot always be defined. Theorem 1 suggests the existence
of close connection between *-admissibility and potentiality. The following
theorem makes the connection clear.

THEOREM 3. [ €D is *-admussible if and only if there exists a skew-
symmetric mapping l € L such that {41 is potential.
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Proor. If f € Z is *-admissible, we have that
f= 3+ +30—1*),
3(f+/*) is symmetric (= potential by Theorem 1) and }(f—/*) is skew-
symmetric. Therefore, we can take 1(f/—f*) as the mapping / in the theorem.
Conversely, let us assume that f e & and f4/ is potential for some skew-
symmetric mapping / € . Then, since {4/ and / are *-admissible, it follows
from (4) that fis *-admissible.

It should be remembered that, if f is *-admissible, the skew-symmetric
mapping in the above theorem can be determined uniquely. In fact, if
there are two skew-symmetric mappings /; and /, such that f+17, and f4-,
are symmetric, ;,—I, = (f+1;)— (f+1;) is also symmetric. Therefore,

ll—lz = (lx_lz)* = li“~l¥ = lz“ll:

from which it follows that /;, = /,.
Thus, since non-zero skew-symmetric mappings are not symmetric, it

is meant by

f= 30+ +30—1)
that the set of all *-admissible mappings is the direct sum of the set of all
.symmetric mappings and the set of all skew-symmetric mappings. In other
words, if we put

fs = 3(f+1*) and I, = §(f—1*),
f=fsti

is the unique expression of a *-admissible mapping f as the sum of a sym-
metric mapping and a skew-symmetric mapping, and it is easy to see that

(7) = j—2i,.
Now, we give another characterization for the *-admissibility.

THEOREM 4. f € D is *-admissible if and only if
f @) —(f' ())*
is independent of x € E.
Proor. If f is *-admissible, we have by (7) that
f—1* = 2l,.
Therefore, since /, is a linear mapping,
F@)—(f@)* = (f—1*) () = 24(x) = 2L,

which means that f'(x)—(f'(z))* is independent of z e E. Conversely, if
f'(@)—(f'(x))* is independent of = € E, we can put
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f)—(f@)* =1
Then, for g = f—I, we have
g' (@) = (f—0)' () = f (@)~ = (f'(@))*

Therefore, by the definition of the *-admissibility, f is *-admissible.
The following fact follows immediately from this theorem.

(8) If f € D is *-admissible and ['(a) is symmetric for some a € E,
then [ itself is symmetric.

In fact, if f satisfies this condition, we have f = fg, because
L = §(f'(a)—(F(a))*) = 0.

In particular, a *-admissible mapping f is symmetric if f'(a) = 0 for
some a € E.

5. *-admissibility for the twice differentiable mappings

For the twice differentiable mappings, we can have a simpler criterion
for the *-admissibility. Let f be twice continuously differentiable; in other
words, there exists a continuous linear mapping /() of E into .# such
that

f@ty)—1 (=) = ") (y)+r (@ y)

for every x and y in E, where
lim |7 (2, y)||/llgl] = O,
[lvli—0

and f”(x) is continuous with respect to x € E. (Therefore, f"(x)(y) e £
for any « and y in E.)

THEOREM 5. Let f be twice continuwously differentiable. Then, [ is
*-admissible if and only if " (x)(x) is a symmetric mapping for every x € E.

Proor. Let f be *-admissible. Then, by Theorem 4,
/" @) @) — (/" (@) (=))*
= tim — [(/'(a-+e)— (@)~ (/' (e-+e2) 1 ()]

&0 &

B li“—l* [( (@+ex) = (f (@4-e2)*) — (f' (@) — (/' (2))*)]

= 0.

Conversely, if f(x) (x) is symmetric for every x € E, since
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F @) —1'(0) = [} 1" () (w)ae
we have

—(1@)* = [} " (Ex) @)dE+1 (0)
— ([ 1" €) @)de+£ (0))*
= [ 1" (<) (@)dE+1'(0)
— [1 (1 (=) @) *de—( (0
Therefore, by Theorem 4, f is *-admissible.

6. Products of *-admissible mappings

The product fg of two mappings f € & and g € & is defined by

(fg) (x) = f(g(x)) for every xz € E.
It is well-known that fg € & and

(f8) (@) = ' (g(=)) & (x) for every z € E.

Asis easily seen from this equahty, the product of two *-admissible mappings
is not always *-admissible. In this section, we hall take a deeper look into
this fact. We begin with some lemmas.

(9) Let le ¥ and E, = {fx|— o0 < & < 0} be a one-dimensional closed
subspace generated by a single element x € E. If l(x) € E, for every x € E,
there exists a numbey o such that | = al, where 1 is the identity mapping.

Proor. By the assumption, there exists a real-valued function ¢(x)
such that
I(x) = d(x)x for every x e E.

We have only to prove that ¢(x) is a constant function. Let x and y are
arbitrary non-zero elements. If (z, y) = 0, since

$(@)z+d(y)y = L=z)+iY) = Hz+y)
= ¢(@+y)z+d(x+y)y,

we have
($(x)z, 2)+ (¢ W)y, ) = (dl@+y)z, 2)+(d@+y)y, %),

hence it follows that

(10) $(@) = d(@+y).

If ye E,, since y = ax for some o and
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¢y = ly) = loax) = ap(x)r = ¢(z) (ax) = ¢(2)y,
we have
(11) $(z) = $(y)-

Now generally, since E, is a closed linear subspace, there exist y, € E,
and y, € E; = {z € E|(z, z) = 0} such that

Y =Y%+Ys-
Then,
$(y) = $(y1+¥2)
= ¢(v) (by (10))
= ¢(x) (by (11)),

which means that ¢(z) is a constant function.
(12) Let f be symmetric. If lf is symmetric for every le &L, then f = 0.
Proor. From the assumption that (/f)* = I/f, we have
if' () = f (=)l* for every x e E.
Now, let a be a fixed element. Since
if (a) = f'(a)l* for every le ¥

f'(a) cannot be in the form of al. Therefore, by (9), there exists a non-
zero element b such that

f'(a)(®) ¢ E,.
Since E, is a closed linear subspace, there exists a non-zero element ¢ such

that
(#'(@)(8),c) =0 and (b,¢) = 1.

Now, let # be an arbitrary element and consider the linear mapping
I(y) = (y, ¢)x, which is obviously symmetric. Then,
f(a)(x) =f(a (b ¢)) —f )L (0)
= If'(a = (f'(a)(b), c)x = 0.
Since z is arbitrary, f'(2) = 0, which is true for every a € E. Therefore,

f = 0, because f(0) =
Now, we can prove the following theorems.

THEOREM 6. Let f € 9. If If is *-admissible for every l € L, the mapping
f is linear.

PROOF. Let an element a be fixed and let us consider the mapping

¢ =I—1'@).
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It is easy to see that g'(a) = 0 and lg is *-admissible for every / € .#. There-
fore, g is symmetric by (8), and it follows from Theorem 4 that

(lg)' () —((g)" ())* = (lg)"(a)—((g) (a))* = Ig'(a)— (g’ (@))* = O,
which means that Jg is symmetric for every ! e &. Therefore, g = 0 by
(12), or f = f'(a); in other words, f is linear.

THEOREM 7. Let f € @. If fl ©s *-admassible for every | € £, the mapping
f s linear.

Proor. We consider the same g as in the proof of Theorem 6. It is

clear that g'(a) = 0 and gl is *-admissible for every / e £. Therefore, for

any / € # such that
a el(E),

we have, for a = [(b),

(&))" @) —( (&)’ (@))* = (&)’ (6)—((gD)’ (B))*
g'(4(0))i— l*g (1))
g'(a)l—i*g'(a) = 0.

I

In other words, we have
g (Ux))l = I*¢’'(I(z)) for every I e & such that a € I(E),
or
(13) g W)l =gy for every / € & such that a € I(E)
and y € I(E).

Now, let ¢ be an arbitrary element and let us consider the following sym-
metric linear mapping
l(z) = x+(c, =)c.
Since
y— (e, ) (A+eliP)e) =y for every y € E,

we have [(E) = E. Therefore, for this mapping /, we have
g W)lx) =1g'(y)(x) for every xeE and yeE,
which is equivalent to

g W@+, 2)g' () =g ) @)+ (c. &) (@)e,

(e, z)g'(y) (c) = (¢, &' (¥) ().
Therefore, g’(y) has the following property: if (c,z) =0, then
(c, &' () (x)) = 0. Now, let us assume that g’(y) # 0. Then, g’(y) satisfies
the condition of (9). Therefore, g’'(y) should be in the form of «l1 for some
. However, this is impossible, because it should satisfy the equality (13).

or
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REMARK. Let f be *-admissible and / € £ be symmetric. Let us consider
the mapping
g =Ifl.

This is *-admissible, because, since
g'(x) = If (i),

(&'@)* = (I (1)) = 11 ((x))*
— 1) (1) L = () (o),

we have

which means that
(> = if*l.

Although the mappings of Hammerstein type are not always *-admissible,
we can sometimes associate the mapping of the above type to the original
mapping of Hammerstein type. In fact, if / is a positive definite, symmetric
mapping, to the mapping /f, which is the general form of the mapping of
Hammerstein type, we can associate the mapping /, fl, where /, is the square
root of /. This method has been effectively used in § 10 of [3].

7. Ranges and null sets

For a mapping f of E into itself we denote its range and null set by
R(f) and N (f), respectively; in other words, we put

R(f) = {(E) and N(f) = {z € E|f(x) = 0}.
For a linear mapping /, it is well known that
" (RO = . DN
(R@)* =N@), R@) =N@*~

Naturally, in the case of non-linear mappings, we cannot have such precise
relations like these.

(15) For any f € D, we have the following relations:

R() = N R(/'@)*" = NN (@)

zcE

PrOOF. Let a € R(f)*. Then, for any z € E and y € E, we have

(o, @))) = lim - (3, fo-+en)—1@)] = O,

which means that 2 € R(f'(z))* for every z € E. Conversely, if a € R(f' (x))*
for every x € E,
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(@, 1e)) = (a. [, 1'(6x) @)d)
= [M a1 (ex) @) dt = 0,

hence it follows that a € R(f)*. The second equality follows immediately
from (14).

For any subset M of E, we denote the smallest linear subset containing
M by [M]. Then, it is obvious that the following equalities follow from (15).

(16) For any f € 2 we have
[R(N) = U R(F' (&) = U N((F @)*)*

x€E *€EE

On the other hand, as to the relation between N(f) and N(f'(x)), we
have only the following inequality.

(17) For any f e @ we have
N N(f () CN(f).

zEE
Proor. If f'(x) (@) = 0 for every « € E, since

f'(éa)(a) =0 for every &,

we have

fa) = [, ' (€a) @)t = o,

which means that a e N(f).
By the relations (15), (16) and (17), the following theorem can be
easily proved.

THEOREM 8. Let f be *-admassible. Then,

R(NH*CN{*), N{*)*"CIR(N),

R(f*): CN(f), N(H*C[R(*)].

ReMARK. Each of the relations of the above theorem cannot be
replaced by the equality. For example, for the mapping
f(=) = (£, &) where z = (&, &,)
of a two-dimensional Euclidean space into itself, we have
R(f)" = {0} and N(f*) = {& = (&, &)1£1+& = 0}
As is easily seen, Theorem 8 can be expressed in the following form.

(18) Let f be a *-admissible mapping such that R(f) (resp. R(f*)) is closed.
Then, either
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1° for any y e E there exist x;€¢ E (i =1,2,--+, n) and numbers o,
(t=1,2, .-+, n) such that

y = z %,/ (z,) (respectively y = 3 o,/*(z,))

£ =1
or
2° there exists an element a # O such that

f*(a) = 0 (respectively f(a) = 0).

In fact, if [R(f)] = E, we have 1° and, if [R(f)] # E, since R(f) # 0,
any non-zero element in R(f) satisfies 2°.

8. The mapping degree

For the definition of the mapping degree we refer to [2], in which the
following theorem has been proved: \

Let fe D be completely continuous (i.e., continuous and transforms
every bounded set into a compact set). For a real number A which is not a
proper value of f'(0), we consider the vector field

filx) = Ax—f(x) for every z € E.

Then, there exists a sphere S = S, = {w € E| ||x|| = r} such that the mapping
degree d(fy, S, 0) of f, at O relative to S is equal to (—1)?, where B is the sum
of the multiplicities of all the proper values A’ of f'(0) such that A > 0 and
|4’} << |A]. (cf. Theorem 4.7, p. 136, [1]).

The purpose of this section is to obtain a relation between the mapping
degrees of f and f* by making use of the above theorem of Leray and
Schauder. We begin with the following theorem.

THEOREM 9. Let f be *-admissible. Then, | is completely continuous if
and only if f* is completely continuous.

ProOF. Let f be completely continuous. Then, by [Theorem 7, p. 51,
[3]], ' (=) is a completely continuous linear mapping for each x € E. Therefore,
(*)' (@) = (f'(x))* is also completely continuous for each € E. On the other
hand, by Theorem 4, we have

f—r*=f()—(f (x)* for every z e E.

Therefore, f* is completely continuous. The converse can be proved
similarly.

Now, let f be a *-admissible completely continuous mapping. Since f*

is also completely continuous, (f*)'(0) = (f'(0))*, (#(0))* has the same
proper value as those of f'(0) and the multiplicities of the common proper
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values coincide, the following theorem follows from the above theorem of
Leray and Schauder.

THEOREM 10. Let f be a *-admissible completely continuous mapping.
For a real number A which is not a proper value of f'(0), let us consider the
vector field f(x) = Ax—[(x) for every x € E. Then,

fi (@) = dz—f*(z) for every x € E,
and there exists a sphere S such that

d(fr, S, 0) = 4(fx, S, 0).
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