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§ 1. Introduction.

We suppose that f(t) is integrable in the Lebesgue sense in (-IT, -n)t

and is periodic with period 2TT. We denote its Fourier series by
CO oo

\a0 + £ (an cos nt + bn sin nt) = 2 An(t). (1.1)
n = 1 n= 0

Then the allied series is

2 (&„ cos n« — an sin n<) = 2 £„(<). (1.2)
n = ) n = 1

We write

M) = *{/(* + *)+/(*-*)}, 0(0 = *{/(* + 0 - / (* -« )} , (1-3}
so that

where An = ^n(x),

and 0(0 ~ S£n sin n«, (1.5>

where Bn = £n(a;).

The series obtained by differentiating the allied series r times at
t = x is

n (reven)
(1.6)

«,Mn (r odd).

In a recent paperx Bosanquet has proved the following theorem.

THEOREM A. Iff(t)eL in (— n, 77), a necessary and sufficient con-
dition for the aeries (1.6) to be summable (C, a + r) <o sum «, where
a 3; 0 and r is a positive integer, is that constants a,, should exist such

1 Referred to as Dr F<S in the list of references.
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164 R. MOHANTY

that (i) the odd function g(t) is integrable (CL) in (0, -n) and its allied
series svmmable (C, a) att = 0, (ii) g{t)/t is integrable (CL) in (0, n) and1

77 J 0 t

where, for 0 <t < TT,

Analogous results concerning the (C) summability of the r-th
derived Fourier series and the | C | summability of the first derived
Fourier series have also been given by Bosanquet in DrFS and
| DFS | respectively. The object of the present paper is to obtain

the | C | analogue of Theorem A.
In Theorem 1 we give a general result concerning the summability

\ C, a + r | of the r-th derived allied series, where a > 1. In
Theorem 2 f(t) is restricted to be a function of bounded variation,
and a result is obtained for a > 0.

§ 2. Notation.

We write

5-= S Al-jip, sl=Sa
nlA

a
n (a>-l) (2.1)

M = 0 ' '

for the n-th Cesaro partial sum and mean of order a of a series 2wn,

where A ; = (n + a).

The series T,un is said to be summable (C, a) to s if s*->s, and
to be summable \ C, a \ to s if, in addition, S | As" | < QO .

We write k"(n, t) + ik"^, t) for the rc-th Cesaro mean of order a
of the series \ + Heint, and require the inequalities2

Yt I k°(n' '> .g; Ank-°t-a-1 +• - 1 / - I - 2
(2.2)

1 The integral in (1.7) is convergent, and taken in the {CL) sense at the origin.
* Cf. DrFS, 64, | FSa | , 519, Obrechkoff and Zygmund.
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ABSOLUTE CESARO SXJMMABILITY OF A FOURIER SERIES 165

and

We write

ya(t)=\ (1-U)"-1 sin tudu {a>0), (2.4)
Jo

and require the inequalities 1

Here and elsewhere A«n = «„ — un + 1, and 4 denotes a positive
number, independent of the variables but not necessarily the same at
each occurrence.

The Cesaro-Lebesgue integral. Suppose that g(t)eL in (e, a) for
every 0 < e < a (a fixed). If

exists, g(t) is said to be integrable C0L in (0,- a), with the limit
(2.6) as the value of the integral. If A is a positive integer and

ra

(i) G(t) = g(u)du is integrable C^-iL in (0, a),

(c - u)k ~ xG{u)du (2.7)

exists, then g(t) is said to be integrable C\L in (0, a), with the limit
(2.7) as the value of the integral.

We write

G^t)^^^{t-uy-'g{u)du (a>0)

, (2.8)
G0(t) = g(t),

a n d s i m i l a r n o t a t i o n i s e m p l o y e d w i t h £ , x> • • •> ^ A > - ^ A > . . . i n p l a c e
of g, Gx.

The absolute Cesaro-Lebesgue integral. A function g(t) is said to
be integrable | C,L \ in (0, a), where A is a non-negative integer, if (i)

Cf. DrFS, 64, and DFS, 273.
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166 R. MOHANTY

it is integrable CZL in (0, a), (ii) t~xGx + 1(t) is of bounded variation in
the interval 0 < t ^ a. The common value of the C}L and | CXL |
integrals is then lim A! t~*GK + i(t).

<-> +o '

as t-> -f 0 we write g(t)~stp(C, A). If, in addition, t~x~pOx(t) is of
bounded variation in an interval 0 < l ^ a w e write g{t)~stp \ C, A | .

Properties of the (CL) and | CL | integrals will be found in DFS,
DrFS, CL, and | DFS | . '

§ 3. Preliminary lemmas.

In Lemmas 1 and 2 we shall suppose that g(t)eL in every interval
(8, A), for 0 < S < A < oo , and write, for t > 0,

^ d « (a>0), (3.1)

the integral being assumed to be convergent. I t is knownx that if
i + XL in (0, a), then

(i) at)eC\L in (0, a),

(ii) for a ^ 0, t > 0,

LEMMA 1. / / gf(<)e | CA + 1L | ire (0, a), where A is a non-negative
integer, then |(<)e | CjL | in (0, a).

We first prove that (̂<)e \ C^ + 1L \ in (0, a). Since g{t)eCK + 1L, it
follows, by (i), that £(t)eCxL, and hence (̂<)eCA + \L. Thus in order to
prove that £(t)e \ CX + 1L \ we must prove that ^ ~ x ~ 1 S ^ + 2(0 is of
bounded variation in the interval 0 < t ^ a.

We have, by (3.2),2

1 CL, Theorems 20 and 21.

2 Defining i - * - ' 2\ + 2(0 and t~!;i ~ !(?x + 2(0 as zero at t = 0. Since <7(t) and
are integrable C\ + iL these functions are then continuous at the origin.
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+ A

< CO

since g(t)e \ Gi + 1L\. •

We next prove that t£(t) = o(l) | C, A+l | as<-» + 0. Integrating
by parts A + 2 times, we have, as in the proof of Theorem 20 of CL,

r
J « tt

Since g(t)e \ Ox + XL I in (0, a), it followsJ that Gp(0 = o{f ~x) | C, A+2-p |,
for p = 1, 2 A + 2, and hence 2 that O^ftf-1 =o(l) | C, A+2-p | .
Also the integral in (3.3) is o(l) as t -> + 0, as in the proof of Theorem
20 of CL, and we have just proved that it is of bounded variation in
0 < t<L a. It follows that all the terms in (3.3) are o(l) | C, A + 1 | ,
i.e. that t£(t) = o( 1)' | C, A + 1 | .

Finally we deduce that g(t)eCxL. Writing x(0 = *£(<)» w e h a v e 8

1 | DFS I , 18. DFS | , Lemma 1. 3 CL, 55.
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Xx + 1(O=<Ei + 1(O-(X+l)3x+2V)- (3.4)
Hence

> x 2 x + 1 ( 0 = t-t-iXx+iit) + (A + l)«-*- i3 i + ,(O. (3.5)

But we have just proved that the two expressions on the right of (3.5)
are of bounded variation in 0<t^a, and hence so is <~XHA + 1(<).
We have also observed that g(t)eCKL, and thus it follows that

\ChL\ .

LEMMA 2. If g(t)e | CL | in (0, a), A is a non-negative integer and
a > 0, ?Aew a necessary and svfficient condition that- g(t)/Fe \ CKL \ in
(0, a) and - ' •

r^du-J, (3.6)
Jo W ' K '

is that GA{t)/tx + " should be integrable L in (0, a), and

Necessity. Suppose that g(t)ll"t | Cxi | and that (3.6) holds, i.e. that
£(t)/t°-i-->l | C, A | as <-» + 0. It follows1 that f(O~Z<"-1 | C, A |
as < -* + 0, i.e. that

E,!0 ^ T(a) M 0 0 ) . ( 8 8 )

which, by (3.2), is (3.7).

Sufficiency. Since g(t)e \ CL \ in (0, a), by Lemma 1, the
sufficiency is established by reversing the argument.

LEMMA 3. / / k is a non-negative integer, and Zwn is summablt
| C, k | to s, then

2<x r°° l - 7 / « \
— - lim z,unyv\nu)pn du = s (3.9)

7T J 0 U p—>1 - 0

for a > k, where the integral in (3.9) is an absolutely convergent Lebesgue
integral.

We have "

J | DFS | , Lemma 1. . ..

4 Cf. DrFS, Lemma 4. We write s i , = 0 .
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S(t) = lim 'Lunya(nt)pn

1 - 0

where J(n, I) = S # A * + V X ) - (3.10)

By the analogue for ordinary Cesaro summability, (3.9) certainly
holds with the integral interpreted as a C0L integral in (0, a). It
will therefore be sufficient to prove that

J o r 1 I S{t) I d« < co . (3.11)
We have

f V 1 I S(t) \dtg\ I-1!. I A / . J(n, t) I dt
Jo Jo " *

= S | A 5 " _ 1 I f " t - i I J(n, t) \dt.
J 0

Now
lAnk+'

For

v = 0

and hence

J(n, t) = J(n, t) - J(0, t) = - " S ^* A* +
v= 0

On

for

the
00

S
v = n

O >

other hand,

A.

v = 1

we have

- o = ^ : A-
= 0(n*)

cc

v = n-f 1
= 0(n~

{0(n-

CO

+ L
>- = n + 1
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It follows from (3.12) that , for n = 0,

I J(n, t) \ dt=\n~1 O(nk + Hk)dt + f" , {O(n-H~z)
J 0 J n " 1JO

= 0(1) + 0(1)
for a > k.

Thus < o o .

LEMMA 4. / / ,a(0e | CkL \ in (0, 77), where k is a non-negative
integer, and if

an + ipn=\'g(t)ei"'dt, (3.13)
J 0

<A.en an and j3n are o(l) | C, a | as w -> 00 , for a > k + 1.

Writing a^ , c°(n, t) for the n-th Cesaro means of order a of the
sequences an and cos nt respectively, we have1

a'n = J * g(t)C(n, t)dt

k + 1(t)(-j C(n,t)dt

+(-1)*-+] r d{t -kG1;+1{t)} r v (i-\l+V(», »)dt;r
Jo J« \ o'*'/

where <"''"G!i + i(0 ^s defined as zero for t = 0. Hence it follows that

S I A a' I ^ S ! Gp + 1(rr) \ S | tJ?-X tfifl, t) \ «. ,
" P = 0 \o* /

+ f I ̂ C ' ^ + iW} I S f V*Af^Y + 1c'(n,t;)di;|. (3.14)
Jo J « \ o w / • . I

Cf. DrFS, Lemma 9.
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Now

4 Y «-(».«>
v* A ( —

J o \vv

•g,Ann

(n, v)dv

k + i
—) c"(n, v)dv An"~'tk-' " 3 < - 2

—) + C{n,v)dv\<LAnk

8 / !
An~

(3.15)

(3.16)

(3.17)

(3.18)

and

SJ:
The case p = 0 of (3.15) is given in | DF8 | , and the general case is
obtained similarly by use of (2.2).1 We obtain (3.16) immediately
from (3.15) i, while (3.17) follows from (3.15) ii after integration by
parts, and (3.18) follows from (3.15) after repeated integrations by
parts.

The first term on the right of (3.14) is

S

Also f \d{t-kGk + 1{t)} | <eo,
Jo

since g(t)e \ CkL \ . It will therefore be sufficient to prove that

J(t) = f" / 9 V + 1

vk A I —} c"(n, v)dv

is bounded in 0 ^ t ^ IT.
Disposing of the case t = 0 by (3.18), we write, for 0 < t ^ -n,

J(t) = S + S = S, + 22,

Thus, by (3.16) and (3.18),

St = S

= 0(1)

for a > k + 1, and, by (3.17),
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Ss = S {O(nk-alk-° + 1) + O{n-H-2)}
n>t—1

= 0(1)

for a > k -f- 1.

This completes the proof of the result for an; that for /3n is
similar, (2.3) taking the place of (2.2).

§ 4. The main theorem.

THEOREM 1. / / f(t) is integrable L in (—TT, V) and periodic with
period 2TT, a necessary and sufficient condition that the series (1.6)
should be summable \ C, a + r \ to the sum s, where a > 1 and, r is a
positive integer, is that constants av should exist such that (i) the odd
function g(t) is integrable | CL \ in (0, n) and its allied series summable

| C, a | at t = 0, (ii) g (t)/t is integrable | CL \ in (0, n) and (1.7) holds,1

where g{t) is defined by (1.8).

The proof depends on the following lemmas.

LEMMA 5. If f(t)eL and the series (1.6) is summable | C \ to s,
then there exist constants av such that (i) g(t)/t e \ CL \ in (0, TT), where
g(t) is given by (1.8), (ii) (1.7) is satisfied.

The proof is similar to that of Lemma 10 of DrF8, but with
Lemmas 2 and 3 of the present paper taking the place of Lemmas 5
and 8 respectively of DrFS.

LEMMA 6. / / g(t) is odd and g(t)/t e | CL | in (0, TT), then
g(t) e | CL | in (0, TT) and its allied series is summable \ C \ at t = 0.

The proof is similar to that of the sufficiency part of Lemma 11
of DrFS, but with Lemma 2 of | DF8 \ and Lemma 4 of the present
paper taking the place of Lemmas 2 and 9 respectively of DrFS, and
with Lemma 3 of DrFS replaced by its | C \ analogue.2

LEMMA 7. / / constants av exist such that the odd function g(t),
defined by (1.8) in (0, TT), is integrable | CL | in (0, TT), then constants fiv

1 The integral in (1.7) being convergent and existing as a | CL | integral at the
origin.

2 The proof of this is similar to that of Lemma 2 of | DFS | .
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exist such that the odd function G(t) is integrable \ CL\ in (0, TI),where,
for 0 < t < 77,

G(t)

(r even)

(4.1)

i/ <&e allied series of either g(t) or G(t) is summable | C, a | at t = 0,
where a > 0, 2Aen so is tffta< o/ <Ae other.

The proof is similar to that of Lemma 12 of DrFS, but with
Lemma 2 of | Z).F$ | and the case k = 0 of Lemma 4 of the present
paper taking the place of Lemma 2 of DrFS and the Riemann-
Lebesgue theorem respectively.

LEMMA 8. If (i) G(t)e \ CL | in (0, TT), (ii)W?(<)eL in (0, TT),

r is a positive integer, and if

= -["G{t) sin ptdt, (4.2)
17 Jo

if one of the series SjS(n) and S/?(n — |r) is summable \ C, a \ ,
where a > 1, so is the other.

The proof is similar to that of Lemma 13 of DrFS, but with
Lemma 2 of | DFS | and the case k = 0 of Lemma 4 of the present
paper taking the place of Lemma 2 of DrFS and the. Riemann-
Lebesgue theorem respectively.

LEMMA 9. / / G(t) is defined by (4.1) and /3(/x) by (4.2), then

nr Ar 3̂(n — \r) = r\(d/dx)r (bn cos nx — an sin war) /or n^.r.
This is Lemma 14 of DrFS.

LEMMA 10. / / "Lun is summable \ C \ , then a necessary and
sufficient condition for Snr Arun to be summable | C, a + r \ , where
a > — 1 and r is a positive integer, is that 2wn be summable \ C, a \ .

The proof is similar to that of Lemma 14 of DrFS.1

Proof of Theorem 1. Necessity. Suppose that the series (1.6) is
summable | C, a + r \ to sum s, where a > 1. Then, by Lemma 5,
constants av exist such that g{t)/t e \ CL \ in (t), 77), where g(t) is given

1 The case r = 1 was given in | DFS \ (Lemma 8). See also Chow, and Bosanquefc
and Chow.
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by (1.8), and (1.7) holds. It follows, by Lemma 6, that g(t)e | CL |
in (0, 77) and its allied series is summable | C | at t — 0.

Now, by Lemma 7, g(t) defines a function G(t), given by (4.1),
which is integrable | CL | in (0, 77), and its allied series is also summ-
able I C I at t = 0, i.e. £/?(«.) is summable | C \ , where fi(n) is defined
by (4-2). It follows, by Lemma 8, that E/}(% — \r) is summable | C | .
Now, by Lemma 9, our hypothesis is that 2»r Arj8(» — \r) is summable
I C, a+r I . Therefore, by the necessity part of Lemma 10, S/J(n—£r)
is summable | C, a \ , and, by Lemma 8, so also is 2/?(n), i.e. the
allied series of G(t) is summable | C, a | at t = 0. It follows, by
Lemma 7, that the allied series of g(t) is summable | C, a \ at t = 0.

Thus the conditions are necessary.
Sufficiency. Suppose that constants av exist* such that the odd

function g(t), given by (1.8), is integrable | CL \ in (0, TT), that its
allied series is summable | C, a | at t = 0, where a> 1, and that (1.7)
holds, the function g(t)/t being integrable | CL \ in (0, n). . Then g(t)
defines G(t), given by (4.1), which is also integrable | CL | , and its
allied series is summable | C,a I at t = 0, i.e. 2/?(raj is summable
I C, a I . Then by Lemma 8, 2/3(n - \r) is summable | C, a \ and,
by Lemma 9 and the sufficiency part of Lemma 10, the series (1.6) is
summable \ C, a + r \ . Finally, by (1.7) and the necessity part of
the theorem, the sum is s.

This completes the proof of the theorem.

§ 5. Additional result.
THBOKEM 2. If the function j(t) in Theorem 1 is of bounded varia-

tion in (— n, TT), then the result of Theorem 1 holds for a > 0.
The proof of Theorem 2 is similar to that of Theorem 1 except

that at the points in the proof where we used the case ft = 0 of
Lemma 4 we now use the following lemma.

LEMMA 11. / / g(t) is of bounded variation in (0, n), and an, /?„
are given by (3.13),. then an and )3n are o(l) \ C, a \ as n -> 00 , for
o > 0.

To prove the result for an we suppose, as we may, that g(t) is
even and let

2
g(t) 2an cos nt.

77

Since g(t) is of bounded variation in (0, n) it follows from a theorem
of Bosanquet1 that San is summable | C, a | , for o > 0, and hence

FS0 I , Theorem 1.
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To prove the result for /?„ we write

Pn~Pn-i= \'g(t){Binnt-B\n(n-l)t}dt
J 0

= 1 g(t) sin t cos nt dt + g(t) (1 — cos t) sin nt dt
Jo Jo

= 7n + Sn.
Then, by the same theorem of Bosanquet and a theorem of Bosanquet
and Hyslop,1 Syn and SSn are both summable | C, a \ , for a > 0. Since
j3n = o (1), by the Riemann-Lebesgue theorem, the result follows.

Finally I should like to express my thanks to Dr L. S. Bosanquet
for his suggestions and criticisms.

1 Bosanquet and Hyslop, Theorem, 4.
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