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Abstract
This article is devoted to a general class of one-dimensional NLS problems with a cubic nonlinearity. The question
of obtaining scattering, global in time solutions for such problems has attracted a lot of attention in recent years,
and many global well-posedness results have been proved for a number of models under the assumption that the
initial data are both small and localized. However, except for the completely integrable case, no such results have
been known for small but not necessarily localized initial data.

In this article, we introduce a new, nonperturbative method to prove global well-posedness and scattering for 𝐿2

initial data which are small and nonlocalized. Our main structural assumption is that our nonlinearity is defocusing.
However, we do not assume that our problem has any exact conservation laws. Our method is based on a robust
reinterpretation of the idea of Interaction Morawetz estimates, developed almost 20 years ago by the I-team.

In terms of scattering, we prove that our global solutions satisfy both global 𝐿6 Strichartz estimates and bilinear
𝐿2 bounds. This is a Galilean invariant result, which is new even for the classical defocusing cubic NLS.1 There,
by scaling, our result also admits a large data counterpart.
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1. Introduction

The question of obtaining scattering, global in time solutions for one-dimensional dispersive flows
with quadratic/cubic nonlinearities has attracted a lot of attention in recent years, and many global
well-posedness results have been proved for a number of models under the assumption that the initial
data is both small and localized; without being exhaustive, see, for instance, [12, 13, 21, 18, 14]. The

1There the global well-posedness was of course known, but not the Strichartz and bilinear 𝐿2 bounds.
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2 M. Ifrim and D. Tataru

nonlinearities in these models are primarily cubic, though the analysis has also been extended via normal
form methods to problems which also have nonresonant quadratic interactions; several such examples
are [1, 15, 9, 16, 20]; see also further references therein.

In this article, we consider instead the much more difficult case where the initial data is just small but
without any localization assumption. Here, it is natural to restrict the analysis to defocusing problems,
as focusing one-dimensional cubic nonlinear Schrödinger (NLS) type problems typically admit small
solitons, and thus, generically, the solutions do not scatter at infinity. Then one may formulate the
following broad conjecture:

Conjecture. One-dimensional dispersive flows with cubic defocusing nonlinearities, and small initial
data have global in time, scattering solutions.

The goal of this article is to prove the first global in time well-posedness result of this type. As part of
our results, we also prove that our global solutions are scattering at infinity in a very precise, quantitative
way, in the sense that they satisfy both 𝐿6 Strichartz estimates and bilinear 𝐿2 bounds. This is despite
the fact that the nonlinearity is nonperturbative on large time scales.

1.1. Cubic NLS problems in one space dimension

One of the fundamental one-dimensional dispersive flows in one space dimension is the cubic NLS flow,

𝑖𝑢𝑡 + 𝑢𝑥𝑥 = ±𝑢 |𝑢 |2, 𝑢(0) = 𝔲0. (1.1)

Depending on the choice of signs, this comes in a defocusing (+) and a focusing (-) flavor. Both of
these equations are important, not only by themselves but also as model problems for more complex
one-dimensional dispersive flows, both semilinear and quasilinear.

The above cubic NLS flow is globally well-posed in 𝐿2 both in the focusing and in the defocusing
case, though the global behavior differs in the two cases.

Precisely, the focusing problem admits small solitons, so the solutions cannot in general scatter
at infinity. If in addition the initial data is localized, then one expects the solution to resolve into
a superposition of (finitely many) solitons and a dispersive part; this is called the soliton resolution
conjecture and is known to hold in a restrictive setting, via the method of inverse scattering; see, for
example, [2].

In the defocusing case, the inverse scattering approach also allows one to treat the case of localized
data and show that global solutions scatter at infinity; see, for instance, [8]. This can also be proved in a
more robust way, without using inverse scattering, under the assumption that the initial data is small and
localized; see [14] and references therein. Much less is known in terms of scattering for nonlocalized
𝐿2 data. However, if more regularity is assumed for the data, then we have the following estimate due
to Planchon–Vega [22]; see also the work of Colliander–Grillakis–Tzirakis [3]:

‖𝑢‖6
𝐿6 + ‖𝜕𝑥 |𝑢 |2‖2

𝐿2 � ‖𝔲0‖3
𝐿2 ‖𝔲0‖𝐻 1 . (1.2)

This allows one to estimate the 𝐿6 Strichartz norm of the solution, that is, to prove some type of
scattering or dispersive decay.

Because of the above considerations, our interest in this paper is in defocusing cubic problems.
Precisely, we will consider a cubic nonlinear Schrödinger equation (NLS) type model in one space
dimension

𝑖𝑢𝑡 + 𝑢𝑥𝑥 = 𝐶 (𝑢, �̄�, 𝑢), 𝑢(0) = 𝔲0, (1.3)

where u is a complex valued function, 𝑢 : R × R→ C. Here C is a trilinear translation invariant form,
whose symbol 𝑐(𝜉1, 𝜉2, 𝜉3) can always be assumed to be symmetric in 𝜉1, 𝜉3; see Section 2.3 for an
expanded discussion of multilinear forms. The arguments 𝑢, �̄� and u of C are chosen so that our equation
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(1.3) has the phase rotation symmetry, 𝑢 → 𝑢𝑒𝑖 𝜃 , as it is the case in most examples of interest. The
symbol 𝑐(𝜉1, 𝜉2, 𝜉3) will be required to satisfy a minimal set of assumptions:

(H1) Bounded and regular:

|𝜕𝛼
𝜉 𝑐(𝜉1, 𝜉2, 𝜉3) | ≤ 𝑐𝛼, 𝜉1, 𝜉2, 𝜉3 ∈ R, for every multi-index 𝛼. (1.4)

(H2) Conservative:

�𝑐(𝜉, 𝜉, 𝜂) = 0, 𝜉, 𝜂 ∈ R, where �𝑧 = imaginary part of 𝑧 ∈ C. (1.5)

(H3) Defocusing:

𝑐(𝜉, 𝜉, 𝜉) ≥ 𝑐 > 0, 𝜉 ∈ R and 𝑐 ∈ R+. (1.6)

In selecting these assumptions, we have tried to strike a balance between the generality of the result
on one hand and a streamlined exposition on the other hand.

The simplest example of such a trilinear form C is of course𝐶 = 1, which corresponds to the classical
one-dimensional cubic NLS problem. But this problem is of course completely integrable and thus has
infinitely many conservation laws. In particular, global well-posedness is straightforward, though our
𝐿6 Strichartz and bilinear 𝐿2 bounds are new even for this problem in the 𝐿2 data setting. By contrast,
the assumptions we impose on our model do not guarantee any exact conservation law at the 𝐿2 level or
at any other regularity level.

At the other end, both our use of the linear Schrödinger operator and the boundedness condition (H1)
are nonoptimal, and we hope to relax both of these restrictions in subsequent work. However, using
these restrictions brings the major expository advantage that our model has a Galilean invariance, in
the sense that a Galilean transformation yields a problem that is in the same class, even though it is not
exactly the same. This allows us to provide cleaner, shorter proofs for our results and to keep the focus
on the main ideas.

1.2. The main result

Our main result asserts that global well-posedness holds for our problem for small 𝐿2 data. In addition,
our solutions not only satisfy uniform 𝐿2 but also global space-time 𝐿6 estimates, as well as bilinear 𝐿2

bounds, as follows:

Theorem 1. Under the above assumptions (H1), (H2) and (H3) on the symbol of the cubic form C, small
initial data

‖𝔲0‖𝐿2 ≤ 𝜖 � 1,

yields a unique global solution u for equation (1.3), which satisfies the following bounds:

(i) Uniform 𝐿2 bound:

‖𝑢‖𝐿∞
𝑡 𝐿2

𝑥
� 𝜖 . (1.7)

(ii) Strichartz bound:

‖𝑢‖𝐿6
𝑡,𝑥
� 𝜖

2
3 . (1.8)

(iii) Bilinear Strichartz bound:

‖𝜕𝑥 (𝑢�̄�(· + 𝑥0))‖
𝐿2
𝑡 𝐻

− 1
2

𝑥

� 𝜖2, 𝑥0 ∈ R. (1.9)
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4 M. Ifrim and D. Tataru

Here, we note that in the case 𝑥0 = 0 the last bound gives

‖𝜕𝑥 |𝑢 |2‖
𝐿2
𝑡 𝐻

− 1
2

𝑥

� 𝜖2, (1.10)

which is the more classical formulation of the bilinear 𝐿2 bound. However, making this bound uniform
with respect to the 𝑥0 translation captures the natural separate translation invariance of this bound and
is also quite useful in our proofs.

We also remark that all the bounds above are indeed Galilean invariant. As noted earlier, our main
equation is not Galilean invariant, but the class of equations we are considering is. The estimates in the
theorem do not represent the full strength of what we actually prove but are merely a simple but relevant
sample. Our actual proof yields stronger frequency envelope bounds associated to a decomposition of
the solution u on a unit frequency scale (rather than the more traditional dyadic decomposition); see
Theorem 5 in Section 6.

Applied to the model cubic NLS problem (1.1), by scaling we have the following result which applies
to the large data problem:

Theorem 2. Consider the defocusing 1-d cubic NLS problem (1.1)(+) with 𝐿2 initial data 𝔲0. Then the
global solution u satisfies the following bounds:

(i) Uniform 𝐿2 bound:

‖𝑢‖𝐿∞
𝑡 𝐿2

𝑥
� ‖𝔲0‖𝐿2

𝑥
. (1.11)

(ii) Strichartz bound:

‖𝑢‖𝐿6
𝑡,𝑥
� ‖𝔲0‖𝐿2

𝑥
. (1.12)

(iii) Bilinear Strichartz bound:

‖𝜕𝑥 |𝑢 |2‖
𝐿2
𝑡 ( 
𝐻

− 1
2

𝑥 +𝑐𝐿2
𝑥 )
� ‖𝔲0‖2

𝐿2 , 𝑐 = ‖𝔲0‖𝐿2 . (1.13)

One may compare the above 𝐿6 bound with the Planchon–Vega estimate (1.2), see [22], which applies
only to 𝐻1 solutions.

There are several ideas which play key roles in our analysis, all of which are used in a nonstandard
fashion in the present work:

1. Energy estimates via density-flux identities. This is a classical idea in partial differential equations
(PDEs), and particularly in the study of conservation laws, namely that the density-flux identities play
a more fundamental role than just energy identities. The new twist in our context is that this analysis
is carried out in a nonlocal setting, where both the densities and the fluxes involve translation invariant
multilinear forms.

2. The use of energy corrections. This is an idea originally developed in the context of the so-called
I-method [4] or more precisely the second generation I-method [7], whose aim was to construct more
accurate almost conserved quantities. Here, we implement this idea at the level of density-flux identities,
in a form closer to [19].

3. Interaction Morawetz bounds. These were originally developed in the context of the three-
dimensional NLS problems by Colliander–Keel–Stafillani–Takaoka-Tao in [5] and have played a fun-
damental role in the study of many nonlinear Schrödinger flows (see, for example, [6, 23]) and also
for one-dimensional quintic flows in the work of Dodson [10, 11]. Our take on this is somewhat closer
to the one-dimensional approach of Planchon–Vega [22], though recast in the setting and language of
nonlocal multilinear forms.

4. Tao’s frequency envelope method. This is used as a way to accurately track the evolution of the en-
ergy distribution across frequencies. Unlike the classical implementation relative to dyadic Littlewood–
Paley decompositions, here we adapt and refine this notion for lattice decompositions instead. This is
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also very convenient as a bootstrap tool (see, e.g., Tao [24], [25]) but with the added twist of also
bootstrapping bilinear Strichartz bounds, as in the authors’ paper [17].

1.3. An outline of the paper

In the next section, we begin by setting up the notations for function spaces and multilinear forms.
More importantly, we also introduce our class of admissible frequency envelopes associated to lattice
decompositions; this is based on the maximal function.

In Section 3, we carry our a preliminary step in the proof of our main result, namely we prove the
small data local well-posedness result. This is independent of the global result and uses a contraction
argument in a well-chosen function space defined via a wave packet type decomposition.

The goal of Section 4 is to recast energy identities for the mass and the momentum in density-flux
form. We supplement this with two additional steps, where we first consider frequency localized mass
and momentum densities, and then we improve their accuracy by adding a well chosen quartic correction.

In Section 5, we begin with the classical idea of Interaction Morawetz identities for the linear
Schrödinger flow, and then we use our density-flux identities for the sharp frequency localized mass
and momentum in order to obtain a set of refined Interaction Morawetz identities for our problem. For
clarity of exposition, we consider separately the diagonal case, where the Interaction of equal frequency
components is considered and the transversal case, which corresponds to separated frequency ranges.

The proof of our global result uses a complex bootstrap argument, involving both energy, Strichartz
and bilinear 𝐿2 bounds in a frequency localized setting and based on frequency envelopes. The bootstrap
set-up is laid out in Section 6, which also contains a sharper, frequency envelope version of our result
in Theorem 5. Our main estimates closing the bootstrap argument are carried out in Section 7, using the
density-flux and Interaction Morawetz identities previously obtained.

Finally, in the last section of the paper we return from frequency localized bounds to global bounds
in order to complete the proof of our main global result.

2. Notations and preliminaries

2.1. Lattice frequency decompositions

For our analysis, it will be convenient to localize functions in (spatial) frequency on the unit scale. For
this, we consider a partition of unity

1 =
∑
𝑘∈Z

𝑝𝑘 (𝜉),

where 𝑝𝑘 are smooth bump functions localized in [𝑘 − 1, 𝑘 + 1]. Correspondingly, our solution u will
be decomposed as

𝑢 =
∑
𝑘∈Z

𝑢𝑘 , 𝑢𝑘 = 𝑃𝑘𝑢.

The main estimates we will establish for our solution u will be linear and bilinear estimates for the
functions 𝑢𝑘 .

For a larger interval 𝐴 ⊂ Z, we denote

𝑢𝐴 =
∑
𝑘∈𝐴

𝑢𝑘 .

2.2. Frequency envelopes

This is a tool which allows us to more accurately track the distribution of energy at various frequencies
for the solutions to nonlinear evolution equations. In the present paper, they play a key bookkeeping
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role in the proof of the linear and bilinear bounds for our solutions in the context of a complex bootstrap
argument. In brief, given some standard decomposition of, say, an 𝐿2 function

𝑢 =
∑

𝑢𝑘 ,

a frequency envelope for u is a sequence {𝑐𝑘 } with the property that

‖𝑢𝑘 ‖𝐿2 � 𝑐𝑘 , ‖𝑐𝑘 ‖ℓ2 ≈ ‖𝑢‖𝐿2 .

In addition, one also limits how rapidly the sequence {𝑐𝑘 } is allowed to vary. As originally introduced
in work of Tao (see, e.g., [24]), in the context of dyadic Littlewood–Paley decompositions, one assumes
that the sequence {𝑐𝑘 } is slowly varying, in the sense that

𝑐 𝑗

𝑐𝑘
≤ 2𝛿 |𝑘− 𝑗 | .

Here, we will instead work with a uniform lattice decomposition on the unit frequency scale. This
requires a major revision of the above notion of ‘slowly varying’, which turns out to be far too weak for
our purposes.

Instead, we want to strengthen this property in order to say that 𝑐 ≈ 𝑀𝑐 (the maximal function):
Definition 2.1. A lattice frequency envelope {𝑐𝑘 } is said to have the maximal property if

𝑀𝑐 ≤ 𝐶𝑐, (2.1)

where 𝑀𝑐 represents the maximal function of c,

(𝑀𝑐)𝑘 = sup
𝑗≥0

1
2 𝑗 + 1

𝑘+ 𝑗∑
𝑙=𝑘− 𝑗

𝑐𝑙 .

Here, C is a universal constant.
Frequency envelopes that have this property will be called admissible. An important observation is

that admissible envelopes can always be found:
Lemma 2.2. Any ℓ2 frequency envelope 𝑐0 can be placed under a comparable maximal frequency
envelope c, that is,

𝑐0 ≤ 𝑐, ‖𝑐‖ℓ2 ≈ ‖𝑐0‖ℓ2 . (2.2)

Proof. We will use two properties of the maximal function:
(i) ‖𝑀 𝑓 ‖𝐿2 ≤ 𝐶‖ 𝑓 ‖𝐿2 .
(ii) 𝑀 ( 𝑓 + 𝑔) ≤ 𝑀 𝑓 + 𝑀𝑔.
Given 𝑐0, we define c as

𝑐 =
∞∑
𝑘=0

(2𝐶)−𝑘𝑀𝑘𝑐0.

By property (i), this series converges in ℓ2, with

‖𝑐‖ℓ2 ≤ 2‖𝑐0‖ℓ2 .

Then by property (ii), we have

𝑀𝑐 ≤ 2𝐶𝑐.

The proof is concluded. �
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For an interval 𝐴 ⊂ Z, we denote

𝑐2
𝐴 =

∑
𝑘∈𝐴

𝑐2
𝑘 .

Also for a dyadic integer n, we set

𝑐2
𝑛 =

∑
|𝑘 |≈𝑛

𝑐2
𝑘 .

Also given a translation invariant function space X, we denote by 𝑋𝑐 the associated frequency
envelope controlled norm

‖𝑢‖𝑋𝑐 = sup
𝑘

𝑐−1
𝑘 ‖𝑢𝑘 ‖𝑋 . (2.3)

2.3. Multilinear forms and symbols

A key notion which is used throughout the paper is that of multilinear form. All our multilinear forms
are invariant with respect to translations and have as arguments either complex valued functions or their
complex conjugates.

For an integer 𝑘 ≥ 2, we will use translation invariant k-linear forms

(D(R))𝑘  (𝑢1, · · · , 𝑢𝑘 ) → 𝐿(𝑢1, �̄�2, · · · ) ∈ D′(R),

where the nonconjugated and conjugated entries are alternating.
Such a form is uniquely described by its symbol ℓ(𝜉1, 𝜉2, · · · , 𝜉𝑘 ) via

𝐿(𝑢1, �̄�2, · · · ) (𝑥) = (2𝜋)−𝑘
∫

𝑒𝑖 (𝑥−𝑥1) 𝜉1𝑒−𝑖 (𝑥−𝑥2) 𝜉2 · · · ℓ(𝜉1, · · · , 𝜉𝑘 )

𝑢1(𝑥1)�̄�2(𝑥2) · · · 𝑑𝑥1 · · · 𝑑𝑥𝑘𝑑𝜉1 · · · 𝑑𝜉𝑘

or equivalently on the Fourier side

F𝐿(𝑢1, �̄�2, · · · ) (𝜉) = (2𝜋)−
𝑘−1

2

∫
𝐷
ℓ(𝜉1, · · · , 𝜉𝑘 )�̂�1(𝜉1) ¯̂𝑢2(𝜉2) · · · 𝑑𝜉1 · · · 𝑑𝜉𝑘−1,

where, with alternating signs,

𝐷 = {𝜉 = 𝜉1 − 𝜉2 + · · · }.

They can also be described via their kernel

𝐿(𝑢1, �̄�2, · · · ) (𝑥) =
∫

𝐾 (𝑥 − 𝑥1, · · · , 𝑥 − 𝑥𝑘 )𝑢1(𝑥1)�̄�2(𝑥2) · · · 𝑑𝑥1 · · · 𝑑𝑥𝑘 ,

where K is defined in terms of the Fourier transform of ℓ

𝐾 (𝑥1, 𝑥2, · · · , 𝑥𝑘 ) = (2𝜋)−
𝑘
2 ℓ̂(−𝑥1, 𝑥2, · · · , (−1)𝑘𝑥𝑘 ).

All the symbols in this article will be assumed to be smooth, bounded and with bounded derivatives.
We remark that our notation is slightly nonstandard because of the alternation of complex conjugates,

which is consistent with the setup of this paper. Another important remark is that, for k-linear forms,
the cases of odd k, respectively, even k play different roles here, as follows:

i) The 2𝑘 + 1 multilinear forms will be thought of as functions, for example, those which appear in
some of our evolution equations.

https://doi.org/10.1017/fmp.2023.30 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.30


8 M. Ifrim and D. Tataru

ii) The 2𝑘 multilinear forms will be thought of as densities, for example, which appear in some of
our density-flux pairs.

Correspondingly, to each 2𝑘-linear form L we will associate a 2𝑘-linear functional L defined by

L(𝑢1, · · · , 𝑢2𝑘 ) =
∫
R

𝐿(𝑢1, · · · , �̄�2𝑘 ) (𝑥) 𝑑𝑥,

which takes real or complex values. This may be alternatively expressed on the Fourier side as

L(𝑢1, · · · , 𝑢2𝑘 ) = (2𝜋)1−𝑘
∫
𝐷
ℓ(𝜉1, · · · , 𝜉2𝑘 )�̂�1(𝜉1) ¯̂𝑢2(𝜉2) · · · ¯̂𝑢2𝑘 (𝜉2𝑘 )𝑑𝜉1 · · · 𝑑𝜉2𝑘−1,

where, with alternating signs, the diagonal 𝐷0 is given by

𝐷0 = {0 = 𝜉1 − 𝜉2 + · · · }.

Note that in order to define the multilinear functional L we only need to know the symbol ℓ on 𝐷0.
There will be, however, more than one possible smooth extension of ℓ outside 𝐷0. This will play a role
in our story later on.

2.4. Cubic Interactions in Schrödinger flows

Given three input frequencies 𝜉1, 𝜉2, 𝜉3 for our cubic nonlinearity, the output will be at frequency

𝜉4 = 𝜉1 − 𝜉2 + 𝜉3.

This relation can be described in a more symmetric fashion as

Δ4𝜉 = 0, Δ4𝜉 := 𝜉1 − 𝜉2 + 𝜉3 − 𝜉4.

This is a resonant Interaction if and only if we have a similar relation for the associated time frequencies,
namely

Δ4𝜉2 = 0, Δ4𝜉2 := 𝜉2
1 − 𝜉2

2 + 𝜉2
3 − 𝜉2

4 .

Hence, we define the resonant set in a symmetric fashion as

R := {Δ4𝜉 = 0, Δ4𝜉2 = 0}.

It is easily seen that this set may be characterized as

R = {{𝜉1, 𝜉3} = {𝜉2, 𝜉4}}.

2.5. The Galilean symmetry

Here, we investigate how the equation (1.3) changes if we apply a Galilean transformation. In particular,
we will justify our claim in the introduction that the transformed equation is of the same type.

We first recall the linear case. Suppose u solves the linear Schrödinger equation

(𝑖𝜕𝑡 + 𝜕2
𝑥)𝑢 = 𝑓 , 𝑢(0) = 𝔲0.

Given a frequency k, its Galilean transform v is defined by

𝑣(𝑡, 𝑥) := 𝑒−𝑖 (𝑘𝑥+𝑘
2𝑡)𝑢(𝑡, 𝑥 + 2𝑘𝑡)
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and solves the linear Schrödinger equation

(𝑖𝜕𝑡 + 𝜕2
𝑥)𝑣 = 𝑔, 𝑣(0) = 𝔳0,

where

𝔳0(𝑥) = 𝑒−𝑖𝑘𝑥𝑢0, 𝑔(𝑡, 𝑥) = 𝑒−𝑖 (𝑘𝑥+𝑘
2𝑡) 𝑓 (𝑡, 𝑥 + 2𝑘𝑡).

Now, suppose that u solves equation(1.3). Then the above computation shows that v will solve a
similar equation,

(𝑖𝜕𝑡 + 𝜕2
𝑥)𝑣 = �̃� (𝑣, �̄�, 𝑣),

where

�̃� (𝑣, �̄�, 𝑣) = 𝑒−𝑖𝑘𝑥𝐶 (𝑣𝑒𝑖𝑘𝑥 , 𝑣𝑒𝑖𝑘𝑥 , 𝑣𝑒𝑖𝑘𝑥).

This allows us to compute the symbol of �̃� as

𝑐(𝜉1, 𝜉2, 𝜉3) = 𝑐(𝜉1 − 𝑘, 𝜉2 − 𝑘, 𝜉3 − 𝑘).

This translated symbol is easily seen to have exactly the same properties as c.

3. Local well-posedness

Before approaching the global problem, an initial step is to establish local in time well-posedness. Since
we only assume boundedness and smoothness on the symbol C, this is not an entirely straightforward
matter. Our main result can be summarily stated as follows:

Theorem 3. The evolution (1.3) is locally well-posed for small data in 𝐿2.

Here, we need to clarify the meaning of well-posedness. For this problem, we will establish a
semilinear type of well-posedness result. Precisely, for each initial data 𝔲0 which is small in 𝐿2 a unique
solution exists in 𝐶 ([0, 1]; 𝐿2), with Lipschitz dependence on the initial data.

However, as it is often the case in the dispersive realm, we will not try to prove unconditional
uniqueness and contend ourselves with having both existence and uniqueness of solutions in a ball in a
restricted space 𝑋 ⊂ 𝐶 ([0, 1]; 𝐿2).

A natural follow-up question here would be whether the same result holds for large data in our context.
The answer is indeed affirmative; however, in this article we have chosen to only consider small data
because this is all we need on one hand, and a large data result would require a more complex choice of
the space X mentioned above, as well as a correspondingly more complex proof, on the other hand.

Another related question is whether a standard scaling argument could be used here. The scaling
transformation would be the standard one for the cubic NLS problem,

𝑢𝜆(𝑡, 𝑥) = 𝜆𝑢(𝜆2𝑡, 𝜆𝑥).

For the initial data, this corresponds to

𝔲0𝜆(𝑥) = 𝜆𝔲0(𝜆𝑥).

It is then easy to see that 𝑢𝜆 solves an equation of the same type as equation (1.3) but with the rescaled
symbol

𝑐𝜆 (𝜉1, 𝜉2, 𝜉3) = 𝑐(𝜉1/𝜆, 𝜉2/𝜆, 𝜉3/𝜆).
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This satisfies the bound (1.4) uniformly only for 𝜆 ≥ 1, so it cannot be used to reduce the large data
problem to the small data problem. However, it can be used to obtain better life-span bounds for small
data:

Corollary 3.1. Assume that the initial data 𝔲0 for equation (1.3) satisfies ‖𝔲0‖𝐿2 ≤ 𝜖 . Then the solution
u exists on [0, 𝑇𝜖 ] with 𝑇𝜖 := 𝑐𝜖−2, with similar bounds.

The rest of this section is devoted to the proof of Theorem 3. The first step in our proof is to construct
a suitable function space X where we seek the solutions.

Given a function u in [0, 1] × R, we start with a decomposition 𝑢 =
∑

𝑘∈Z 𝑢𝑘 on the unit frequency
scale and then a partition of unity in the physical space, also on the unit scale,

1 =
∑
𝑗∈Z

𝜒 𝑗 (𝑥).

Finally, we define the norm of the space X for solutions

‖𝑢‖2
𝑋 =

∑
𝑘∈Z

‖𝑢𝑘 ‖2
𝑋𝑘
, ‖𝑢𝑘 ‖2

𝑋𝑘
=
∑
𝑗∈Z

‖𝜒 𝑗 (𝑡, 𝑥 − 2𝑡𝑘)𝑢𝑘 ‖2
𝐿∞
𝑡 𝐿2

𝑥
. (3.1)

Here, the second argument of 𝜒 𝑗 is consistent with the group velocity of frequency k waves. Indeed, if
u were an 𝐿2 solution to the homogeneous Schrödinger equation, then this would be nothing but a wave
packet decomposition of u on the unit time scale. It is easily seen that we have the embedding

𝑋 ⊂ 𝐿∞
𝑡 𝐿

2
𝑥 .

Remark 3.2. Due to the unit frequency localization of 𝑢𝑘 and Bernstein’s inequality, we may freely
replace the 𝐿∞

𝑡 𝐿
2
𝑥 norm in equation (3.1) by 𝐿∞

𝑡 ,𝑥 .

Correspondingly, we define a similar space Y for the source term in a linear Schrödinger equation,
namely

‖ 𝑓 ‖2
𝑌 =

∑
𝑘∈Z

‖ 𝑓𝑘 ‖2
𝑌𝑘
, ‖ 𝑓𝑘 ‖2

𝑌𝑘
=
∑
𝑗∈𝑍

‖𝜒 𝑗 (𝑡, 𝑥 − 2𝑡𝑘) 𝑓𝑘 ‖2
𝐿1
𝑡 𝐿

2
𝑥

(3.2)

so that we have the duality relation

𝑋 = 𝑌 ∗,

with equivalent norms.
Then for the small data local well-posedness result in X it suffices to establish the following two

properties. The first is a linear mapping property:

Lemma 3.3. The solution to the linear Schrödinger equation

(𝑖𝜕𝑡 + 𝜕2
𝑥)𝑢 = 𝑓 , 𝑢(0) = 𝔲0 (3.3)

in the time interval [0, 1] satisfies

‖𝑢‖𝑋 � ‖𝔲0‖𝐿2 + ‖ 𝑓 ‖𝑌 . (3.4)

The second is an estimate for the nonlinearity:

Lemma 3.4. For the cubic nonlinearity C, we have the bound

‖𝐶 (𝑢, �̄�, 𝑢)‖𝑌 � ‖𝑢‖3
𝑋 . (3.5)
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Once we have these two lemmas, the proof of the local well-posedness result follows in a standard
manner using the contraction principle in a small ball in X. However, for later use we also need to have
a more precise, frequency envelope version of Theorem 3. This is as follows:

Theorem 4. For each small initial data

‖𝔲0‖𝐿2 ≤ 𝜖 � 1,

there exists a unique solution u to equation (1.3) which is small in X. In addition, suppose 𝑐𝑘 is an ℓ2

normalized admissible frequency envelope so that

‖𝔲0‖𝐿2
𝑐
� 𝜖 .

Then the solution u satisfies

‖𝑢‖𝑋𝑐 � 𝜖 . (3.6)

This requires stronger, frequency envelope versions of Lemmas 3.3, 3.4:

Lemma 3.5. The solution to the linear Schrödinger equation

(𝑖𝜕𝑡 + 𝜕2
𝑥)𝑢 = 𝑓 , 𝑢(0) = 𝔲0 (3.7)

in the time interval [0, 1] satisfies

‖𝑢‖𝑋𝑐 � ‖𝔲0‖𝐿2
𝑐
+ ‖ 𝑓 ‖𝑌𝑐 . (3.8)

The second is an estimate for the nonlinearity:

Lemma 3.6. Let 𝑐𝑘 be an ℓ2 normalized admissible frequency envelope. Then for the cubic nonlinearity
C we have the bound

‖𝐶 (𝑢, �̄�, 𝑢)‖𝑌𝑐 � ‖𝑢‖3
𝑋𝑐
. (3.9)

Proof of Lemmas 3.3, 3.5. We can freely localize on the unit scale in frequency and reduce the problem
to the frequency localized estimate

‖𝑢𝑘 ‖𝑋𝑘 � ‖𝔲0𝑘 ‖𝐿2 + ‖ 𝑓𝑘 ‖𝑌𝑘 . (3.10)

We can further reduce the problem by applying a Galilean transformation by setting

𝑣(𝑡, 𝑥) = 𝑒−𝑖 (𝑘𝑥+𝑘
2𝑡)𝑢𝑘 (𝑡, 𝑥 − 2𝑘𝑡), 𝔳0(𝑥) = 𝑒−𝑖𝑘𝑥𝔲0𝑘 , 𝑔(𝑡, 𝑥) = 𝑒−𝑖 (𝑘𝑥+𝑘

2𝑡) 𝑓𝑘 (𝑡, 𝑥 − 2𝑘𝑡).

Here, the functions 𝑣, 𝔳0, 𝑔 are now localized at frequency 0 and solve

(𝑖𝜕𝑡 + 𝜕2
𝑥)𝑣 = 𝑔, 𝑣(0) = 𝔳0,

whereas the bound (3.10) reduces to

‖𝑣‖𝑋0 � ‖𝔳0‖𝐿2 + ‖𝑔‖𝑌0 . (3.11)

Inserting a harmless frequency localization 𝑃0, we represent v as

𝑣(𝑡) = 𝑒𝑖𝑡𝜕
2
𝑥𝑃0𝔳0 − 𝑖

∫ 𝑡

0
𝑒𝑖 (𝑡−𝑠)𝜕

2
𝑥𝑃0𝑔 𝑑𝑠.
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Here, by a slight abuse a notation, we allow 𝑃0 to have slightly larger support. Finally, we localize
spatially at both ends,

𝜒 𝑗𝑣(𝑡) =
∑
𝑙∈Z

(
𝜒 𝑗𝑒

𝑖𝑡𝜕2
𝑥𝑃0𝜒𝑙𝔳0 +

∫ 𝑡

0
𝜒 𝑗𝑒

𝑖 (𝑡−𝑠)𝜕2
𝑥𝑃0𝜒𝑙𝑔 𝑑𝑠

)
.

Here, the kernels for 𝑒𝑖𝑡𝜕2
𝑥𝑃0 are uniformly Schwartz for 𝑡 ∈ [0, 1], so we get an 𝐿2 bound with off-

diagonal decay,

‖𝜒 𝑗𝑒
𝑖𝑡𝜕2

𝑥𝑃0𝜒𝑙 ‖𝐿2→𝐿2 � 〈 𝑗 − 𝑙〉−𝑁 .

This implies that

‖𝜒 𝑗𝑣‖𝐿∞
𝑡 𝐿2

𝑥
�
∑
𝑙∈Z

〈 𝑗 − 𝑙〉−𝑁
(
‖𝜒𝑙𝔳0‖𝐿2

𝑥
+ ‖𝜒𝑙𝑔‖𝐿1

𝑡 𝐿
2
𝑥

)
,

which in view of the off-diagonal decay implies the bound (3.11). �

Proof of Lemmas 3.4, 3.6. Here, the second lemma implies the first. We need to prove the estimate

‖𝑃𝑘𝐶 (𝑢, �̄�, 𝑢)‖𝑌𝑘 � 𝑐𝑘 ‖𝑢‖3
𝑋𝑐
.

By duality, this reduces to the integral bound

|𝐼 | � 𝑐𝑘 ‖𝑢‖3
𝑋𝑐

‖𝑣𝑘 ‖𝑋𝑘 , 𝐼 =
∫

𝐶 (𝑢, �̄�, 𝑢)�̄�𝑘 𝑑𝑥𝑑𝑡. (3.12)

Without any restriction in generality, we may assume that

‖𝑢‖𝑋𝑐 = 1, ‖𝑣𝑘 ‖𝑋𝑘 = 1.

We use the unit scale frequency decomposition to separate the above integral as

𝐼 =
∑

𝑘1−𝑘2+𝑘3=𝑘

∫
𝐶𝑘1𝑘2𝑘3 (𝑢𝑘1 , �̄�𝑘2 , 𝑢𝑘3)�̄�𝑘 𝑑𝑥𝑑𝑡,

where we have also localized the kernel of C near frequencies 𝑘1, 𝑘2, 𝑘3 on the unit scale. The symbol
of 𝐶𝑘1𝑘2𝑘3 is smooth and bounded on the unit scale, so the above summands are essentially like products
and may be indeed thought of as products via separation of variables. For bilinear products, we have the
estimate

‖𝑢𝑘1𝑣𝑘2 ‖𝐿2
𝑥,𝑡
�

1
〈𝑘1 − 𝑘2〉

1
2
‖𝑢𝑘1 ‖𝑋𝑘1

‖𝑣𝑘2 ‖𝑋𝑘2
. (3.13)

This is obtained simply by examining the intersection of the supports of the bump functions traveling
with speeds 2𝑘1, respectively 2𝑘2.

Denoting 𝛿𝑘ℎ𝑖 = max |𝑘𝑖 − 𝑘 𝑗 |, the relation 𝑘1 + 𝑘3 = 𝑘2 + 𝑘 insures that we can group the four
frequencies into two pairs at distance 𝛿𝑘ℎ𝑖 . Then, using twice the above bilinear estimate, we have

|𝐼 | �
∑

𝑘1−𝑘2+𝑘3−𝑘=0

1
〈𝛿𝑘ℎ𝑖〉

𝑐𝑘1𝑐𝑘2𝑐𝑘3 .
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Let n represent the dyadic size of 𝛿𝑘ℎ𝑖 . Without loss of generality, by relabeling, suppose that

|𝑘 − 𝑘3 | ≈ |𝑘 − 𝑘2 | ≈ 𝑛, |𝑘 − 𝑘1 | � 𝑛.

Then using the Cauchy–Schwartz inequality for the pair (𝑘2, 𝑘3) for fixed 𝑘1 we estimate

|𝐼 | �
∑
𝑛

1
𝑛

∑
|𝑘1−𝑘 |�𝑛

𝑐𝑘1𝑐
2
𝑛, 𝑐2

𝑛 :=
∑

| 𝑗−𝑘 |≈𝑛
𝑐2
𝑗 .

Now, we use the maximal function inequality for c, which gives

1
𝑛

∑
|𝑘1−𝑘 |�𝑛

𝑐𝑘1 � 𝑐𝑘 .

We obtain

|𝐼 | � 𝑐𝑘
∑
𝑛

𝑐2
𝑛 ≈ 𝑐𝑘 .

Thus, equation (3.12) is proved. �

For later use, we note that the frequency envelope bounds for u together with the bilinear 𝐿2 bound
(3.13) imply the following.

Corollary 3.7. Let u be a solution for equation (1.3) in [0, 1] as in Theorem 4. Then the following
bounds hold:

‖𝑢𝑘 ‖𝐿6
𝑡,𝑥
� 𝜖𝑐𝑘 , (3.14)

‖𝜕𝑥 (𝑢𝑘1 �̄�𝑘2 (· + 𝑥0))‖𝐿2
𝑡,𝑥
� 𝜖2〈𝑘1 − 𝑘2〉

1
2 𝑐𝑘1𝑐𝑘2 . (3.15)

4. Energy estimates and conservation laws

4.1. Conservation laws for the linear problem

We begin our discussion with the linear Schrödinger equation

𝑖𝑢𝑡 + 𝑢𝑥𝑥 = 0, 𝑢(0) = 𝔲0. (4.1)

For this, we consider the following three conserved quantities, the mass

M(𝑢) =
∫

|𝑢 |2 𝑑𝑥,

the momentum

P(𝑢) = 2
∫

�(�̄�𝜕𝑥𝑢) 𝑑𝑥,

as well as the energy

E(𝑢) = 4
∫

|𝜕𝑥𝑢 |2 𝑑𝑥.
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To these quantities, we associate corresponding densities

𝑀 (𝑢) = |𝑢 |2, 𝑃(𝑢) = 𝑖(�̄�𝜕𝑥𝑢 − 𝑢𝜕𝑥 �̄�), 𝐸 (𝑢) = −�̄�𝜕2
𝑥𝑢 + 2|𝜕𝑥𝑢 |2 − 𝑢𝜕2

𝑥 �̄�.

The choice of densities here is not entirely straightforward. Symmetry is clearly a criterion, but further
motivation is provided by the conservation law computation,

𝜕𝑡𝑀 (𝑢) = 𝜕𝑥𝑃(𝑢), 𝜕𝑡𝑃(𝑢) = 𝜕𝑥𝐸 (𝑢). (4.2)

The symbols of these densities viewed as bilinear forms are

𝑚(𝜉, 𝜂) = 1, 𝑝(𝜉, 𝜂) = −(𝜉 + 𝜂), 𝑒(𝜉, 𝜂) = (𝜉 + 𝜂)2.

More generally, we can start start with a symbol 𝑎(𝜉, 𝜂) which is symmetric, in the sense that

𝑎(𝜂, 𝜉) = 𝑎(𝜉, 𝜂),

and then define an associated weighted mass density by

𝑀𝑎 (𝑢) = 𝐴(𝑢, �̄�).

We also define corresponding momentum and energy symbols 𝑝𝑎 and 𝑒𝑎 by

𝑝𝑎 (𝜉, 𝜂) = −(𝜉 + 𝜂)𝑎(𝜉, 𝜂), 𝑒𝑎 (𝜉, 𝜂) = (𝜉 + 𝜂)2𝑎(𝜉, 𝜂).

Then a direct computation yields the density-flux relations

𝑑

𝑑𝑡
𝑀𝑎 (𝑢, �̄�) = 𝜕𝑥𝑃𝑎 (𝑢, �̄�),

𝑑

𝑑𝑡
𝑃𝑎 (𝑢, �̄�) = 𝜕𝑥𝐸𝑎 (𝑢, �̄�).

4.2. Nonlinear density-flux identities for the mass and momentum

Here, we develop the counterpart of the linear analysis above for the nonlinear problem (1.3).

4.2.1. The modified mass
To motivate what follows, we begin with a simpler computation for the 𝐿2 norm of a solution u of
equation (1.3):

𝑑

𝑑𝑡
‖𝑢‖2

𝐿2 =
∫

−𝑖𝐶 (𝑢, �̄�, 𝑢) · �̄� + 𝑖𝑢 · 𝐶 (𝑢, �̄�, 𝑢) 𝑑𝑥 :=
∫

𝐶4
𝑚(𝑢, �̄�, 𝑢, �̄�) 𝑑𝑥.

A priori the symbol of the quartic form 𝐶4
𝑚, defined on the diagonal Δ4𝜉 = 0, is given by

𝑐4
𝑚 (𝜉1, 𝜉2, 𝜉3, 𝜉4) = −𝑖𝑐(𝜉1, 𝜉2, 𝜉3) + 𝑖𝑐(𝜉2, 𝜉3, 𝜉4).

However, we can further symmetrize and replace it by

𝑐4
𝑚 (𝜉1, 𝜉2, 𝜉3, 𝜉4) =

𝑖

2
(−𝑐(𝜉1, 𝜉2, 𝜉3) − 𝑐(𝜉1, 𝜉4, 𝜉3) + 𝑐(𝜉2, 𝜉3, 𝜉4) + 𝑐(𝜉2, 𝜉1, 𝜉4)) .

In particular, we are interested in the behavior of 𝑐4
𝑚(𝜉1, 𝜉2, 𝜉3, 𝜉4) on the resonant set

R = {(𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ R4 /Δ4𝜉 = 0, Δ4𝜉2 = 0} = {{𝜉1, 𝜉3} = {𝜉2, 𝜉4}}.
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On this set, we compute

𝑐4
𝑚 (𝜉1, 𝜉1, 𝜉3, 𝜉3) =

𝑖

2
(−𝑐(𝜉1, 𝜉1, 𝜉3) − 𝑐(𝜉1, 𝜉3, 𝜉3) + 𝑐(𝜉1, 𝜉3, 𝜉3) + 𝑐(𝜉1, 𝜉1, 𝜉3))

= �(𝑐(𝜉1, 𝜉1, 𝜉3) + 𝑐(𝜉1, 𝜉3, 𝜉3)).

Then we observe that our (H2) assumption on C shows that this expression vanishes. One might wonder
here if we could not weaken this assumption by requiring that the sum of the two terms is zero, rather
than each of them separately. This would indeed be the case if all we were interested in is the almost
conservation of mass. However, we will later add localization weights which will act differently on the
two terms.

The fact that 𝑐4
𝑚 vanishes on the resonant set R implies (see Lemma 4.1 below) that we can smoothly

divide

𝑏4
𝑚(𝜉1, 𝜉2, 𝜉3, 𝜉4) = −

𝑖𝑐4
𝑚(𝜉1, 𝜉2, 𝜉3, 𝜉4)

Δ4𝜉2

on Δ4𝜉 = 0. We now use B4
𝑚 as an energy correction. Then we obtain the modified energy relation

𝑑

𝑑𝑡
(‖𝑢‖2

𝐿2 + B4
𝑚 (𝑢, �̄�, 𝑢, �̄�)) = R6

𝑚(𝑢, �̄�, 𝑢, �̄�, 𝑢, �̄�), (4.3)

where R6
𝑚 is a symmetric 6-linear form. Here, the left-hand side may be viewed as a modified energy,

while the right-hand side can potentially be estimated using the 𝐿6
𝑡 ,𝑥 norm of u.

4.2.2. The modified mass and momentum density-flux pairs
The key idea here is that, corresponding to the above modified mass, we also want to write a conservation
law for an associated mass density

𝑀♯ (𝑢) = 𝑀 (𝑢) + 𝐵4
𝑚 (𝑢, �̄�, 𝑢, �̄�). (4.4)

However, when doing this, we remark that the symbol of 𝐵4
𝑚 was previously defined only on the diagonal

Δ4𝜉 = 0, whereas in order for the above expression to be well defined we need to extend it everywhere.
For the purpose of this computation, we simply assume that we have chosen some smooth extension. A
more careful choice will be considered later in Lemma 4.1.

Now, we compute

𝜕𝑡𝑀
♯ (𝑢) = 𝜕𝑥𝑃(𝑢) + 𝐶4

𝑚 (𝑢, �̄�, 𝑢, �̄�) + 𝑖(Δ4𝜉2𝐵4
𝑚) (𝑢, �̄�, 𝑢, �̄�) + 𝑅6

𝑚(𝑢, �̄�, 𝑢, �̄�, 𝑢, �̄�).

By the choice of 𝐵4
𝑚, the symbol of the quartic term above 𝑐4

𝑚 + 𝑖Δ4𝜉2𝑏4
𝑚 vanishes on the diagonal

{Δ4𝜉 = 0}; therefore, we can express it smoothly in the form

𝑐4
𝑚 + 𝑖Δ4𝜉2 𝑏4

𝑚 = 𝑖Δ4𝜉 𝑟4
𝑚. (4.5)

Hence, the above relation can be written in the better form

𝜕𝑡𝑀
♯ (𝑢) = 𝜕𝑥 (𝑃(𝑢) + 𝑅4

𝑚(𝑢, �̄�, 𝑢, �̄�)) + 𝑅6
𝑚 (𝑢, �̄�, 𝑢, �̄�, 𝑢, �̄�). (4.6)

One may view here the relation (4.5) as a division problem, where 𝑐4
𝑚 vanishes on the resonant set

R. The symbols 𝑏4
𝑚 and 𝑟4

𝑚 are not uniquely determined by the relation (4.5), as we can change them by

𝑏4
𝑚 → 𝑏4

𝑚 + 𝑞Δ4𝜉, 𝑟4
𝑚 → 𝑟4

𝑚 + 𝑞Δ4𝜉2,

https://doi.org/10.1017/fmp.2023.30 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.30


16 M. Ifrim and D. Tataru

for any smooth q. However, this is the only ambiguity. In particular 𝑟4
𝑚 is uniquely determined on the

set Δ4𝜉2 = 0, while 𝑏4
𝑚 is uniquely determined on the set Δ4𝜉 = 0.

One could carry out a similar computation for the momentum, where the starting point is the relation

𝜕𝑡𝑃(𝑢) = 𝜕𝑥𝐸 (𝑢) + 𝐶4
𝑝 (𝑢, �̄�, 𝑢, �̄�).

Precisely, the symbol of 𝐶4
𝑝 is initially given by

𝑐4
𝑝 (𝜉1, 𝜉2, 𝜉3, 𝜉4) = 𝑖(𝜉1 − 𝜉2 + 𝜉3 + 𝜉4)𝑐(𝜉1, 𝜉2, 𝜉3) − 𝑖(𝜉1 + 𝜉2 − 𝜉3 + 𝜉4)𝑐(𝜉2, 𝜉3, 𝜉4).

However, we can further symmetrize it exactly as in the case of𝐶4
𝑚. Then it also vanishes on the resonant

set R, so it admits a (nonunique) representation of the form

𝑐4
𝑝 + 𝑖Δ4𝜉2𝑏4

𝑝 = 𝑖Δ4𝜉𝑟4
𝑝 . (4.7)

Hence, as in the case of the mass, we define a quartic correction for the momentum density

𝑃♯ (𝑢) = 𝑃(𝑢) + 𝐵4
𝑝 (𝑢, �̄�, 𝑢, �̄�).

This satisfies a conservation law of the form

𝜕𝑡𝑃
♯ (𝑢) = 𝜕𝑥 (𝐸 (𝑢) + 𝑅4

𝑝 (𝑢, �̄�, 𝑢, �̄�)) + 𝑅6
𝑝 (𝑢, �̄�, 𝑢, �̄�, 𝑢, �̄�). (4.8)

4.3. The choice for the density-flux corrections

Here, we consider the division problem in equation (4.5) and ask what should be a good balance between
the symbols 𝐵4

𝑚 and 𝑅4
𝑚. We recall that 𝑏4

𝑚 is uniquely determined on the diagonal Δ4𝜉 = 0, but we can
choose it freely away from the diagonal.

To move away from the diagonal, it is useful to do it in a Galilean invariant fashion. The expression
Δ4𝜉2 is not Galilean invariant, but we do have a suitable replacement, namely the expression

Δ̃4𝜉2 := Δ4𝜉2 − 2𝜉𝑎𝑣𝑔Δ4𝜉 =
1
2
((𝜉1 − 𝜉3)2 − (𝜉2 − 𝜉4)2).

This is easily seen to be invariant with respect to translations. To measure the size of both Δ4𝜉 and
Δ̃4𝜉2, we introduce two parameters,

𝛿𝜉hi := max{|𝜉1 − 𝜉2 | + |𝜉3 − 𝜉4 |, |𝜉1 − 𝜉4 | + |𝜉3 − 𝜉2 |},
𝛿𝜉med := min{|𝜉1 − 𝜉2 | + |𝜉3 − 𝜉4 |, |𝜉1 − 𝜉4 | + |𝜉3 − 𝜉2 |},

(4.9)

where 𝛿𝜉hi measures the diameter of the full set of 𝜉’s whereas 𝛿𝜉med measures the distance of the sets
{𝜉1, 𝜉3} and {𝜉2, 𝜉4}. With these notations, we have bounds from above as follows:

|Δ4𝜉 | � 𝛿𝜉med, |Δ̃4𝜉2 | � 𝛿𝜉hi𝛿𝜉med. (4.10)

We will think of the symbol Δ4𝜉 as being elliptic where approximate equality holds in the first relation
and of Δ̃4𝜉2 as being elliptic where approximate equality holds in the second relation. Based on this,
we will decompose the phase space into three overlapping regions which can be separated using cutoff
functions which are smooth on the unit scale:

i) The full division region,

Ω1 = {𝛿𝜉med � 1},

which represents a full unit size neighbourhood of the resonant set R.
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ii) The region

Ω2 = {1 + |Δ4𝜉 | � 𝛿𝜉med},

where Δ̃4𝜉2 must be elliptic, |Δ̃4𝜉2 | ≈ 𝛿𝜉hi𝛿𝜉med, and thus we will favor division by the symbol
Δ̃4𝜉2.

iii) The region

Ω3 = {1 � 𝛿𝜉med � |Δ4𝜉 |},

we will instead divide by Δ4𝜉; this is compensated by the relatively small size of this region.

This decomposition leads us to the following division lemma:

Lemma 4.1. Let 𝑐4 be a bounded symbol which is smooth on the unit scale and which vanishes on R.
Then it admits a representation

𝑐4 = Δ4𝜉 𝑟4 − Δ̃4𝜉2 𝑏4, (4.11)

where 𝑟4 and 𝑏4 are also smooth on the unit scale, with the following properties:

i) Size

|𝜕𝛼𝑟4 | � 1
〈𝛿𝜉med〉

,

|𝜕𝛼𝑏4 | � 1
〈𝛿𝜉hi〉〈𝛿𝜉med〉

.

(4.12)

ii) Support: 𝑏4 is supported in Ω1 ∪Ω2 and 𝑟4 is supported in Ω1 ∪Ω3.

Here and later in the paper, by ‘smooth on the unit scale’ we mean that the above functions and
all their derivatives are bounded, with bounds as in equation (4.12), and where the implicit constant is
allowed to depend on 𝛼, but not on anything else. As usual, only finitely many derivatives are needed
on our analysis, but we do not take the extra step of determining how many.

To return to Δ4𝜉, we have the following straightforward observation:

Remark 4.2. Later, we will need similar decompositions but with Δ̃4𝜉2 replaced by Δ4𝜉2,

𝑐4 = Δ4𝜉𝑟4 − Δ4𝜉2𝑏4.

This is easily done via the substitution

𝑟4 = 𝑟4 + 2𝜉𝑎𝑣𝑔𝑏4.

But in doing this, we loose the above bound for 𝑟4 unless |𝜉𝑎𝑣𝑔 | � 𝛿𝜉hi. Precisely, we obtain instead

|𝜕𝛼𝑟4 | � 1
〈𝛿𝜉med〉

(
1 +

|𝜉𝑎𝑣𝑔 |
〈𝛿𝜉hi〉

)
. (4.13)

Proof. Using a partition of unity which is smooth on the unit scale, we can reduce the problem to the
case when 𝑐4 is supported in exactly one of the regions Ω1, Ω2 and Ω3. We consider each of these cases
separately.

i) 𝑐4 is supported in Ω1. To simplify notations here, we introduce new linear coordinates
(𝜂1, 𝜂2, 𝜂3, 𝜂4), where

𝜂1 = Δ4𝜉, 𝜂2 = 𝜉1 + 𝜉2 − 𝜉3 − 𝜉4, 𝜂3 = 𝜉1 − 𝜉2 − 𝜉3 + 𝜉4, 2𝜂2𝜂3 = Δ̃4𝜉2.
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For 𝜂4, we can choose in a symmetric fashion

𝜂4 = 𝜉1 + 𝜉2 + 𝜉3 + 𝜉4,

though this does not play any role in the sequel.
In these coordinates, we have

Ω1 = {|𝜂1 | + min{|𝜂2 |, |𝜂3 |} � 1} = Ω11 ∪Ω12 ∪Ω13,

where

Ω11 := {|𝜂1 | + |𝜂2 | + |𝜂3 | � 1} , Ω12 := {|𝜂1 | + |𝜂2 | � 1 � |𝜂3 |} ,
Ω13 := {|𝜂1 | + |𝜂3 | � 1 � |𝜂2 |} .

Using another partition of unity which is smooth on the unit scale, the problem reduces to separately
considering the case when 𝑐4 is supported in each of these three sets.

Within the set Ω12, we have 𝑐4(0, 0, 𝜂3, 𝜂4) = 0; therefore, we can easily represent

𝑐4(𝜂1, 𝜂2, 𝜂3, 𝜂4) = (𝑐4 (𝜂1, 𝜂2, 𝜂3, 𝜂4) − 𝑐4 (0, 𝜂2, 𝜂3, 𝜂4)) + (𝑐4 (0, 𝜂2, 𝜂3, 𝜂4) − 𝑐4(0, 0, 𝜂3, 𝜂4)),

where the first difference may be smoothly divided by 𝜂1 and the second by 𝜂2, with the quotients
contributing to 𝑟4, respectively 𝑏4. The set Ω13 can be dealt with in a similar fashion.

It remains to consider Ω11, where we know that 𝑐4 = 0 in 𝜂1 = 𝜂2𝜂3 = 0. Here, we write

𝑐4(𝜂1, 𝜂2, 𝜂3, 𝜂4) = (𝑐4 (𝜂1, 𝜂2, 𝜂3, 𝜂4) − 𝑐4 (0, 𝜂2, 𝜂3, 𝜂4)) + 𝑐4 (0, 𝜂2, 𝜂3, 𝜂4).

Now, the first difference can be smoothly divided by 𝜂1, while the last term can be successively and
smoothly divided by 𝜂2 and 𝜂3.

ii) 𝑐4 is supported in Ω2. Here we set

𝑏4 =
𝑐4

Δ̃4𝜉2
, 𝑟4 = 0,

and we observe that 				𝜕𝛼 1
Δ̃4𝜉2

				 � 1
𝛿𝜉med𝛿𝜉hi .

iii) 𝑐4 is supported in Ω3. Here, we set

𝑏4 = 0, 𝑟4 = − 𝑐4

Δ4𝜉
,

and we observe that 				𝜕𝛼 1
Δ4𝜉

				 � 1
𝛿𝜉med . �

4.4. The Galilean invariance

While the assumptions (H1–3) on the cubic nonlinearity C are Galilean invariant, our density-flux
identities are not. In order to rectify that, suppose heuristically that we are looking at linear waves
concentrated around a frequency 𝜉0. This corresponds to a linear group velocity of 2𝜉0, so in the
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density-flux identities it would be natural to replace the operator 𝜕𝑡 by 𝜕𝑡 + 2𝜉0𝜕𝑥 . At the linear level,
this is done by recentering the energy and momentum densities at 𝜉0,

𝑝 𝜉0 (𝜉1, 𝜉2) = − 𝜉1 − 𝜉2 + 2𝜉0 = 𝑝 + 2𝜉0𝑚,

𝑒 𝜉0 (𝜉1, 𝜉2) = (𝜉1 + 𝜉2 − 2𝜉0)2 = 𝑒 + 4𝜉0𝑝 + 4𝜉2
0𝑚.

(4.14)

Then the density-flux identities (4.2) become

(𝜕𝑡 + 2𝜉0𝜕𝑥)𝑀 (𝑢) = 𝜕𝑥𝑃𝜉0 (𝑢), (𝜕𝑡 + 2𝜉0𝜕𝑥)𝑃𝜉0 (𝑢) = 𝜕𝑥𝐸 𝜉0 (𝑢). (4.15)

Next, we consider the nonlinear setting. There 𝑀♯ is the same as before, but 𝑃♯
𝜉0

is

𝑃♯
𝜉0

= 𝑃♯ − 2𝜉0𝑀
♯ = 𝑃𝜉0 + 𝐵4

𝑝, 𝜉0
,

where the symbol for 𝐵4
𝑝, 𝜉0

is given by

𝑏4
𝑝, 𝜉0

= 𝑏4
𝑝 + 2𝜉0𝑏

4
𝑚. (4.16)

Then our density-flux identities have the form

(𝜕𝑡 + 2𝜉0𝜕𝑥)𝑀♯ (𝑢) = 𝜕𝑥 (𝑝 𝜉0 (𝑢) + 𝑅4
𝑚,𝜉0

(𝑢, �̄�, 𝑢, �̄�)) + 𝑅6
𝑚,𝜉0

(𝑢, �̄�, 𝑢, �̄�, 𝑢, �̄�), (4.17)

(𝜕𝑡 + 2𝜉0𝜕𝑥)𝑃♯
𝜉0
(𝑢) = 𝜕𝑥 (𝑒 𝜉0 (𝑢) + 𝑅4

𝑝, 𝜉0
(𝑢, �̄�, 𝑢, �̄�)) + 𝑅6

𝑝, 𝜉0
(𝑢, �̄�, 𝑢, �̄�, 𝑢, �̄�), (4.18)

where the symbols for 𝑅4
𝑚,𝜉0

and 𝑅4
𝑝, 𝜉0

are defined by

𝑟4
𝑚,𝜉0

= 𝑟4
𝑚 + 2𝜉0𝑏

4
𝑚, 𝑟4

𝑝, 𝜉0
= 𝑟4

𝑝 + 2𝜉0𝑏
4
𝑝 + 2𝜉0𝑟

4
𝑚 + 4𝜉2

0𝑏
4
𝑚.

4.5. Localized density-flux identities for mass and momentum

In our analysis later on, we will not use density-flux pairs for global estimates, but instead we will use
them only in a frequency localized setting.

Here, we begin our discussion with a symmetric bilinear symbol 𝑎(𝜉, 𝜂). We are assuming it generates
a real valued quadratic form 𝐴(𝑢, �̄�), that is, that

𝑎(𝜉, 𝜂) = �̄�(𝜂, 𝜉)

and that its symbol is bounded and uniformly smooth. Later, we will use such symbols a to localize our
analysis to intervals I in frequency, either of unit size or larger.

Corresponding to such a, we define corresponding quadratic localized mass, momentum and energy
by

𝑚𝑎 (𝜉, 𝜂) := 𝑎(𝜉, 𝜂), 𝑝𝑎 (𝜉, 𝜂) := −(𝜉 + 𝜂)𝑎(𝜉, 𝜂), 𝑒𝑎 (𝜉, 𝜂) := (𝜉 + 𝜂)2𝑎(𝜉, 𝜂).

A direct computation yields the relation

𝜕𝑡𝑀𝑎 (𝑢) = 𝑃𝑎 (𝑢) + 𝐶4
𝑚,𝑎 (𝑢), (4.19)
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where the symbol 𝐶4
𝑚,𝑎 is given by

𝑐4
𝑚,𝑎 (𝜉1, 𝜉2, 𝜉3, 𝜉4) = − 𝑖

2
[ 𝑐(𝜉1, 𝜉2, 𝜉3)𝑚𝑎 (𝜉1 − 𝜉2 + 𝜉3, 𝜉4) + 𝑐(𝜉1, 𝜉4, 𝜉3)𝑚𝑎 (𝜉1 − 𝜉4 + 𝜉3, 𝜉2)

− 𝑐(𝜉2, 𝜉3, 𝜉4)𝑚𝑎 (𝜉3, 𝜉2 − 𝜉3 + 𝜉4) − 𝑐(𝜉2, 𝜉1, 𝜉4)𝑚𝑎 (𝜉3, 𝜉2 − 𝜉1 + 𝜉4)] .

A similar identity applies in the case of the localized momentum, where we simply replace the symbol
𝑚𝑎 by 𝑝𝑎.

As before, this symbol vanishes on the resonant set R, so we can represent it as in the division
relation (4.5),

𝑐4
𝑚,𝑎 + 𝑖Δ4𝜉2𝑏4

𝑚,𝑎 = 𝑖Δ4𝜉𝑟4
𝑚,𝑎, (4.20)

as well as

𝑐4
𝑝,𝑎 + 𝑖Δ4𝜉2𝑏4

𝑝,𝑎 = 𝑖Δ4𝜉𝑟4
𝑝,𝑎 . (4.21)

Then, defining 𝑀♯
𝑎 and 𝑃♯

𝑎 as before,

𝑀♯
𝑎 (𝑢) := 𝑀𝑎 (𝑢) + 𝐵4

𝑚,𝑎 (𝑢, �̄�, 𝑢, �̄�), (4.22)

𝑃♯
𝑎 (𝑢) := 𝑃𝑎 (𝑢) + 𝐵4

𝑝,𝑎 (𝑢, �̄�, 𝑢, �̄�), (4.23)

we obtain density-flux identities akin to equation (4.6), namely

𝜕𝑡𝑀
♯
𝑎 (𝑢) = 𝜕𝑥 (𝑃𝑎 (𝑢) + 𝑅4

𝑚,𝑎 (𝑢)) + 𝑅6
𝑚,𝑎 (𝑢), (4.24)

and

𝜕𝑡𝑃
♯
𝑎 (𝑢) = 𝜕𝑥 (𝐸𝑎 (𝑢) + 𝑅4

𝑝,𝑎 (𝑢)) + 𝑅6
𝑝,𝑎 (𝑢). (4.25)

We will consider these relations together with their Galilean shifts obtaining relations of the form

(𝜕𝑡 + 2𝜉0𝜕𝑥)𝑀♯
𝑎 (𝑢) = 𝜕𝑥 (𝑃𝑎, 𝜉0 (𝑢) + 𝑅4

𝑚,𝑎, 𝜉0
(𝑢)) + 𝑅6

𝑚,𝑎, 𝜉0
(𝑢), (4.26)

respectively

(𝜕𝑡 + 2𝜉0𝜕𝑥)𝑃♯
𝑎, 𝜉0

(𝑢) = 𝜕𝑥 (𝐸𝑎, 𝜉0 (𝑢) + 𝑅4
𝑝,𝑎, 𝜉0

(𝑢)) + 𝑅6
𝑝,𝑎, 𝜉0

(𝑢). (4.27)

These correspond to the algebraic division relations

𝑐4
𝑚,𝑎 + 𝑖Δ4(𝜉 − 𝜉0)2𝑏4

𝑚,𝑎 = 𝑖Δ4𝜉𝑟4
𝑚,𝑎, 𝜉0

, (4.28)

respectively

𝑐4
𝑝,𝑎, 𝜉0

+ 𝑖Δ4 (𝜉 − 𝜉0)2𝑏4
𝑝,𝑎, 𝜉0

= 𝑖Δ4𝜉𝑟4
𝑝,𝑎, 𝜉0

, (4.29)

where

𝑐4
𝑝,𝑎, 𝜉0

(𝜉1, 𝜉2, 𝜉3, 𝜉4) = − 𝑖

2
[𝑐(𝜉1, 𝜉2, 𝜉3)𝑝𝑎, 𝜉0 (𝜉1 − 𝜉2 + 𝜉3, 𝜉4) + 𝑐(𝜉1, 𝜉4, 𝜉3)𝑝𝑎, 𝜉0 (𝜉1 − 𝜉4 + 𝜉3, 𝜉2)

− 𝑐(𝜉2, 𝜉3, 𝜉4)𝑝𝑎, 𝜉0 (𝜉1, 𝜉2 − 𝜉3 + 𝜉4) − 𝑐(𝜉2, 𝜉1, 𝜉4)𝑝𝑎, 𝜉0 (𝜉3, 𝜉2 − 𝜉1 + 𝜉4)] .
(4.30)

https://doi.org/10.1017/fmp.2023.30 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.30


Forum of Mathematics, Pi 21

The symbols above are connected in the obvious way. Precisely, we have

𝑟4
𝑚,𝑎, 𝜉0

= 𝑟4
𝑚,𝑎 + 2𝜉0𝑏

4
𝑚,𝑎, (4.31)

and

𝑃♯
𝑎, 𝜉0

= 𝑃♯
𝑎 + 2𝜉0𝑀

♯
𝑎, 𝑏4

𝑝,𝑎, 𝜉0
= 𝑏4

𝑝,𝑎 + 2𝜉0𝑏
4
𝑚,𝑎, (4.32)

and finally

𝑟4
𝑝,𝑎, 𝜉0

= 𝑟4
𝑝,𝑎 + 2𝜉0𝑏

4
𝑝,𝑎 + 2𝜉0𝑟

4
𝑚,𝑎, 𝜉0

. (4.33)

To use these density-flux relations we need to have appropriate bounds for our symbols:

Proposition 4.3. Let 𝐽 ⊂ R be an interval of length r and 𝑑 (𝜉0, 𝐽) � 𝑟 . Assume that a is supported
in 𝐽 × 𝐽, with bounded and uniformly smooth symbol. Then the relations (4.28) and (4.29) hold with
symbols 𝑏4

𝑚,𝑎, 𝑏4
𝑝,𝑎, 𝜉0

, 𝑟4
𝑚,𝑎, 𝜉0

and 𝑟4
𝑝,𝑎, 𝜉0

which can be chosen to have the following properties:

i) Support: They are all supported in the region where at least one of the frequencies is in J.
ii) Size:

|𝑏4
𝑚,𝑎 | �

1
〈𝛿𝜉hi〉〈𝛿𝜉med〉

, |𝑏4
𝑝,𝑎, 𝜉0

| � 𝑟

〈𝛿𝜉hi〉〈𝛿𝜉med〉
, (4.34)

|𝑟4
𝑚,𝑎, 𝜉0

| � 1
〈𝛿𝜉med〉

1Ω1∪Ω3 +
𝑟

〈𝛿𝜉hi〉〈𝛿𝜉med〉
1Ω1∪Ω2 ,

|𝑅4
𝑝,𝑎, 𝜉0

| � 𝑟

〈𝛿𝜉med〉
1Ω1∪Ω3 +

𝑟2

〈𝛿𝜉hi〉〈𝛿𝜉med〉
1Ω1∪Ω2 .

(4.35)

iii) Regularity: Similar bounds hold for all derivatives.

Proof. This is easily done by applying Lemma 4.1; see also Remark 4.2. �

5. Interaction Morawetz identities

5.1. The linear Schrodinger equation

The Interaction Morawetz inequality aims to capture the fact that the momentum moves to the right
faster than the mass. Here, the left/right symmetry is broken due to the sign choice which is implicit in
the choice of the momentum.

5.1.1. A global computation
To warm up, we start with two solutions u and v for the linear Schrödinger equation. To these we
associate the Interaction functional

I(𝑢, 𝑣) =
∫
𝑥>𝑦

𝑀 (𝑢) (𝑥)𝑃(𝑣) (𝑦) − 𝑃(𝑢) (𝑥)𝑀 (𝑣) (𝑦) 𝑑𝑥𝑑𝑦

and compute 𝑑I/𝑑𝑡 using the conservation laws (4.2). We have

𝑑

𝑑𝑡
I(𝑢, 𝑣) =

∫
𝑥>𝑦

𝜕𝑥𝑃(𝑢) (𝑥)𝑃(𝑣) (𝑦) + 𝑀 (𝑢) (𝑥)𝜕𝑦𝐸 (𝑣) (𝑦)

− 𝜕𝑥𝐸 (𝑢) (𝑥)𝑀 (𝑣) (𝑦) − 𝑃(𝑢) (𝑥)𝜕𝑦𝑃(𝑣) (𝑦) 𝑑𝑥𝑑𝑦

=
∫

𝑀 (𝑢)𝐸 (𝑣) + 𝑀 (𝑣)𝐸 (𝑢) − 2𝑃(𝑢)𝑃(𝑣) 𝑑𝑥 :=
∫

𝐽4 (𝑢, �̄�, 𝑣, �̄�) 𝑑𝑥.
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Here, 𝐽4 can be chosen2 to have symbol

𝑗4(𝜉1, 𝜉2, 𝜉3, 𝜉4) = 4(𝜉1 − 𝜉4) (𝜉2 − 𝜉3).

This is because of the following computation on the diagonal Δ4𝜉 = 0:

(𝜉1 + 𝜉2)2 + (𝜉3 + 𝜉4)2 − 2(𝜉1 + 𝜉2) (𝜉3 + 𝜉4) = (𝜉1 + 𝜉2 − 𝜉3 − 𝜉4)2 = 4(𝜉1 − 𝜉4) (𝜉2 − 𝜉3).

Thus, we have the positivity

𝐽4(𝑢, �̄�, 𝑣, �̄�) = 4|𝜕𝑥 (𝑢�̄�) |2.

The above computation is classically done using integration by parts; see [22]. However, it is more
interesting to do it at the symbol level because we want to apply it in a more general context. Classically,
this is done with 𝑢 = 𝑣, but here we find it convenient to break the symmetry. Primarily, our v’s will be
spatial translations of u.

5.1.2. A frequency localized bound
Here, we start with a symbol a which is localized on the unit scale near some frequency 𝜉0, and consider
the Interaction Morawetz functional

I𝑎 (𝑢, 𝑣) =
∫
𝑥>𝑦

𝑀𝑎 (𝑢) (𝑥)𝑃𝑎 (𝑣) (𝑦) − 𝑃𝑎 (𝑢) (𝑥)𝑀𝑎 (𝑣) (𝑦) 𝑑𝑥𝑑𝑦. (5.1)

As above, its time derivative is

𝑑

𝑑𝑡
I𝑎 (𝑢, 𝑣) = J4

𝑎 (𝑢, �̄�, 𝑣, �̄�),

where 𝐽4
𝑎 has symbol

𝑗𝑎 (𝜉1, 𝜉2, 𝜉3, 𝜉4) = 4𝑎(𝜉1, 𝜉2)𝑎(𝜉3, 𝜉4)(𝜉1 − 𝜉4) (𝜉2 − 𝜉3).

This no longer has obvious positivity. However, if a has separated variables

𝑎(𝜉, 𝜂) = 𝑎0 (𝜉)𝑎0 (𝜂), (5.2)

then 𝐽𝑎 is nonnegative,

J4
𝑎 (𝑢, 𝑣) = 4

∫
|𝐾𝑎 (𝑢, �̄�) |2 𝑑𝑥,

where 𝐾𝑎 has symbol (𝜉 − 𝜂)𝑎0 (𝜉)𝑎0(𝜂), that is,

𝐾𝑎 (𝑢, �̄�) = 𝜕𝑥 (𝐴0𝑢𝐴0𝑣),

where 𝐴0 is the multiplier associated to the symbol 𝑎0.

5.1.3. Interaction Morawetz for separated velocities
Here, we instead take two symbols a and b localized to two frequency intervals A and B so that |𝐴|, |𝐵 | � 𝑟
and A and B have separation r (say A is to the left of B). Then we take the Interaction functional

I𝐴𝐵 =
∫
𝑥>𝑦

𝑀𝐴(𝑢) (𝑥)𝑃𝐵 (𝑣) (𝑦) − 𝑃𝐴(𝑢) (𝑥)𝑀𝐵 (𝑣) (𝑦) 𝑑𝑥𝑑𝑦,

2Recall that a priori the symbol of 𝑗4 is only determined uniquely on the diagonal Δ4 𝜉 = 0.
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or equivalently

I𝐴𝐵 =
∫
𝑥>𝑦

𝑀𝐴(𝑥)𝑃𝐵, 𝜉0 (𝑦) − 𝑃𝐴, 𝜉0 (𝑥)𝑀𝐵 (𝑦) 𝑑𝑥𝑑𝑦,

where 𝜉0 is arbitrary but can be chosen more efficiently at distance 𝑂 (𝑟) from both A and B.
Then we compute

𝑑

𝑑𝑡
I𝐴𝐵 =

∫
𝑀𝐴(𝑢)𝐸𝐵 (𝑣) + 𝐸𝐴(𝑢)𝑀𝐵 (𝑣) (𝑥) − 2𝑃𝐵 (𝑢)𝑃𝐴(𝑢) 𝑑𝑥 := J4

𝐴𝐵 (𝑢, �̄�, 𝑣, �̄�),

where J4
𝐴𝐵 has symbol

𝑗4
𝐴𝐵 (𝜉1, 𝜉2, 𝜉3, 𝜉4) = 2𝑎(𝜉1, 𝜉2)𝑏(𝜉3, 𝜉4) (𝜉1 − 𝜉4) (𝜉2 − 𝜉3).

Assuming that

𝑎(𝜉, 𝜂) = 𝑎0 (𝜉)𝑎0(𝜂), 𝑏(𝜉, 𝜂) = 𝑏0 (𝜉)𝑏0(𝜂),

we can write J4
𝐴𝐵 as

J4
𝐴𝐵 =

∫
|𝐾𝐴𝐵 (𝑢, �̄�) |2 𝑑𝑥,

where

𝐾𝐴𝐵 (𝑢, �̄�) = 𝜕𝑥 (𝐴0𝑢 𝐵0𝑣).

Now, the differences (𝜉1 − 𝜉4) and (𝜉2 − 𝜉3) have size r so this leads to a bilinear 𝐿2 bound for
𝐴0𝑢 · 𝐵0𝑢,

J𝐴𝐵 ≈ 𝑟2‖𝐴0𝑢 · 𝐵0𝑢‖2
𝐿2 .

5.2. Nonlinear Interaction Morawetz estimates

Here, we consider the same Interaction Morawetz functional as above but now apply it to (two) solutions
for the nonlinear equation (1.3).

5.2.1. A simple case
As a starting point, here we consider density-flux pairs as in equations (4.6), (4.8) to which we associate
the nonlinear Interaction functional

I(𝑢, 𝑣) =
∬

𝑥>𝑦
𝑀♯ (𝑢) (𝑥)𝑃♯ (𝑣) (𝑦) − 𝑃♯ (𝑢) (𝑥)𝑀♯ (𝑣) (𝑦) 𝑑𝑥𝑑𝑦. (5.3)

Using the density-flux relations, we obtain

𝑑I
𝑑𝑡

= J4 + J6 + J8 + K8, (5.4)

where J4 is the same as above, while J6 and J8 are given by

J6(𝑢, 𝑣) =
∫

𝑀 (𝑢)𝑅4
𝑝 (𝑣) + 𝐵4

𝑚(𝑢)𝐸 (𝑣) − 𝑃(𝑢)𝐵4
𝑝 (𝑣) − 𝑅4

𝑚(𝑢)𝑃(𝑣)+

𝑀 (𝑣)𝑅4
𝑝 (𝑢) + 𝐵4

𝑚(𝑣)𝐸 (𝑢) − 𝑃(𝑣)𝐵4
𝑝 (𝑢) − 𝑅4

𝑚(𝑣)𝑃(𝑢) 𝑑𝑥,
(5.5)
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respectively

J8 (𝑢, 𝑣) =
∫

𝐵4
𝑚 (𝑢)𝑅4

𝑝 (𝑣) − 𝑅4
𝑚(𝑢)𝐵4

𝑝 (𝑣) + 𝐵4
𝑚(𝑣)𝑅4

𝑝 (𝑢) − 𝑅4
𝑚(𝑣)𝐵4

𝑝 (𝑢) 𝑑𝑥. (5.6)

Finally, we are also left with the double integral

K8 =
∬

𝑥>𝑦
𝑀♯ (𝑢) (𝑥)𝑅6

𝑝 (𝑣) (𝑦) + 𝑃♯ (𝑣) (𝑦)𝑅6
𝑚(𝑢) (𝑥) 𝑑𝑥𝑑𝑦

−
∬

𝑥>𝑦
𝑀♯ (𝑣) (𝑦)𝑅6

𝑝 (𝑢) (𝑥) + 𝑃♯ (𝑢) (𝑥)𝑅6
𝑚(𝑣) (𝑦) 𝑑𝑥𝑑𝑦,

(5.7)

whose leading part has order 8 but also contains terms of order 10, but we will treat it all perturbatively
later.

It is instructive to consider the case of the cubic defocusing NLS. There 𝐵4
𝑚 = 0, 𝐵4

𝑝 = 0 and thus
𝑅6
𝑚 = 0, 𝑅6

𝑝 = 0. Further, 𝑅4
𝑚 = 0 but 𝑅4

𝑝 = 1. Thus, in particular we get

J6 (𝑢, 𝑢) =
∫

|𝑢 |6 𝑑𝑥.

This is where the focusing/defocusing type of the equation comes in, as it determines the sign of J6

(relative to the sign of J4).

5.2.2. Nonlinear Interaction Morawetz: the localized diagonal case
Here, we use the frequency localized mass density-flux identity (4.17) and the corresponding momentum
density-flux identity (4.18) in order to produce a localized Interaction Morawetz estimate. We consider
a smooth symbol a as in equation (5.2), where 𝑎0 is localized around a frequency 𝜉0 on the unit scale.

Correspondingly, we have the localized mass and momentum densities

𝑀♯
𝑎 = 𝑀𝑎 (𝑢, �̄�) + 𝐵4

𝑚,𝑎 (𝑢, �̄�, 𝑢, �̄�),

𝑃♯
𝑎, 𝜉0

= 𝑃𝑎, 𝜉0 (𝑢, �̄�) + 𝐵4
𝑝,𝑎, 𝜉0

(𝑢, �̄�, 𝑢, �̄�),

which satisfy the conservation laws

(𝜕𝑡 + 2𝜉0𝜕𝑥)𝑀♯
𝑎 (𝑢) = 𝜕𝑥 (𝑃𝑎, 𝜉0 (𝑢) + 𝑅4

𝑚,𝑎, 𝜉0
(𝑢)) + 𝑅6

𝑚,𝑎, 𝜉0
(𝑢).

(𝜕𝑡 + 2𝜉0𝜕𝑥)𝑃♯
𝑎, 𝜉0

(𝑢) = 𝜕𝑥 (𝐸𝑎, 𝜉0 (𝑢) + 𝑅4
𝑝,𝑎, 𝜉0

(𝑢)) + 𝑅6
𝑝,𝑎, 𝜉0

(𝑢).

For these, we define the Interaction Morawetz functional

I𝑎 (𝑢, 𝑣) =
∬

𝑥>𝑦
𝑀♯

𝑎 (𝑢) (𝑥)𝑃♯
𝑎, 𝜉0

(𝑣) (𝑦) − 𝑃♯
𝑎, 𝜉0

(𝑢) (𝑥)𝑀♯
𝑎 (𝑣) (𝑦) 𝑑𝑥𝑑𝑦, (5.8)

where, by writing it in a symmetric fashion, we have completely eliminated its dependence on 𝜉0.
The time derivative of I𝑎 is

𝑑

𝑑𝑡
I𝑎 = J4

𝑎 + J6
𝑎 + J8

𝑎 + K8
𝑎, (5.9)

where all the terms are independent of 𝜉0.
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Here, the quartic contribution J4
𝑎 is the same as in the linear case,

J4
𝑎 (𝑢, 𝑣) =

∫
𝑀𝑎 (𝑢)𝐸𝑎, 𝜉0 (𝑣) + 𝑀𝑎 (𝑣)𝐸𝑎, 𝜉0 (𝑢) − 2𝑃𝑎, 𝜉0 (𝑢)𝑃𝑎, 𝜉0 (𝑣) 𝑑𝑥.

The sixth-order term J6
𝑎 has the form

J6
𝑎 (𝑢, 𝑣) =

∫
𝑀𝑎 (𝑢)𝑅4

𝑝,𝑎, 𝜉0
(𝑣) + 𝐵4

𝑚,𝑎 (𝑢)𝐸𝑎, 𝜉0 (𝑣) − 𝑃𝑎, 𝜉0 (𝑢)𝐵4
𝑝,𝑎, 𝜉0

(𝑣) − 𝑅4
𝑚,𝑎, 𝜉0

(𝑢)𝑃𝑎, 𝜉0 (𝑣)

+ 𝑀𝑎 (𝑣)𝑅4
𝑝,𝑎, 𝜉0

(𝑢) + 𝐵4
𝑚,𝑎 (𝑣)𝐸𝑎, 𝜉0 (𝑢) − 𝑃𝑎, 𝜉0 (𝑣)𝐵4

𝑝,𝑎, 𝜉0
(𝑢) − 𝑅4

𝑚,𝑎, 𝜉0
(𝑣)𝑃𝑎, 𝜉0 (𝑢) 𝑑𝑥.

(5.10)

Next, we have

J8
𝑎 (𝑢, 𝑣) = (5.11)∫

𝐵4
𝑚,𝑎 (𝑢)𝑅4

𝑝,𝑎, 𝜉0
(𝑣) − 𝑅4

𝑚,𝑎, 𝜉0
(𝑢)𝐵4

𝑝,𝑎, 𝜉0
(𝑣) + 𝐵4

𝑚,𝑎 (𝑣)𝑅4
𝑝,𝑎, 𝜉0

(𝑢) − 𝑅4
𝑚,𝑎, 𝜉0

(𝑣)𝐵4
𝑝,𝑎, 𝜉0

(𝑢) 𝑑𝑥.

Finally, the 8-linear term K8
𝑎 has the form

K8
𝑎 (𝑢, 𝑣) =

∬
𝑥>𝑦

𝑀♯
𝑎 (𝑢) (𝑥)𝑅6

𝑝,𝑎, 𝜉0
(𝑣) (𝑦) + 𝑃♯

𝑎, 𝜉0
(𝑣) (𝑦)𝑅6

𝑚,𝑎 (𝑢) (𝑥)

− 𝑀♯
𝑎 (𝑣) (𝑦)𝑅6

𝑝,𝑎, 𝜉0
(𝑢) (𝑥) − 𝑃♯

𝑎, 𝜉0
(𝑢) (𝑥)𝑅6

𝑚,𝑎 (𝑣) (𝑦) 𝑑𝑥𝑑𝑦.
(5.12)

This also includes a 10-linear term.
Importantly, here we compute the symbol of J6

𝑎, 𝜉0
on the diagonal 𝜉1 = 𝜉2 = 𝜉3 = 𝜉4 = 𝜉5 = 𝜉6 := 𝜉.

This will be essential later on in order to obtain bounds for the 𝐿6 Strichartz norm.

Lemma 5.1. The diagonal trace of the symbol 𝑗6
𝑎 is

𝑗6
𝑎 (𝜉) = 𝑎2 (𝜉)𝑐(𝜉, 𝜉, 𝜉). (5.13)

Proof. Since our symbol does not actually depend on 𝜉0, it suffices to compute it at 𝜉 = 𝜉0. The
advantage is that 𝑝𝑎, 𝜉0 (𝜉0) = 𝑒𝑎, 𝜉0 (𝜉0) = 0, so we are left with the simpler expression

𝑗6
𝑎 (𝜉0) = 𝑚𝑎 (𝜉0)𝑟4

𝑝,𝑎, 𝜉0
(𝜉0).

For 𝑟4
𝑝,𝑎, 𝜉0

, we have the relation

𝑐4
𝑝,𝑎, 𝜉0

+ 𝑖Δ4(𝜉 − 𝜉0)2𝑏4
𝑝,𝑎, 𝜉0

= 𝑖Δ4𝜉𝑟4
𝑝,𝑎, 𝜉0

.

We differentiate with respect to 𝜉1 and then set all 𝜉’s equal to obtain

𝜕1𝑐
4
𝑝,𝑎, 𝜉0

(𝜉0) = 𝑖𝑟4
𝑝,𝑎, 𝜉0

(𝜉0).

It remains to compute the 𝜉1 derivative of 𝑐4
𝑝,𝑎, 𝜉0

on the diagonal. This is a direct computation using
the formula (4.30). Recalling that

𝑝𝑎 (𝜉1, 𝜉2) = 𝑚𝑎 (𝜉1, 𝜉2) (−𝜉1 − 𝜉2 + 2𝜉0),

it follows that

𝑟4
𝑝,𝑎, 𝜉0

(𝜉0) = 𝑚𝑎 (𝜉0)𝑐(𝜉0),
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where we recall that c is real on the diagonal. Therefore,

𝑗6
𝑎, 𝜉0

(𝜉0) = 𝑎2 (𝜉0)𝑐(𝜉0),

as needed. �

5.2.3. Nonlinear Interaction Morawetz: the transversal case
Here, we return to the setting of Section 5.1.3 where we have two frequency intervals 𝐴, 𝐵 with size at
most M and separation also M and two smooth and bounded symbols 𝑎, 𝑏 which are localized in the
two intervals. Our Interaction Morawetz functional is given by

I𝐴𝐵 =
∫
𝑥>𝑦

𝑀♯
𝑎 (𝑢) (𝑥)𝑃♯

𝑏, 𝜉0
(𝑣) (𝑦) − 𝑃♯

𝑎, 𝜉0
(𝑢) (𝑥)𝑀♯

𝑏 (𝑣) (𝑦) 𝑑𝑥𝑑𝑦, (5.14)

and we observe as before that this does not depend on 𝜉0.
Using again the frequency localized mass density-flux identity (4.17) and the corresponding momen-

tum density-flux identity (4.18) we produce a localized Interaction Morawetz estimate,

𝑑

𝑑𝑡
I𝐴𝐵 = J4

𝐴𝐵 + J6
𝐴𝐵 + J8

𝐴𝐵 + K8
𝐴𝐵 . (5.15)

Here, the quartic contribution J4
𝐴𝐵 is the same as in the linear case

J4
𝐴𝐵 =

∫
𝑀𝑎 (𝑢) (𝑥)𝐸𝑏, 𝜉0 (𝑣) (𝑥) + 𝑀𝑏 (𝑣) (𝑥)𝐸𝑎, 𝜉0 (𝑢) (𝑥) − 2𝑃𝑎, 𝜉0 (𝑢) (𝑥)𝑃𝑏, 𝜉0 (𝑣) (𝑥) 𝑑𝑥

and captures the bilinear 𝐿2 bound.
The sixth-order term J6

𝐴𝐵 has the form

J6
𝐴𝐵 =

∫
−(𝑃𝑎, 𝜉0𝐵

4
𝑝,𝑏, 𝜉0

+ 𝑃𝑏, 𝜉0𝑅
4
𝑚,𝑎, 𝜉0

) + (𝑀𝑎𝑅
4
𝑝,𝑏, 𝜉0

+ 𝐸𝑏, 𝜉0𝐵
4
𝑚,𝑎, 𝜉0

) − symmetric 𝑑𝑥,

where in the symmetric part we interchange both the indices 𝑎, 𝑏 and the functions 𝑢, 𝑣.
Next, we have

J8
𝐴𝐵 =

∫
−𝑅4

𝑚,𝑎, 𝜉0
𝐵4
𝑝,𝑏, 𝜉0

+ 𝐵4
𝑚,𝑎, 𝜉0

𝑅4
𝑝,𝑏, 𝜉0

− symmetric 𝑑𝑥.

Finally, the 8-linear term K8
𝑎, 𝜉0

has the form

K8
𝐴𝐵 =

∬
𝑥>𝑦

𝑀♯
𝑎 (𝑥)𝑅6

𝑝,𝑏, 𝜉0
+ 𝑃♯

𝑏, 𝜉0
𝑅6
𝑚,𝑎, 𝜉0

− symmetric 𝑑𝑥𝑑𝑦.

As before, this also includes a 10-linear term.

6. Frequency envelopes and the bootstrap argument

The primary goal of the proof of our main result in Theorem 1 is to establish a global 𝐿∞
𝑡 𝐿

2
𝑥 bound

for small data solutions; by the local well-posedness result in Section 3, this implies the desired global
well-posedness result. However, along the way, we will also establish bilinear 𝐿2 and Strichartz bounds
for the solutions. These will both play an essential role in the proof of Theorem 1 and will also establish
the scattering properties of our global solutions.
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Since the proof of our estimates loops back in a complex manner, it is most convenient to establish
the bilinear 𝐿2 and the 𝐿6 Strichartz bounds in the setting of a bootstrap argument, where we already
assume that the desired bilinear and Strichartz estimates hold but with weaker constants.

The setup for the bootstrap is most conveniently described using the language of frequency envelopes.
This was originally introduced in work of Tao; see, for example, [24], but in the context of dyadic
Littlewood–Paley decompositions. But here instead we work with a uniform decomposition on the unit
scale, which requires a substantial revision of the notion of ‘slowly varying’, which we replace by the
new notion of ‘maximal property’ introduced in Section 2.2.

To start with, we assume that the initial data is small size,

‖𝔲0‖𝐿2 � 𝜖 .

We consider a frequency decomposition for the initial data on a unit spatial scale,

𝔲0 =
∑
𝑘∈Z

𝔲0,𝑘 .

Then we place the initial data components under an admissible frequency envelope on the unit scale,

‖𝔲0,𝑘 ‖𝐿2 ≤ 𝜖𝑐𝑘 , 𝑐 ∈ ℓ2,

where the envelope {𝑐𝑘 } is not too large,

‖𝑐‖ℓ2 ≈ 1.

Our goal will be to establish the following frequency envelope bounds for the solution:

Theorem 5. Let 𝑢 ∈ 𝐶 ([0, 𝑇]; 𝐿2) be a solution for the equation (1.3) with initial data 𝔲0 which has
𝐿2 size at most 𝜖 . Let {𝜖𝑐𝑘 } be an admissible frequency envelope for the initial data in 𝐿2, with 𝑐𝑘
normalized in ℓ2. Then the solution u satisfies the following bounds:

(i) Uniform frequency envelope bound:

‖𝑢𝑘 ‖𝐿∞
𝑡 𝐿2

𝑥
� 𝜖𝑐𝑘 , (6.1)

(ii) Localized Strichartz bound:

‖𝑢𝑘 ‖𝐿6
𝑡,𝑥
� (𝜖𝑐𝑘 )

2
3 , (6.2)

(iii) Localized Interaction Morawetz:

‖𝜕𝑥 |𝑢𝑘 |2‖𝐿2
𝑡,𝑥
� 𝜖2𝑐2

𝑘 , (6.3)

(iv) Transversal bilinear 𝐿2 bound:

‖𝜕𝑥 (𝑢𝐴�̄�𝐵 (· + 𝑥0))‖𝐿2
𝑡,𝑥
� 𝜖2𝑐𝐴𝑐𝐵 〈𝑑𝑖𝑠𝑡 (𝐴, 𝐵)〉

1
2 , (6.4)

for all 𝑥0 ∈ R whenever |𝐴| + |𝐵 | � 〈𝑑𝑖𝑠𝑡 (𝐴, 𝐵)〉.

Here, equation (6.3) can be seen as a particular case of equation (6.4) when 𝐴 = 𝐵 have unit length; we
stated it separately in order to ease comparison with earlier work on Interaction Morawetz estimates.
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To prove this theorem, we make a bootstrap assumption where we assume the same bounds but with
a worse constant C, as follows:

(i) Uniform frequency envelope bound,

‖𝑢𝑘 ‖𝐿∞
𝑡 𝐿2

𝑥
� 𝐶𝜖𝑐𝑘 , (6.5)

(ii) Localized Strichartz bound,

‖𝑢𝑘 ‖𝐿6
𝑡,𝑥
� 𝐶 (𝜖𝑐𝑘 )

2
3 , (6.6)

(iii) Localized Interaction Morawetz,

‖𝜕𝑥 |𝑢𝑘 |2‖𝐿2
𝑡,𝑥
� 𝐶𝜖2𝑐2

𝑘 , (6.7)

(iv) Transversal Interaction Morawetz,

‖𝜕𝑥 (𝑢𝑘1 �̄�𝑘2 (· + 𝑥0))‖𝐿2
𝑡,𝑥
� 𝐶𝜖2𝑐𝑘1𝑐𝑘2 〈𝑘1 − 𝑘2〉

1
2 (6.8)

uniformly for all 𝑥0 ∈ R.

Then we seek to improve the constant in these bounds. The gain will come from the fact that the C’s
will always come paired with extra 𝜖s.

We remark that the bootstrap hypothesis for the transversal bilinear 𝐿2 bound (6.8) only requires unit
size localization, unlike the corresponding conclusion (6.4). On one hand, this simplifies the continuity
argument closing the bootstrap. On another hand, this is related to the fact that closing the bootstrap
argument for global well-posedness only requires equation (6.4) for unit size sets. The full bound (6.4)
is only used in the last section in order to obtain the global Strichartz and bilinear 𝐿2 bounds, which are
of course very interesting but secondary to the proof of the global result.

We also remark on the need to add translations to the bilinear 𝐿2 estimates. This is because, unlike
the linear bounds (6.5) and (6.6) which are inherently invariant with respect to translations, bilinear
estimates are not invariant with respect to separate translations for the two factors. One immediate
corollary of equation (6.8) is that for any multipliers 𝐿1 and 𝐿2 with smooth and bounded symbols we
have

‖𝜕𝑥 (𝐿1 (𝐷)𝑢𝑘1𝐿2 (𝐷)𝑢𝑘2 (· + 𝑥0))‖𝐿2 � 𝐶𝜖2𝑐𝑘1𝑐𝑘2 〈𝑘1 − 𝑘2〉
1
2 . (6.9)

This is essentially the only way we will use this translation invariance in our proofs.
For the rest of this section, we provide the continuity argument which shows that it suffices to prove

Theorem 5 under the bootstrap assumptions (6.5)–(6.8).
For this, we denote by T the maximal time for which the bounds (6.5)–(6.8) hold in [0, 𝑇]. By the

local well-posedness result, we have 𝑇 ≥ 1. Assume by contradiction that T is finite. Then the bootstrap
version of the theorem implies that the bounds (6.1)–(6.4) hold in [0, 𝑇]. In particular, 𝑢(𝑇) will also be
controlled by the same maximal envelope 𝑐 𝑗 coming from the initial data. By the local well-posedness
result, this implies in turn that the bounds (6.5)–(6.8) hold in [𝑇, 𝑇 + 1] with 𝐶 ≈ 1. Adding this to
the bounds (6.1)–(6.4) in [0, 𝑇], it follows that (6.5)–(6.8) hold in [0, 𝑇 + 1], thereby contradicting the
maximality of T.

7. The frequency envelope bounds

The aim of this section is to prove the frequency envelope bounds in Theorem 5, given the bootstrap
assumptions (6.5)–(6.8). In the proof, we will rely on our modified energy and momentum functionals,
whose components we estimate first. The frequency localized energy estimate (6.1) will be an immediate
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consequence of these bounds. For the Strichartz and 𝐿2 bilinear bounds, we will then use the Interaction
Morawetz identities, first in a localized diagonal setting and then in a transversal setting.

7.1. Spatial and space-time 𝑳1 bounds

Here, we consider the corrections 𝐵4
𝑚,𝑎 and errors 𝑅6

𝑚,𝑎 and their momentum counterparts associated
to a smooth bump function a selecting a frequency interval 𝐴 ⊂ Z. For 𝐵4

𝑚,𝑎, we will prove a fixed time
𝐿1 bound, while for 𝑅6

𝑚,𝑎 we will prove a space-time 𝐿1 bound. These bounds will be repeatedly used
in each of the following subsections, first in the case when A has unit size and then in the case when A
has a larger size. We begin with the 𝐵4

𝑚,𝑎 bound.

Lemma 7.1. Assume that the bootstrap bound (6.5) holds. Then we have the fixed time estimate

‖𝐵4
𝑚,𝑎 (𝑢)‖𝐿1

𝑥
� 𝜖4𝐶4𝑐2

𝐴. (7.1)

The corresponding bound for the momentum follows as a corollary once we add an additional
assumption in order to fix the momentum size:

Corollary 7.2. Assume that the bootstrap bound (6.5) holds. Let 𝜉0 ∈ R, and

𝑛 = max
𝑘∈𝐴

|𝑘 − 𝜉0 |.

Then we have the fixed time estimate

‖𝐵4
𝑝,𝑎, 𝜉0

(𝑢)‖𝐿1
𝑥
� 𝑛𝜖4𝐶4𝑐2

𝐴, (7.2)

Proof. The bounds (7.1) and (7.2) are similar, the only difference arises from the additional n factor in
the size of the symbol 𝑝𝐴. So we will prove the first bound. Using our partition of unity in frequency
on the unit scale, we expand

𝐵4
𝑚,𝑎 (𝑢) =

∑
𝑘1 ,𝑘2 ,𝑘3 ,𝑘4∈Z

𝐵4
𝑚,𝐴(𝑢𝑘1 , �̄�𝑘2 , 𝑢𝑘3 , �̄�𝑘4).

Here, we will separately estimate each term in 𝐿1
𝑥 based on the size of the symbol. By Proposition 4.3,

for frequencies within a unit neighbourhood of [𝑘] = (𝑘1, 𝑘2, 𝑘3, 𝑘4) the symbol 𝑏4
𝑚,𝑎 and its derivatives

can be estimated by

𝑏4
𝑚,𝑎 [𝑘] :=

1
〈𝛿𝑘ℎ𝑖〉〈𝛿𝑘𝑚𝑒𝑑〉

.

In addition, its support is contained in the region Ω1 ∪ Ω2, where at least one frequency is in A. The
region Ω1 ∪Ω2 can be described as the set of those quadruples [𝑘] so that

either |Δ4𝑘 | � 1, or |Δ4𝑘 | � 𝛿𝑘𝑚𝑒𝑑 . (7.3)

Without loss in generality, we assume that 𝑘1 ∈ 𝐴. Then, using the above properties, we can estimate
the 𝐿1

𝑥 bound in the lemma as

‖𝐵4
𝑚,𝑎 (𝑢)‖𝐿1

𝑥
� 𝜖4

∑
𝑘1∈𝐴

∑
[𝑘 ] ∈Ω1∪Ω2

1
〈𝛿𝑘ℎ𝑖〉〈𝛿𝑘𝑚𝑒𝑑〉

𝑐𝑘1𝑐𝑘2𝑐𝑘3𝑐𝑘4 .
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Fixing 𝑘1 ∈ 𝐴, it suffices to show that

𝑆𝑘1 :=
∑

𝑘2 ,𝑘3 ,𝑘4

1
〈𝛿𝑘ℎ𝑖〉〈𝛿𝑘𝑚𝑒𝑑〉

𝑐𝑘2𝑐𝑘3𝑐𝑘4 � 𝑐𝑘1 . (7.4)

This no longer has anything to do with the set A. For later use we have also removed the restriction
[𝑘] ∈ Ω1 ∪Ω2.

To discuss the possible configurations for [𝑘], we denote by 𝑛1 ≤ 𝑛2 the dyadic size of 𝛿𝑘𝑚𝑒𝑑 ,
respectively 𝛿𝑘ℎ𝑖 . By Galilean invariance, we set 𝑘1 = 0, and then the rest of the indices may be
reordered so that

|𝑘2 | � 𝑛1, |𝑘3 | � 𝑛2, |𝑘4 | ≈ 𝑛2, |𝑘3 − 𝑘4 | � 𝑛1.

Then we have

𝑆 �
∑
𝑛1≤𝑛2

∑
|𝑘2 |�𝑛1

∑
|𝑘4 |≈𝑛2

∑
|𝑘3−𝑘4 |�𝑛1

1
𝑛1𝑛2

𝑐𝑘2𝑐𝑘3𝑐𝑘4 .

Here, we use twice the envelope maximal function bound to write

1
𝑛1

∑
|𝑘2 |�𝑛1

𝑐𝑘2 � 𝑐0,
1
𝑛1

∑
|𝑘3−𝑘4 |�𝑛1

𝑐𝑘3 � 𝑐𝑘4 .

This gives

𝑆 � 𝑐0
∑
𝑛1≤𝑛2

𝑛1
𝑛2

∑
|𝑘4 |≈𝑛2

𝑐2
𝑘4

≈ 𝑐0
∑
𝑛2

∑
|𝑘4 |≈𝑛2

𝑐2
𝑘4
� 𝑐0.

This concludes the proof of equation (7.4) and therefore the proof of the lemma. �

Next, we turn our attention to 𝑅6
𝑚,𝑎, which we estimate as follows:

Lemma 7.3. Under our bootstrap assumptions (6.5)–(6.8), we have the space-time bound

‖𝑅6
𝑚,𝑎‖𝐿1

𝑡,𝑥
� 𝜖4𝐶6𝑐2

𝐴. (7.5)

As above, we also have a similar bound for the momentum:

Corollary 7.4. Assume that the bootstrap bounds (6.5)–(6.8) hold. Let 𝜉0 ∈ R, and

𝑛 = max
𝑘∈𝐴

|𝑘 − 𝜉0 |.

Then we have the space-time bound

‖𝑅6
𝑝,𝑎, 𝜉0

‖𝐿1
𝑡,𝑥
� 𝑛𝜖4𝐶6𝑐2

𝐴. (7.6)

Proof. As in the case of the earlier fixed time bound, we will focus on equation (7.5), as the proof
of equation (7.6) is essentially the same. We recall 𝑅6

𝑚,𝑎 is obtained from the cubic terms in the time
derivative of 𝐵4

𝑚,𝑎. We denote the four frequencies in 𝐵4
𝑚,𝑎 by 𝑘0, 𝑘1, 𝑘2, 𝑘3, where the 𝑘0 factor gets

differentiated in time. One of these four frequencies, call it 𝑘𝐴, must be in A.
With 𝑘𝐴 as above, we expand

𝑅6
𝑚,𝑎 (𝑢) =

∑
𝑘𝐴∈𝐴

𝑅6
𝑚,𝑎,𝑘𝐴

(𝑢).
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Then it suffices to establish the bound

‖𝑅6
𝑚,𝑎,𝑘𝐴

(𝑢)‖𝐿1
𝑡,𝑥
� 𝜖4𝐶6𝑐2

𝑘𝐴
. (7.7)

Here, by Galilean invariance we can set 𝑘𝐴 = 0. We also drop the index A, as no localization associated
to the set A will be used in the sequel. In particular, we replace 𝐵4

𝑚,𝑎 by 𝐵4
𝑚,0 to emphasize that one of

the frequencies in 𝐵4 is assumed to be near zero.
To describe the size and localization of the symbol 𝑏4

𝑚,0, we introduce as before the notations 𝛿𝑘𝑚𝑒𝑑

and 𝛿𝑘ℎ𝑖 for the distances between 𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑛1 < 𝑛2 for the dyadic size of 𝛿𝑘𝑚𝑒𝑑 and 𝛿𝑘ℎ𝑖 , and
Δ4𝑘 associated to the same indices. In the support of 𝑏4

𝑚,0, we must have

|Δ4𝑘 | � 1 or |Δ4𝑘 | � 𝑛1, 0 ∈ {𝑘0, 𝑘1, 𝑘2, 𝑘3}. (7.8)

In this region, the symbol of 𝑏4
𝑚,0 as well as its derivatives have size

|𝑏4
𝑚,0 | �

1
𝑛1𝑛2

. (7.9)

The time differentiation is producing three additional frequencies 𝑘4, 𝑘5, 𝑘6 so that

𝑘0 = 𝑘4 − 𝑘5 + 𝑘6. (7.10)

Then equation (7.8) translates to

|Δ6𝑘 | � 1 or |Δ6𝑘 | � 𝑛1 (7.11)

relative to the indices 𝑘1, · · · , 𝑘6.
Overall, for 𝑅6

𝑚,0 we have the decomposition

𝑅6
𝑚,0 (𝑢) =

∑
𝑛1≤𝑛2

∑
𝑘0−7∈Γ

𝑅6
𝑚,0(𝑢𝑘1 , �̄�𝑘2 , 𝑢𝑘3 , �̄�𝑘4 , 𝑢𝑘5 , �̄�𝑘6),

where Γ describes the set of indices satisfying equations (7.8) and (7.10). To bound this sum in 𝐿1
𝑡 ,𝑥 ,

we consider several cases:
A. If all six frequencies are near 0, then we use the localized 𝐿6 bound to obtain

‖𝑅6
𝑚,0 (𝑢𝑘1 , �̄�𝑘2 , 𝑢𝑘3 , �̄�𝑘4 , 𝑢𝑘5 , �̄�𝑘6)‖𝐿1

𝑡,𝑥
� 𝐶4 (𝜖𝑐0)4,

which suffices.
B. Otherwise, we denote by 1 � 𝑛 the minimal dyadic size of the interval containing all six k

indices. Clearly, we have 𝑛1 ≤ 𝑛2 ≤ 𝑛. Also, due to equation (7.11) we must also have |Δ6𝑘 | � 𝑛.
This implies that within the set (𝑘1, · · · , 𝑘6) there must be at least two disjoint pairs of frequencies at
distance comparable to n. Applying two bilinear 𝐿2 estimates and 𝐿∞ bounds for the other two factors,
we can bound

‖𝑅6
𝑚,0 (𝑢)‖𝐿1

𝑡,𝑥
� 𝜖6𝐶4𝑆, 𝑆 :=

∑
𝑛1≤𝑛2

∑
𝑘0−6∈Γ

1
𝑛1𝑛2𝑛

𝑐𝑘1𝑐𝑘2𝑐𝑘3𝑐𝑘4𝑐𝑘5𝑐𝑘6 . (7.12)

It remains to bound the above sum S by

𝑆 � 𝑐2
0. (7.13)
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There are several cases to consider:
B1. 𝑘0 = 0. Relabeling, we may assume that

|𝑘1 | ≈ 𝑛1, |𝑘2 − 𝑘3 | ≈ 𝑛1, |𝑘2 |, |𝑘3 | ≈ 𝑛2. (7.14)

We distinguish further cases by comparing 𝑛2 and n.
B1a. 𝑛 � 𝑛2. Then we may assume that

|𝑘4 | � |𝑘5 | ≈ |𝑘6 | ≈ 𝑛. (7.15)

For fixed 𝑘4, we can apply the Cauchy–Schwarz inequality for the pair of indices (𝑘5, 𝑘6), and also for
(𝑘2, 𝑘3). We obtain

𝑆 �
∑

𝑛1≤𝑛2�𝑛

∑
|𝑘1 |≈𝑛1 , |𝑘4 |�𝑛

1
𝑛2𝑛

𝑐𝑘1𝑐𝑘4𝑐
2
𝑛2𝑐

2
𝑛 =

∑
𝑛2�𝑛

∑
|𝑘1 | ≤𝑛2 , |𝑘4 |�𝑛

1
𝑛2𝑛

𝑐𝑘1𝑐𝑘4𝑐
2
𝑛2𝑐

2
𝑛.

Now, we use twice the envelope maximal bound for the 𝑘1, respectively 𝑘4 summation to get

𝑆 � 𝑐2
0

∑
𝑛2�𝑛

𝑐2
𝑛2𝑐

2
𝑛 ≈ 𝑐2

0.

B1b. 𝑘0 = 0, 𝑛 ≈ 𝑛2. In this case, we can introduce another dyadic parameter 𝑛3 ≤ 𝑛 so that, after
relabeling,

|𝑘4 | ≤ |𝑘5 | ≈ |𝑘6 | ≈ 𝑛3. (7.16)

Then applying Cauchy–Schwarz inequality exactly as above we arrive at

𝑆 �
∑
𝑛3≤𝑛2

∑
|𝑘1 | ≤𝑛2 , |𝑘4 |<𝑛3

1
𝑛2

2
𝑐𝑘1𝑐𝑘4𝑐

2
𝑛2𝑐

2
𝑛3 ,

where we can conclude again by applying twice the envelope maximal bound for the 𝑘1, respectively
the 𝑘4 summation relative to 0.

B2. 𝑘1 = 0, |𝑘0 | ≈ 𝑛1. In this case, we must also have

|𝑘2 − 𝑘3 | ≈ 𝑛1, |𝑘2 |, |𝑘3 | ≈ 𝑛2. (7.17)

Again, we compare n and 𝑛2:
B2a. 𝑛 � 𝑛2. Here, we can assume again that equation (7.15) holds. As in case B1a, we apply the

Cauchy–Schwarz inequality for the pair of indices (𝑘5, 𝑘6) and also for (𝑘3, 𝑘2), with the difference that
now the difference 𝑘5 − 𝑘6 is no longer fixed, instead it varies in an 𝑛1 range. Thus, we lose two 𝑛1
factors, obtaining

𝑆 � 𝑐0
∑

𝑛1≤𝑛2�𝑛

∑
|𝑘4 |<𝑛

𝑛1
𝑛2𝑛

𝑐𝑘4𝑐
2
𝑛2𝑐

2
𝑛.

The 𝑛1 summation is trivial now, and for the 𝑘4 summation we use the envelope maximal bound to obtain

𝑆 � 𝑐2
0

∑
𝑛2�𝑛

𝑐2
𝑛2𝑐

2
𝑛 ≈ 𝑐2

0.

B2b. 𝑛 ≈ 𝑛2. Here, we take two subcases.
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B2b(i). If

|𝑘4 | + |𝑘5 | + |𝑘6 | � 𝑛1,

then we use the Cauchy–Schwarz inequality for the pair (𝑘2, 𝑘3) to obtain

𝑆 � 𝑐0
∑
𝑛1≤𝑛2

1
𝑛2

2
𝑐2
𝑛2

∑
|𝑘4 |+ |𝑘5 |+ |𝑘6 |�𝑛1

𝑐𝑘4𝑐𝑘5𝑐𝑘6 .

Finally, we use the envelope maximal bound for the 𝑘4 summation relative to 0 and for 𝑘5 relative to 𝑘6
to get

𝑆 � 𝑐2
0

∑
𝑛1≤𝑛2

𝑛2
1

𝑛2
2
𝑐2
𝑛2𝑐

2
≤𝑛1 � 𝑐2

0

∑
𝑛2

𝑐2
𝑛2𝑐

2
≤𝑛2 � 𝑐2

0,

which suffices.
B2b(ii). If instead

|𝑘4 | + |𝑘5 | + |𝑘6 | � 𝑛1,

then we can introduce 𝑛3 as in equation (7.16), with 𝑛1 � 𝑛3 ≤ 𝑛2. Applying the Cauchy–Schwarz
inequality for the pair of indices (𝑘5, 𝑘6), and (𝑘2, 𝑘3) yields

𝑆 � 𝑐0
∑

𝑛1�𝑛3≤𝑛2

∑
|𝑘4 |<𝑛3

𝑛1

𝑛2
2
𝑐𝑘4𝑐

2
𝑛2𝑐

2
𝑛3 ≈ 𝑐0

∑
𝑛3≤𝑛2

∑
|𝑘4 |<𝑛3

𝑛3

𝑛2
2
𝑐𝑘4𝑐

2
𝑛2𝑐

2
𝑛3 .

At this stage, we complete the argument by using the envelope maximal bound for the 𝑘4 summation.
B3. 𝑘1 = 0, |𝑘0 | ≈ 𝑛2 � 𝑛1. In this case, we may assume that

|𝑘2 | ≈ 𝑛1, |𝑘3 | ≈ 𝑛2, |𝑘0 − 𝑘3 | ≈ 𝑛1. (7.18)

Next, we compare 𝑛2 and n:
B3a. 𝑛2 � 𝑛. Retaining 𝑘0 as a summation index, we first apply the Cauchy–Schwarz inequality for

the pair (𝑘5, 𝑘6) to obtain

𝑆 � 𝑐0
∑

𝑛1�𝑛2�𝑛

∑
|𝑘0 |≈𝑛2

∑
|𝑘2 |≈𝑛1

∑
|𝑘0−𝑘3 |≈𝑛1

∑
|𝑘4 |�𝑛

1
𝑛1𝑛2𝑛

𝑐𝑘2𝑐𝑘3𝑐𝑘4𝑐
2
𝑛

� 𝑐0
∑

𝑛1�𝑛2�𝑛

∑
|𝑘3 |≈𝑛2

∑
|𝑘2 |≈𝑛1

∑
|𝑘4 |�𝑛

1
𝑛2𝑛

𝑐𝑘2𝑐𝑘3𝑐𝑘4𝑐
2
𝑛

= 𝑐0
∑
𝑛2�𝑛

∑
|𝑘3 |≈𝑛2

∑
|𝑘2 |�𝑛2

∑
|𝑘4 |�𝑛

1
𝑛2𝑛

𝑐𝑘2𝑐𝑘3𝑐𝑘4𝑐
2
𝑛.

Now, we use the envelope maximal bound for 𝑘4 relative to 0 and for 𝑘2 relative to 𝑘3. This yields

𝑆 � 𝑐2
0

∑
𝑛2�𝑛

∑
|𝑘3 |≈𝑛2

𝑐2
𝑘3
𝑐2
𝑛 ≈ 𝑐2

0.

B3b. 𝑛 = 𝑛2. In this case, we dispense with 𝑘0 as a summation index, retaining instead the relation

|𝑘3 − 𝑘4 + 𝑘5 − 𝑘6 | � 𝑛1.
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At least one of the frequencies 𝑘4, 𝑘5, 𝑘6 must have size 𝑛2, say |𝑘6 | ≈ 𝑛2. Then we use the Cauchy–
Schwarz inequality for the (𝑘3, 𝑘6) pair, losing an 𝑛1 factor due to the relation above, and arriving at

𝑆 � 𝑐0
∑
𝑛1≤𝑛2

∑
|𝑘2 |≈𝑛1

∑
|𝑘4 |, |𝑘5 | ≤𝑛2

1
𝑛2

2
𝑐𝑘2𝑐𝑘4𝑐𝑘5𝑐

2
𝑛2 ≈ 𝑐0

∑
|𝑘2 |, |𝑘4 |, |𝑘5 | ≤𝑛2

1
𝑛2

2
𝑐𝑘2𝑐𝑘4𝑐𝑘5𝑐

2
𝑛2 .

Finally, we use the envelope maximal bound for 𝑘2 relative to 0 and for 𝑘4 relative to 𝑘5 to obtain

𝑆 � 𝑐2
0𝑐

2
≤𝑛2𝑐

2
𝑛2 � 𝑐2

0.

This concludes the proof of the lemma.
B4. 𝑘2 = 0. Here, we can assume that

|𝑘1 | ≈ 𝑛1, |𝑘3 | ≈ |𝑛2 |,

but the size of 𝑘0 is both not set and not needed. Instead, we will simply rely on equation (7.11) and
consider two subcases.

B4a. 𝑛2 � 𝑛, where we can assume that equation (7.15) holds. Here, we first use the maximal
function for 𝑐𝑘1 to estimate

𝑆 ≤ 𝑐2
0

∑
𝑛1≤𝑛2�𝑛

1
𝑛2𝑛

𝑐𝑘3𝑐𝑘4𝑐𝑘5𝑐𝑘6 ,

where we retain the constraint relative to 𝑘3, 𝑘4, 𝑘5, 𝑘6,

|Δ4𝑘 | � 𝑘1.

Here, we can fix Δ4𝑘 at the expense of another 𝑛1 factor. Then fixing 𝑘3 and 𝑘4 fixes the difference
𝑘5 − 𝑘6, so applying the Cauchy–Schwarz inequality with respect to 𝑘5, 𝑘6 we arrive at

𝑆 ≤ 𝑐2
0

∑
𝑛1≤𝑛2�𝑛

𝑛1
𝑛2𝑛

𝑐𝑘3𝑐𝑘4𝑐
2
𝑛.

Finally, using Hölder’s inequality for 𝑘3 and 𝑘4, which have size 𝑛2, respectively ≤ ℎ yields

𝑆 ≤ 𝑐2
0

∑
𝑛1≤𝑛2�𝑛

𝑛1
𝑛2𝑛

√
𝑛2𝑛𝑐𝑛2𝑐≤𝑛𝑐

2
𝑛 � 𝑐2

0

∑
𝑛

𝑐2
≤𝑛𝑐

2
𝑛 � 𝑐2

0.

B4b. 𝑛2 ≈ 𝑛. Here, the case 𝑛1 ≈ 𝑛2 is straightforward, as we can directly apply once the Cauchy–
Schwartz inequality for two size n frequencies, twice Hölder’s inequality and once the maximal function
bound for the three remaining frequencies of size � 𝑛. We are left with the more interesting case when
𝑛1 � 𝑛. There, using again the maximal function for 𝑐𝑘1 we estimate

𝑆 ≤ 𝑐2
0

∑
𝑛1≤𝑛2�𝑛

1
𝑛2 𝑐𝑘3𝑐𝑘4𝑐𝑘5𝑐𝑘6 ,

where for the four remaining indices we have |Δ4𝑘 | � 𝑛1 � 𝑛. Here, |𝑘3 | ≈ 𝑛, so there must be at
least one other frequency of size n. Then, as in the previous case, we apply once the Cauchy–Schwartz
inequality for the two size n frequencies, and twice Hölder’s inequality for the two remaining frequencies
of size � 𝑛. This concludes the proof of the lemma. �
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7.2. The energy estimate

Our objective here is to prove the bound (6.1). We remark that once this is proved, we may drop the 𝐶4

factor in Lemma 7.1. By the Galilean invariance, it suffices to prove the desired bound (6.1) at 𝑘 = 0.
For this, we consider a symbol 𝑎(𝜉1, 𝜉2) of the form

𝑎(𝜉1, 𝜉2) = 𝑎0 (𝜉1)𝑎0(𝜉2), (7.19)

with 𝑎0 localized near frequency 0 on the unit scale. Then

M𝑎 (𝑢) = ‖𝐴0 (𝐷)𝑢‖2
𝐿2 ,

and we need to bound this quantity uniformly in time,

M𝑎 (𝑢) � 𝑐2
0𝜖

2. (7.20)

For this, we use the density-flux relation (4.26) with 𝜉0 = 0, which yields

𝑑

𝑑𝑡
𝑀♯

𝑎 (𝑢) = 𝜕𝑥 (𝑃𝑎 (𝑢) + 𝑅4
𝑚,𝑎 (𝑢)) + 𝑅6

𝑚,𝑎 (𝑢),

where

𝑀♯
𝑎 (𝑢, �̄�) = 𝑀𝑎 (𝑢, �̄�) + 𝐵4

𝑚,𝑎 (𝑢).

To prove equation (7.20), we integrate the above density-flux relation in 𝑡, 𝑥 to obtain:
∫

𝑀𝑎 (𝑢) + 𝐵4
𝑚,𝑎 (𝑢) 𝑑𝑥

				 𝑇0 =
∫ 𝑇

0

∫
R

𝑅6
𝑚,𝑎 (𝑢) 𝑑𝑥𝑑𝑡. (7.21)

Finally, we can estimate the contributions of 𝐵4
𝑚,𝑎 and 𝑅6

𝑚,𝑎 using Lemma 7.1, respectively Lemma 7.3.
Remark 7.5. For later use, we observe that once the energy bounds (6.1) have been established, then
they can be used instead of the bootstrap assumption (6.5) in the proof of Lemma 7.1. This leads to a
stronger form of equations (7.1), (7.2), with the constant C removed:

‖𝐵4
𝑚,𝐴(𝑢)‖𝐿∞

𝑡 𝐿1
𝑥
+ ‖𝐵4

𝑝,𝐴(𝑢)‖𝐿∞
𝑡 𝐿1

𝑥
� 𝑐2

𝐴𝜖
4. (7.22)

7.3. The localized Interaction Morawetz

Our objective here is to prove the bounds (6.2) and (6.3) using our bootstrap assumptions. By the
Galilean invariance, it suffices to do this at 𝑘 = 0. This will be achieved using our Interaction Morawetz
identity (5.9) with 𝑣 = 𝑢 and with a localized at frequency 0, exactly as in equation (7.19). For such a,
we can simply set 𝜉0 = 0. It will suffice to estimate the quantities in equation (5.9) as follows:

|I𝑎 (𝑢, 𝑢) | � 𝜖4𝑐4
0, (7.23)

J4
𝑎 (𝑢, 𝑢) ≈ ‖𝜕𝑥 |𝐴0 (𝐷)𝑢 |2‖2

𝐿2
𝑥
, (7.24)

∫ 𝑇

0
J6
𝑎 (𝑢, 𝑢) 𝑑𝑡 ≈ ‖𝐴0(𝐷)

2
3 𝑢‖6

𝐿6
𝑡,𝑥

+𝑂 (𝜖5𝐶6𝑐4
0), (7.25)

∫ 𝑇

0
J8
𝑎 (𝑢, 𝑢) 𝑑𝑡 = 𝑂 (𝜖5𝐶6𝑐4

0), (7.26)

∫ 𝑇

0
K8

𝑎 (𝑢, 𝑢) 𝑑𝑡 = 𝑂 (𝜖5𝐶8𝑐4
0). (7.27)
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This allows us to estimate the localized Interaction Morawetz term, as well as the localized 𝐿6 norm
as in equations (6.2) and (6.3), provided that 𝜖 is small enough. There is nothing to do for J4

𝑎, so we
consider the remaining contributions:

7.3.1. The I𝒂 bound
The Interaction Morawetz functional I𝑎 is as in equation (5.8), with 𝜉0 = 0,

I𝑎 =
∬

𝑥>𝑦
𝑀♯

𝑎 (𝑢) (𝑥)𝑃♯
𝑎 (𝑣) (𝑦) − 𝑃♯

𝑎 (𝑢) (𝑥)𝑀♯
𝑎 (𝑣) (𝑦) 𝑑𝑥𝑑𝑦 (7.28)

with

𝑀♯
𝑎 (𝑢) = 𝑀𝑎 (𝑢) + 𝐵4

𝑚,𝑎 (𝑢), 𝑃♯
𝑎 (𝑢) = 𝑃𝑎 (𝑢) + 𝐵4

𝑝,𝑎 (𝑢).

For 𝐵4
𝑚,𝑎 and 𝐵4

𝑝,𝑎, we have the 𝐿∞
𝑡 𝐿

1
𝑥 bound (7.22). For 𝑀𝑎 (𝑢) and 𝑃𝑎 (𝑢), we have the straightforward

uniform in time bounds

‖𝑀𝑎 (𝑢)‖𝐿∞
𝑡 𝐿1

𝑥
+ ‖𝑃𝑎 (𝑢)‖𝐿∞

𝑡 𝐿1
𝑥
� 𝜖2𝑐2

𝑎 . (7.29)

Combining this with equation (7.22), the estimate (7.23) immediately follows.

7.3.2. The J6
𝒂 bound

This is a 6-linear expression whose expression we recall from equation (5.10),

J6
𝑎 = 2

∫
−(𝑃𝑎𝐵

4
𝑝,𝑎 + 𝑃𝑎𝑅

4
𝑚,𝑎) + (𝑀𝑎𝑅

4
𝑝,𝑎 + 𝐸𝑎𝐵

4
𝑚,𝑎) 𝑑𝑥, (7.30)

where again we have set 𝜉0 = 0.
We first discuss the symbol localization properties for J6

𝑎 with respect to the six entries at frequencies
𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5 and 𝑘6. Here, we a priori have two frequencies close to 0, say 𝑘5 = 𝑘6 = 0, namely
those arising from 𝑀𝑎, 𝑃𝑎 and 𝐸𝑎, all of which have smooth and bounded symbols. In the symbols
for 𝐵4

𝑎 and 𝑅4
𝑎, on the other hand, we have at least one frequency equal to zero, say 𝑘1 = 0, and the

near-diagonal property Δ4𝑘 = 0.
Next, we consider the size of the symbols, where we use Proposition 4.3. This gives the following

symbol bounds regardless of the p or m index:

|𝑏4
𝑎 | �

1
〈𝛿𝑘ℎ𝑖〉〈𝛿𝑘𝑚𝑒𝑑〉

, |𝑟4
𝑎 | �

1
〈𝛿𝑘𝑚𝑒𝑑〉

and similarly for their derivatives. We split the analysis in two cases, depending on whether all frequencies
are equal (i.e., 𝛿𝑘ℎ𝑖 � 1) or not.

A. The case of separated frequencies, 𝛿𝑘ℎ𝑖 � 1. To fix the notations, suppose that |𝑘2 | ≈ 𝛿𝑘𝑚𝑒𝑑 ≈ 𝑛1
and |𝑘3 | ≈ |𝑘4 | ≈ 𝛿𝑘ℎ𝑖 ≈ 𝑛2, where 𝑛1 ≤ 𝑛2 represent dyadic scales. Then we can apply two bilinear 𝐿2

bounds (6.7) for the frequency pairs (𝑘1 = 0, 𝑘4) and (𝑘2, 𝑘3) and simply estimate the 𝑘5 and 𝑘6 factors
in 𝐿∞ by Bernstein’s inequality. This yields the bound for the corresponding portion of 𝐽6

𝑎

				
∫ 𝑇

0
J6,𝑢𝑛𝑏𝑎𝑙
𝑎 (𝑢) 𝑑𝑡

				 � 𝜖6𝐶6𝑐3
0

∑
𝑘2 ,𝑘3 ,𝑘4

1
𝑛1𝑛2

𝑐𝑘2𝑐𝑘3𝑐𝑘4 .

Since 𝑘4 − 𝑘3 = 𝑘2, for fixed 𝑘2 we can apply the Cauchy–Schwartz inequality with respect to the 𝑘3
and 𝑘4 indices to obtain
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∫ 𝑇

0
J6,𝑢𝑛𝑏𝑎𝑙
𝑎 (𝑢) 𝑑𝑡

				 � 𝜖6𝐶6𝑐3
0

∑
|𝑘2 |≈𝑛1≤𝑛2

1
𝑛1𝑛2

𝑐𝑘2𝑐
2
𝑛2 .

Finally, using the maximal function property for 𝑐𝑘2 we arrive at
				
∫ 𝑇

0
J6,𝑢𝑛𝑏𝑎𝑙
𝑎 (𝑢) 𝑑𝑡

				 � 𝜖6𝐶6𝑐4
0

∑
𝑛2

log 𝑛2
𝑛2

𝑐2
𝑛2 ,

which suffices.
B. The case of equal frequencies, 𝛿𝑘ℎ𝑖 � 1. Here, we have |𝑘 𝑗 | � 1 for all j, and the symbol of 𝑗6

𝑎 is
smooth and bounded. The important feature here is the symbol of the 6-linear form 𝐽6

0 on the diagonal

{𝜉1 = 𝜉2 = 𝜉3 = 𝜉4 = 𝜉5 = 𝜉6},

which we would like to be positive. But we know this by equation (5.13), which shows that this equals

𝑗6
𝑎 (𝜉) = 𝑎4

0 (𝜉)𝑐(𝜉, 𝜉, 𝜉).

It follows that we can write the symbol 𝑗6
𝑎 in the form

𝑗6
𝑎 (𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5, 𝜉6) = 𝑏0(𝜉1)𝑏(𝜉2)𝑏(𝜉3)𝑏(𝜉4)𝑏(𝜉5)𝑏(𝜉6) + 𝑗6,𝑟𝑒𝑚

𝑎 (𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5, 𝜉6),

where 𝑏0 (𝜉) = 𝑎0 (𝜉)
2
3 𝑐(𝜉, 𝜉, 𝜉) 1

6 and 𝑗6,𝑟𝑒𝑚
0 vanishes when all 𝜉’s are equal. Then we can write 𝑗6,𝑟𝑒𝑚

0
as a linear combination of terms 𝜉𝑒𝑣𝑒𝑛 − 𝜉𝑜𝑑𝑑 with smooth coefficients. The first term yields the desired
𝐿6 norm,

J6
𝑎 (𝑢) = ‖𝐵0 (𝐷)𝑢‖6

𝐿6
𝑥
+ J6,𝑟𝑒𝑚

𝑎 .

On the other hand the contribution J6,𝑟𝑒𝑚
𝑎 of the second term be estimated using a bilinear 𝐿2 bound

(6.7), three 𝐿6 bounds (6.6) and one 𝐿∞ via Bernstein’s inequality,
				
∫ 𝑇

0
J6,𝑟𝑒𝑚
𝑎 (𝑢) 𝑑𝑡

				 � ‖𝐽6,𝑟𝑒𝑚
𝑎 (𝑢)‖𝐿1

𝑡,𝑥
� (𝐶𝜖2𝑐2

0)𝐶
3(𝜖𝑐0)2𝐶𝜖𝑐0 = 𝐶5𝜖5𝑐5

0,

which suffices.

7.3.3. The bound for J8
0

We recall that J8
0 has an expression of the form

J8
𝑎 =

∫
𝐵4
𝑚,𝑎 (𝑢)𝑅4

𝑝,𝑎 (𝑢) − 𝑅4
𝑚,𝑎 (𝑢)𝐵4

𝑝,𝑎 (𝑢) + 𝐵4
𝑚,𝑎 (𝑢)𝑅4

𝑝,𝑎 (𝑢) − 𝑅4
𝑚,𝑎 (𝑢)𝐵4

𝑝,𝑎 (𝑢) 𝑑𝑥; (7.31)

see equation (5.11) where we set 𝜉0 = 0. For this, we need to show that
				
∫ 𝑇

0
J8
𝑎 𝑑𝑡

				 � 𝜖6𝑐4
0.

This is an 8-linear term which has two factors, both of which are 4-linear terms with output at frequency
0 and one factor at frequency 0. But the symbols are not the same, that is, we have more decay in 𝐵4

𝑎

than in 𝑅4
𝑎.

As usual, we localize the entries of J8
𝑎 on the unit frequency scale and estimate each term separately.

We denote the four frequencies in 𝐵4
𝑎 by 𝑘1, 𝑘2, 𝑘3.𝑘4 with 𝑘1 = 0 and the four frequencies in 𝑅4

𝑎 by
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𝑙1, 𝑙2, 𝑙3, 𝑙4 with 𝑙1 = 0. These are constrained by the relations Δ4𝑘 = 0, Δ4𝑙 = 0. In addition, their
symbols are bounded, along with their derivatives, as follows:

|𝑏4
𝑎 | �

1
〈𝛿𝑘ℎ𝑖〉〈𝛿𝑘𝑚𝑒𝑑〉

, |𝑟4
𝑎 | �

1
〈𝛿𝑙𝑚𝑒𝑑〉

.

We consider several cases:
A) All eight frequencies are close to zero. Then we use six 𝐿6

𝑡 ,𝑥 Strichartz bounds as in equation
(6.6) and two 𝐿∞ bounds obtained from the energy via Bernstein’s inequality.

B) Some frequencies are away from zero. Denote by 𝑛1 ≤ 𝑛2 the dyadic separations for the 𝑘 𝑗

frequencies in 𝐵4, and by 𝑜1 ≤ 𝑜2 the dyadic separations for the 𝑙 𝑗 frequencies in 𝑅4. We consider two
cases depending on how 𝑛2 and 𝑜2 compare.

B1) 𝑛2 � 𝑜2. Then the 𝑅4 frequencies are in two 𝑜2 separated clusters with distance below 𝑜1 within
each cluster. We use two bilinear 𝐿2 bounds there, and 𝐿∞ bounds for all the 𝐵4

𝑎 factors to estimate
				
∫ 𝑇

0
J8
𝑎 (𝑢) 𝑑𝑡

				 � 𝜖8𝐶6𝑐2
0

∑ 1
𝑛1𝑛2

𝑐𝑘2𝑐𝑘3𝑐𝑘4

1
𝑜1𝑜2

𝑐𝑙2𝑐𝑙3𝑐𝑙4 .

Suppose 𝑘2 and 𝑙2 are the smaller frequencies in each group so that |𝑘2 | ≈ 𝑛1 and |𝑙2 | ≈ 𝑜1. For fixed
𝑘2, respectively 𝑙2, we apply the Cauchy–Schwarz inequality for the pairs (𝑘3, 𝑘4), respectively (𝑙3, 𝑙4).
We obtain 				

∫ 𝑇

0
J8
𝑎 (𝑢) 𝑑𝑡

				 � 𝜖8𝐶6𝑐2
0

∑ 1
𝑛1𝑛2

𝑐𝑘2𝑐
2
𝑛2

1
𝑜1𝑜2

𝑐𝑙2𝑐
2
𝑜2 .

Now, we use the maximal function to also fix 𝑘2 and 𝑙2,
				
∫ 𝑇

0
J8
𝑎 (𝑢) 𝑑𝑡

				 � 𝜖8𝐶6𝑐4
0

∑
𝑛2≤𝑜2

log 𝑛2
𝑛2

𝑐2
𝑛2

log 𝑜2
𝑜2

𝑐2
𝑜2 � 𝜖8𝐶6𝑐4

0.

B2) 𝑜2 � 𝑛2. Here, we proceed exactly as before but using instead two bilinear 𝐿2 bounds in 𝐵4
𝑎.

Following the same steps, we arrive at
				
∫ 𝑇

0
J8
𝑎 (𝑢) 𝑑𝑡

				 � 𝜖8𝐶6𝑐4
0

∑
𝑜2≤𝑛2

log 𝑛2

𝑛2
2

𝑐2
𝑛2 log 𝑜2𝑐

2
𝑜2 � 𝜖8𝐶6𝑐4

0.

Here, the denominators are unbalanced compared to the previous case but in a favourable way.

7.3.4. The bound for K8
𝒂

We recall that K8
𝑎 has the form

K8
𝑎 (𝑢) =

∬
𝑥>𝑦

𝑀♯
𝑎 (𝑢) (𝑥)𝑅6

𝑝,𝑎 (𝑢) (𝑦) + 𝑃♯
𝑎 (𝑢) (𝑦)𝑅6

𝑚,𝑎 (𝑢) (𝑥)

− 𝑀♯
𝑎 (𝑢) (𝑦)𝑅6

𝑝,𝑎 (𝑢) (𝑥) − 𝑃♯
𝑎 (𝑢) (𝑥)𝑅6

𝑚,𝑎 (𝑢) (𝑦) 𝑑𝑥𝑑𝑦.
(7.32)

The time integral of K8
𝑎 (𝑢) is estimated directly using the 𝐿1

𝑡 ,𝑥 bound for 𝑅6 in Lemma 7.3 and the
uniform 𝐿1

𝑥 bound for 𝑀♯ and 𝑃♯, provided by Lemma 7.1 together with the simpler bound (7.29).

7.4. Near parallel interactions

Here, we briefly discuss the bilinear 𝐿2 bound (6.4) in the case when the sets A and B are of size � 1
and at distance � 1. This can be viewed on one hand as a slight generalization of the argument in the
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previous subsection, where instead of 𝑣 = 𝑢 we take 𝑣 = 𝑢(· + 𝑥0). The only difference in the proof is
that, because of the translations, we can no longer use the defocusing property to control the sign of
the diagonal J6 contribution. However, this is not a problem because the localized 𝐿6 norm of 𝑢𝑘 has
already been estimated in the previous subsection.

7.5. The transversal bilinear 𝑳2 estimate

Here, we prove the bilinear 𝐿2 bound (6.4). This repeats the same analysis as before but using the
Interaction Morawetz functional associated to two separated frequency intervals A and B, of size at most
n and with n separation. Here, we no longer take 𝑣 = 𝑢, and instead we let 𝑣 = 𝑢(· + 𝑥0). The parameter
𝑥0 ∈ R is arbitrary and the estimates are uniform in 𝑥0.

Since 𝑥0 does not play any role in the analysis, we simply drop it from our notations. To further
simplify the notations in what follows, we take advantage of the Galilean invariance to translate the
problem in frequency so that 0 is roughly halfway between the intervals A and B. This will allow us to
set 𝜉0 = 0 in equation (5.14), and to assume that both A and B are within distance n from the origin. We
consider mass 𝑚𝑎, 𝑚𝑏 and momentum forms 𝑝𝑎, 𝑝𝑏 , where a and b are bump functions, smooth on the
unit scale, selecting the sets A and B.

The Interaction functional takes the form (see equation (5.14))

I𝐴𝐵 (𝑢, 𝑣) =
∬

𝑥>𝑦
𝑀♯

𝑎 (𝑢) (𝑥)𝑃♯
𝑏 (𝑣) (𝑦) − 𝑃♯

𝑎 (𝑢) (𝑥)𝑀♯
𝑏 (𝑣) (𝑦) 𝑑𝑥𝑑𝑦. (7.33)

Its time derivative is given (see equation (5.9)) by

𝑑

𝑑𝑡
I𝐴𝐵 = J4

𝐴𝐵 + J6
𝐴𝐵 + J8

𝐴𝐵 + K8
𝐴𝐵 . (7.34)

Following the same pattern as in the earlier case of the localized Interaction Morawetz case, we will
estimate each of these terms as follows:

|I𝐴𝐵 (𝑢, 𝑣) | � 𝑛𝜖4𝑐2
𝐴𝑐

2
𝐵, (7.35)

J4
𝐴𝐵 (𝑢, 𝑣) ≈ ‖𝜕𝑥 (𝑢𝐴�̄�𝐵)‖2

𝐿2
𝑥
, (7.36)

				
∫ 𝑇

0
J6
𝐴𝐵 𝑑𝑡

				 � 𝑛(𝜖6𝐶6 + 𝜖4)𝑐2
𝐴𝑐

2
𝐵, (7.37)

				
∫ 𝑇

0
J8
𝐴𝐵 𝑑𝑡

				 � 𝑛𝜖8𝐶8𝑐2
𝐴𝑐

2
𝐵, (7.38)

				
∫ 𝑇

0
K8

𝐴𝐵 𝑑𝑡

				 � 𝑛𝜖6𝐶8𝑐2
𝐴𝑐

2
𝐵 . (7.39)

7.5.1. The fixed time estimate for I𝑨𝑩
Here, we prove the bound (7.35), which is a consequence of fixed time 𝐿1 estimates for the energy
densities, namely

‖𝑀♯
𝑎 (𝑢)‖𝐿1

𝑥
� 𝜖2𝑐2

𝐴, ‖𝑃♯
𝑎 (𝑢)‖𝐿1

𝑥
� 𝑛𝜖2𝑐2

𝐴, (7.40)

and the similar estimates with a replaced by b and u replaced by v. This is obvious for the quadratic
part of the above densities, where we note that the n factor for the momentum bound arises due to the
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distance 𝑜(𝑛) between the set A and the origin. It remains to consider the quartic terms, where we can
use Lemma 7.1 together with Corollary 7.2.

7.5.2. The bound for J6
𝑨𝑩

Here, we prove the bound for J6
𝐴𝐵 in equation (7.37). We recall that J6

𝐴𝐵 has the form

J6
𝐴𝐵 =

∫
𝑀𝑎 (𝑢)𝑅4

𝑝,𝑏 (𝑣) − 𝑃𝑏 (𝑣)𝑅4
𝑚,𝑎 (𝑢) + 𝐵4

𝑚,𝑎 (𝑢)𝐸𝑏 (𝑣) − 𝐵4
𝑝,𝑏 (𝑣)𝑃𝑎 (𝑢) − symmetric 𝑑𝑥,

where the symmetric term is obtained by interchanging the indices a and b and also u and v. The symbols
for the M, P and E factors have size 1, n and 𝑛2, respectively, with a similar balance between the 𝐵4

𝑚 and
𝐵4
𝑝 terms, respectively the 𝑅4

𝑚 and 𝑅4
𝑝 terms. So it suffices to consider one 𝑅4 term and one 𝐵4 term.

A) The 𝐵4 term 𝐵4
𝑚,𝑎 (𝑢)𝐸𝑏 (𝑣). Here, we denote by 𝑙1, 𝑙2 the 𝐸𝑏 frequencies and by 𝑘1, 𝑘2, 𝑘3, 𝑘4 the

𝐵4
𝑚,𝑎 frequencies, where

Δ2𝑙 + Δ4𝑘 = 0.

The symbol for 𝐸𝑏 has size 𝑛2, with both frequencies in B. The symbol for 𝐵4
𝑚,𝑎 (𝑢) has size

(〈𝛿𝑘𝑚𝑒𝑑〉〈𝛿𝑘ℎ𝑖〉)−1 and support in the region, where |Δ4𝑘 | � 1+ 𝑘𝑚𝑒𝑑 , and at least one of the frequen-
cies is in A. We denote the dyadic sizes of 𝑘𝑚𝑒𝑑 and 𝑘ℎ𝑖 by 𝑛1 ≤ 𝑛2. Without any loss in generality, we
may assume that 𝑘1, 𝑘2, 𝑘3, 𝑘4 are chosen so that

𝑘1 ∈ 𝐴, |𝑘1 − 𝑘2 | ≈ 𝑛1, |𝑘1 − 𝑘3 | ≈ 𝑛2, |𝑘1 − 𝑘4 | ≈ 𝑛2, |𝑘3 − 𝑘4 | ≈ 𝑛1. (7.41)

Depending on the size of n relative to 𝑛1, 𝑛2, we consider two cases:
A1) 𝑛2 � 𝑛. Since A and B are n-separated, within the set of six frequencies we can find two pairs

of n -separated frequencies. Then we can apply twice the bilinear 𝐿2 bound and estimate the remaining
factors in 𝐿∞. We arrive at the frequency envelope bound

				
∫ 𝑇

0
J6
𝐴𝐵 𝑑𝑡

				 � 𝜖6𝐶6𝑛
∑ 1

𝑛1𝑛2
𝑐𝑙1𝑐𝑙2𝑐𝑘1𝑐𝑘2𝑐𝑘3𝑐𝑘4 ,

where the summation indices are restricted as discussed above. Then, applying the Cauchy–Schwarz
inequality for the pair (𝑙1, 𝑙2) we obtain

				
∫ 𝑇

0
J6
𝐴𝐵 𝑑𝑡

				 � 𝜖6𝐶6𝑛
∑ 1

𝑛1𝑛2

∑
|Δ4𝑘 |<𝑛1

𝑐𝑘1𝑐𝑘2𝑐𝑘3𝑐𝑘4

Δ𝑙=−Δ4𝑘∑
𝑙1 ,𝑙2∈𝐵

𝑐𝑙1𝑐𝑙2

� 𝜖6𝑛𝐶6𝑐2
𝐵

∑ 1
𝑛1𝑛2

∑
|Δ4𝑘 |<𝑛1

𝑐𝑘1𝑐𝑘2𝑐𝑘3𝑐𝑘4 .

.

Hence, it remains to estimate the last sum above as follows:

𝑆𝐴 :=
∑
𝑛1<𝑛2

1
𝑛1𝑛2

∑
𝐷

𝑐𝑘1𝑐𝑘2𝑐𝑘3𝑐𝑘4 � 𝑐2
𝐴, (7.42)

where the summation set D is described by equation (7.3). In this estimate, the parameter n no longer
appears. Recalling that 𝑘1 ∈ 𝐴, we fix 𝑘1 and split

𝑆𝐴 =
∑
𝑘1∈𝐴

𝑐𝑘1𝑆𝑘1 , 𝑆𝑘1 :=
∑
𝐷

∑
𝑛1<𝑛2

1
𝑛1𝑛2

∑
𝐷

𝑐𝑘2𝑐𝑘3𝑐𝑘4 .
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Then it suffices to show that

𝑆𝑘1 � 𝑐𝑘1 ,

which is exactly the bound (7.4) proved earlier.
A2) 𝑛2 � 𝑛. This time, within the set of four k frequencies we can find two pairs of 𝑛2 -separated

frequencies. Applying twice the bilinear 𝐿2 bound and estimating the remaining factors in 𝐿∞, we arrive
at 				

∫ 𝑇

0
J6
𝐴𝐵 𝑑𝑡

				 � 𝜖6𝐶6𝑛2
∑ 1

𝑛1𝑛
2
2
𝑐𝑙1𝑐𝑙2𝑐𝑘1𝑐𝑘2𝑐𝑘3𝑐𝑘4 ,

Applying the Cauchy–Schwarz inequality for the pair (𝑙1, 𝑙2) now yields
				
∫ 𝑇

0
J6
𝐴𝐵 𝑑𝑡

				 � 𝜖6𝐶6𝑛2𝑐2
𝐵

∑ 1
𝑛1𝑛

2
2

∑
|Δ4𝑘 |<𝑛

𝑐𝑘1𝑐𝑘2𝑐𝑘3𝑐𝑘4 .

Since 𝑛 � 𝑛2, we can conclude again using the bound (7.42) which was already proved in (A1).
B. The 𝑅4 terms are also all similar, so to fix the notations we will discuss the expression

𝑃𝑏 (𝑢)𝑅4
𝑚,𝑎 (𝑢). We denote again the six frequencies by 𝑙1, 𝑙2 for 𝑃𝑏 , respectively by 𝑘1, 𝑘2, 𝑘3, 𝑘4 for

𝐵4
𝑚,𝑎. The symbol of 𝑝𝐵 is supported in 𝐵 × 𝐵 and has size n. The symbol 𝑅4

𝑚,𝑎 has size

|𝑟4
𝑚,𝑎 ([𝑘]) | �

𝑛 + 𝛿𝑘ℎ𝑖

〈𝛿𝑘𝑚𝑒𝑑〉〈𝛿𝑘ℎ𝑖〉
.

The bound for the portion containing the n term in the denominator is identical to the one in case A, so
in the sequel we dismiss this term and simplify the above bound to

|𝑟4
𝑚,𝑎 ([𝑘]) | �

1
𝛿𝑘𝑚𝑒𝑑

.

Retaining the notations 𝑛1 ≤ 𝑛2 for the dyadic sizes of 𝛿𝑘𝑚𝑒𝑑 and 𝛿𝑘ℎ𝑖 , we may also restrict our analysis
to the case when 𝑛2 � 𝑛. This is similar to case A above. We get the better 𝑛−1

2 factor from the bilinear
𝐿2 bounds, which allows us to reduce the problem to proving exactly the bound (7.42), but for a larger
set of indices

𝑘1 ∈ 𝐴, |𝑘1 − 𝑘2 | � 𝑛1, |𝑘1 − 𝑘3 | ≈ 𝑛2, |𝑘1 − 𝑘4 | ≈ 𝑛2, |𝑘3 − 𝑘4 | � 𝑛1. (7.43)

But this still follows from equation (7.4).

7.5.3. The bound for J8
𝑨𝑩

Here, we prove the bound (7.38). We recall that J8
𝐴𝐵 has the form

J8
𝐴𝐵 =

∬
𝐵4
𝑚,𝑎 (𝑢)𝑅4

𝑝,𝑏 (𝑣) − 𝐵4
𝑝,𝑏 (𝑣)𝑅

4
𝑚,𝑎 (𝑢) + 𝐵4

𝑚,𝑏 (𝑣)𝑅
4
𝑝,𝑎 (𝑢) − 𝐵4

𝑝,𝑎 (𝑢)𝑅4
𝑚,𝑏 (𝑣) 𝑑𝑥𝑑𝑡.

All terms here are similar, so it suffices to consider the first one. To avoid a lengthy proof which would
largely repeat the arguments in the proof of equation (7.37), we make a simple observation, namely that
the proof of the bound for this term becomes a corollary of the previous bound if we can establish a
representation

𝐵4
𝑚,𝑎 (𝑢) ≈

∑
𝑙1 ,𝑙2∈𝐴

𝑢𝑙1𝑤𝑙2
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so that, for each k which is M-separated from 𝑙2, the function 𝑤𝑙2 satisfies a bilinear 𝐿2 bound of the form

‖𝑤𝑙2𝑢𝑘 ‖𝐿2
𝑡,𝑥
� 𝑀− 1

2𝐶4𝜖4𝑐𝑙2𝑐𝑘 . (7.44)

If that is true, then 𝑤𝑙2 would play exactly the role of 𝑢𝑙2 in the J6
𝐴𝐵 estimate.

Indeed, we may represent

𝐵4
𝑚,𝑎 (𝑢) =

∑
𝑙1 ,𝑙2∈𝐴

∑
𝑘2−𝑘3+𝑘4=𝑙2

𝐵4
𝑚,𝑎 (𝑢𝑙1 , 𝑢𝑘2 , 𝑢𝑘3 , 𝑢𝑘4).

Here, the symbol for 𝐵4
𝑚,𝑎 and its derivatives have size �

1
𝑛1𝑛2

in a unit region around frequency

(𝑙1, 𝑘2, 𝑘3, 𝑘4). Hence, we may separate variables and represent 𝐵4
𝑚,𝑎 (𝑢𝑙1 , 𝑢𝑘2 , 𝑢𝑘3 , 𝑢𝑘4) as the sum of a

rapidly convergent series

𝐵4
𝑚,𝑎 (𝑢𝑙1 , 𝑢𝑘2 , 𝑢𝑘3 , 𝑢𝑘4) =

∑
𝑗

𝐷 𝑗𝑢𝑙1𝐵
4, 𝑗
𝑚,𝑎 (𝑢𝑘2 , 𝑢𝑘3 , 𝑢𝑘4) :=

∑
𝐷 𝑗𝑢𝑙1𝑤

𝑗
𝑙2
,

where the symbols for 𝐷 𝑗 , respectively 𝐵
4, 𝑗
𝑚,𝑎 have unit size, respectively � 1

𝑛1𝑛2
with rapid decay in j.

Then it remains to prove the estimate (7.44) for the functions 𝑤 𝑗
𝑙2

.
Indeed, at least one of the k’s must be M-separated from k, so using a bilinear 𝐿2 bound we have

‖𝑤 𝑗
𝑙2
𝑢𝑘 ‖𝐿2 � 𝑀− 1

2 𝜖4𝐶4𝑐𝑘 𝑗
−10

∑
𝑘2−𝑘3+𝑘4=𝑙2

1
𝑛1𝑛2

𝑐𝑘2𝑐𝑘3𝑐𝑘4 .

It remains to estimate the last sum. Suppose 𝑘2 is within distance 𝑛1 from 𝑙2, then we use the maximal
function to estimate

∑
𝑘2−𝑘3+𝑘4=𝑙2

1
𝑛1𝑛2

𝑐𝑘2𝑐𝑘3𝑐𝑘4 � 𝑐𝑙2 sup
𝑘2

∑
𝑘2−𝑘3+𝑘4=𝑙2

1
𝑛2
𝑐𝑘3𝑐𝑘4 � 𝑐𝑙2 ,

as needed.

7.5.4. The bound for K8
𝑨𝑩

This is immediate by combining the bound (7.40) with the 𝑅6 bounds in Lemma 7.3 and Corollary 7.4.

8. Global bilinear and Strichartz estimates

Our objective in this last section is to supplement the unit frequency scale bilinear 𝐿2 and Strichartz
estimates with their more global counterparts:

Theorem 6. The global small data solutions u for equation (1.3) in Theorem 5 satisfy the following
bounds:

• Strichartz estimate:

‖𝑢‖6
𝐿6
𝑡,𝑥
� 𝜖4, (8.1)

• Bilinear 𝐿2 bound:

‖𝜕𝑥 |𝑢 |2‖2

𝐿2
𝑡 𝐻

− 1
2

𝑥

� 𝜖4. (8.2)
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Proof. We successively consider the two estimates:
A. The global 𝐿6 bound. We prove the global 𝐿6 bound using the previous localized estimates. We

aim to estimate the integral

𝐼 =
∬
R×R

|𝑢 |6 𝑑𝑥𝑑𝑡

by taking a suitable frequency decomposition. Given six unit frequency regions indexed by 𝑘1, 𝑘2, 𝑘3,
𝑘4, 𝑘5 and 𝑘6, they can only contribute to the above integral iff Δ6𝑘 = 0. We divide them as follows:

1. The diagonal case |𝑘𝑖 − 𝑘 𝑗 | � 1.
2. The nondiagonal case. we index these frequencies by the dyadic size 𝑛 � 1 of the set of frequencies,

that is, so that

max |𝑘𝑖 − 𝑘 𝑗 | ≈ 𝑛.

Within this range, we organize frequencies in intervals 𝐴1, · · · 𝐴6 of size 𝑛/100. Of these intervals,
at least two pairs must be n-separated in order to contribute to the above integral.

Based on this, we split I as

𝐼 = 𝐼0 +
∑
𝑛

𝐼𝑛,

where

𝐼0 =
∑

|𝑘𝑖−𝑘 𝑗 |�1

∬
𝑢𝑘1 �̄�𝑘2𝑢𝑘3 �̄�𝑘4𝑢𝑘5 �̄�𝑘6 𝑑𝑥𝑑𝑡,

and

𝐼𝑛 =
∑∬

𝑢𝐴1 �̄�𝐴2𝑢𝐴3 �̄�𝐴4𝑢𝐴5 �̄�𝐴6 𝑑𝑥𝑑𝑡,

where the last sum is indexed over the sets 𝐴 𝑗 of size 𝑛/100, with largest distance ≈ 𝑛 and at least two
distances ≥ 𝑛/10.

For the diagonal part, we use the 𝐿6 bound (6.2) to estimate

|𝐼0 | � 𝜖4
∑
𝑘

𝑐4
𝑘 � 𝜖4,

which suffices.
For the off-diagonal part we apply two bilinear 𝐿2 bounds for the separated intervals (gaining 𝑛− 1

2 each
time) and two 𝐿∞ bounds via Bernstein’s inequality (losing 𝑛

1
2 each time) to bound the corresponding

term by

|𝐼𝑛 | � 𝜖6
∑

𝑐𝐴1𝑐𝐴2𝑐𝐴3𝑐𝐴4𝑐𝐴5𝑐𝐴6 .

We retain only the separated parts and apply the Cauchy–Schwarz inequality to estimate

|𝐼𝑛 | � 𝜖6
∑

𝑑 (𝐴1 ,𝐴2)>𝑛/10
𝑐2
𝐴1
𝑐2
𝐴2
� 𝜖6

∑
|𝑘1−𝑘2 |≈𝑛

𝑐2
𝑘1
𝑐2
𝑘2
.
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Then summation over n yields
∑
𝑛

|𝐼𝑛 | � 𝜖6
∑
𝑘1 ,𝑘2

𝑐2
𝑘1
𝑐2
𝑘2
� 𝜖6,

which again suffices.
B. The global bilinear 𝐿2 bound. Here, we prove the estimate (8.2). Expanding relative to the dyadic

difference n of the two input frequencies, we have

𝜕𝑥 (|𝑢 |2) = 𝜕𝑥𝑤0 +
∑
𝑛

𝜕𝑥𝑤𝑛,

where

𝑤0 =
∑

|𝑘1−𝑘2 |�1
𝑢𝑘1 �̄�𝑘2 ,

𝑤𝑛 =
𝑑 (𝐴1 ,𝐴2)≈𝑛∑
|𝐴1 |, |𝐴2 |≈𝑛

𝑢𝐴1 �̄�𝐴2 .

We use equation (6.3) to estimate 𝑤0 as

‖𝜕𝑥𝑤0‖2
𝐿2
𝑡,𝑥
� 𝜖4

∑
𝑘

𝑐4
𝑘 � 𝜖4.

On the other hand, for 𝑤𝑛 we get

‖𝜕𝑥𝑤𝑛‖2

𝐿2
𝑡 𝐻

− 1
2

𝑥

� 𝑛

𝑑 (𝐴1 ,𝐴2)≈𝑛∑
|𝐴1 |, |𝐴2 |≈𝑛

𝑑 (𝐴3 ,𝐴4)≈𝑛∑
|𝐴3 |, |𝐴4 |≈𝑛

∫
𝑢𝐴1 �̄�𝐴2𝑢𝐴3 �̄�𝐴4 𝑑𝑥.

Denoting by 𝑛0 ≥ 𝑛 the largest distance between two 𝐴 𝑗 ’s, we have two pairs of intervals with separation
𝑂 (𝑛0); therefore, applying twice the bilinear 𝐿2 bound we obtain

‖𝜕𝑥𝑤𝑛‖2
𝐻− 1

2
� 𝜖4

∑
𝑛0≥𝑛

𝑛

𝑛0

𝑑 (𝐴1 ,𝐴2)≈𝑛∑
|𝐴1 |, |𝐴2 |≈𝑛

𝑑 (𝐴3 ,𝐴4)≈𝑛∑
|𝐴3 |, |𝐴4 |≈𝑛

𝑐𝐴1𝑐𝐴2𝑐𝐴3𝑐𝐴4 .

We separate the cases when 𝑛0 ≈ 𝑛 and 𝑛0 � 𝑛. In the first, diagonal case we simply bound the
corresponding part of the sum by

𝜖4
𝑑 (𝐴1 ,𝐴2)≈𝑛∑
|𝐴1 |, |𝐴2 |≈𝑛

𝑐2
𝐴1
𝑐2
𝐴2
.

In the off-diagonal case, we apply the Cauchy–Schwarz inequality separately for the pairs 𝐴1, 𝐴2 and
𝐴3, 𝐴4 to obtain a bound

𝜖4 𝑛

𝑛0

𝑑 (𝐵1 ,𝐵2)≈𝑛0∑
|𝐵1 |, |𝐵2 |≈𝑛0

𝑐2
𝐵1
𝑐2
𝐵2
.
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Incorporating the first case into the second, we arrive at

‖𝜕𝑥𝑤𝑛‖2

𝐿2
𝑡 𝐻

− 1
2

𝑥

� 𝜖4
∑
𝑛0≥𝑛

𝑛

𝑛0

𝑑 (𝐵1 ,𝐵2)≈𝑛0∑
|𝐵1 |, |𝐵2 |≈𝑛0

𝑐2
𝐵1
𝑐2
𝐵2
.

Finally, using orthogonality in frequency we have

‖
∑
𝑛

𝜕𝑥𝑤𝑛‖2

𝐿2
𝑡 𝐻

− 1
2

𝑥

� 𝜖4
∑
𝑛

∑
𝑛0≥𝑛

𝑛

𝑛0

𝑑 (𝐵1 ,𝐵2)≈𝑛0∑
|𝐵1 |, |𝐵2 |≈𝑛0

𝑐2
𝐵1
𝑐2
𝐵2

� 𝜖4
∑
𝑛0

𝑑 (𝐵1 ,𝐵2)≈𝑛0∑
|𝐵1 |, |𝐵2 |≈𝑛0

𝑐2
𝐵1
𝑐2
𝐵2

� 𝜖4.

The proof of the theorem is concluded. �
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