ON THE NILPOTENT RANKS OF CERTAIN SEMIGROUPS OF
TRANSFORMATIONS
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1. Introduction. Let P, be the semigroup of all partial transformations on the set
X,={1,...,n}. As usual, we shall say that an element « in P, is of type (k,r) or
belongs to the set [k, r] if |[dom «| =k and |im «| =r. The completion a* of an element
a€[n—1,n—1]is an element in [n, n] defined by

*=7, xa* = xa otherwise,

where {i} = X,\dom & and {j} = X,\im a.

For n even, the subsemigroup SI, of P, consisting of all strictly partial one~one
transformations was proved to be nilpotent-generated by Gomes and Howie [2]. If n is
odd, they showed that the nilpotents in SI,, generate SL,\W, _,, where W,,_, consists of all
o €[n—1,n—1} whose completions are odd permutations.

Simultaneously and independently, Sullivan [7] showed that the subsemigroup SP,, of P,
consisting of all strictly partial transformations of X,, is nilpotent-generated if n is even. If
n is odd, the nilpotents in SP, generate SP,\W, _,.

The rank of a semigroup § is the cardinality of any subset A of minimal order in S such
that (A) = S. If the generating set A consists of nilpotent elements only, then we shall
refer to the cardinality of A as the nilpotent rank of S. Since one of the semigroups we will
be considering is an inverse semigroup, we would like to clarify the notion of a generating
set in an inverse semigroup. Given a subset A in an inverse semigroup §, we shall always
want to consider the smallest inverse subsemigroup containing A. In effect this is the set
of all finite products of elements of A and their inverses. Following [3], we shall use the
notation ((A)) for this inverse subsemigroup. Accordingly, by the rank of an inverse
semigroup S we shall mean the cardinality of any subset A of minimal order in S such that
((A))=5.

Let N and M be the sets of all nilpotent elements in SI, and SP, respectively. In [3],
Gomes and Howie proved that the rank and the nilpotent rank of ((N)) are both equal
to n + 1 for all n, and in [1], Garba showed that the rank and the nilpotent rank of (M)
are both equal to n +2 for all n. In Section 2 we generalize the results of Gomes and
Howie [3] (in line with Howie and McFadden [6]) by showing that if 1 =r=n —2 then
the rank and the nilpotent rank of the inverse semigroup

i

Un,ry={aeSl,:|ima|=r}

are both equal to () + 1. In Section 3 we generalize the results of Garba [1] by showing
that if 1 =<r =n —2 then the rank and the nilpotent rank of the semigroup

V(n,r)={aeSP,:|ima|=r}

are both equal to (r +1)S(n, r + 1), where S(n, r + 1) is the Stirling number of the second
kind, defined by

S(n,1)=8(n,n)=1, S(n,N=8Sn—-1L,r=1D+rS(n—-1,r).

For standard terms in semigroup theory see [4]. In all that follows, we consider n = 3.
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2. One-one partial transformations.
Lemma 2.1. For all r =n —2, we have
J,e(NNJ)?,
where J, = {a € SL,:|im «| = r} is the $-class of all elements in Sl,, with rank r.
Proof. The result is trivial for r = 1. If r =2 then the result follows from Remark

3.16 in [2], where the authors prove that J,_, < (N NJ,_,)?, and from Lemma 4.1 in the
same paper, which states that if J, c (N NJ,)thenJ,_,c(NNJ,_ ) for2<sr=n-1.

It follows from this lemma that the nilpotents in J, generate U(n, r).

Denote by P, the principal factor U(n, r)/U(n, r — 1). Then P, may be thought of in
the usual way as J, U {0}. Also, P, has (7) non-null R-classes corresponding to the (})
possible domains of cardinality r, and (}) non-null #-classes corresponding to the (%)
possible images. It is a Brandt semigroup isomorphic to B(S,, {1,...,m}), where S, is

the symmetric group on X, and m = (7). Hence, since the rank of S, is known to be 2, it
follows by Theorem 3.3 in [3] that P, has inverse semigroup rank (}) + 1.

From [2], we borrow the notation ||a,a; . . . a,4,|| (1 =r=n —1) for the nilpotent «
with domain {a,,...,a,} and image {a,,...,a,,,} for which gqa=a;,, (i=1,...,7).
We shall refer to these type of nilpotents as primitive in the next section.

THEOREM 2.2. Let n=3 and let r =n —2. Then

MH+1 ifr=3,
rank({U(n, r)) = nilrank({U(n, r))) =9 (}) if r=2,
n-1 ifr=1.

Proof. From the fact that P, (as an inverse semigroup) has rank () + 1 it follows that
rank ((U(n,r)))=(})+1. To complete the proof we must find a generating set of
((U(n, r))) consisting of (7) + 1 nilpotents.

Let A, A,,...,A, be alist of the subsets of X,, of cardinality . Thus m = (}). Let
H,, 4, denote the -~class in J, consisting of all the elements whose domain is A; and image
A; (i,j=1,2,...,m). Suppose that A;={1,2,...,r}. Then the ¥-class H,, 4, is the
symmetric group on {1,2,...,r}, and if » = 3 then it is generated by the elements o, 7,
where

o=(12), t=(12...r).

We now show that each of o, T can be expressed as a product of nilpotents. For this
purpose, we will suppose that A,={2,...,r,r+1}, As={1,...,r—1,r+1} and
A,={2,...,r—=1,r+1,r+2}. The proof depends on whether r is odd or even. For r
odd we have

o=a;'Ba; and t=75'a,,
where

ay=|lr+1rr—1...21||€Hyu, 4, .
B=llrr=2r—4...3r+1r—1...421||eH,, 4,
a;=|[r+112...r||€eHy, 4,
V2=llr+1r=1...2rr=2...31]|€Hy, 4,
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If for this case we now choose a nilpotent o; € H,_4, fori=4,...,min an arbitrary way,
we see that

0, 7,q,... ,a,m€<<a21"' ’amaﬁ’),Z))'

By the remark before Theorem 3.3 in [3], the elements o, T, @, ..., a,, generate P,.. It
follows that P,, and hence also U(n, r) is generated by the m + 1 nilpotents as, . . . , &,,,
B, v» provided r is odd.

For r even we have

o=a;'Ba, and tv=7y;'a,,
where
a;=|r+123...r=2r—11r| € Ha, 4,
B=I1r—=2r+13254...r—=5r—6r~3r—4r—1r+2||eHu, 4,
ay=|r+224.. .rf{Ullr+1r—1...31||€Ha,4,,
Ya=|lr+1r=2r—1r—4r—-3r—6r—-5...9674523r||U|Ir+21|| € Hy, 4,
In this case P. and hence U(n, r) is generated by the m + 1 nilpotents a5, . . . , a,,, B, Ya,
where o; € H,, 4, are chosen arbitrarily for i=2,5,6,...,m.
It now remains to show that the result is true for r=2 and r = 1.
If r=2, S, is cyclic and thus has only one generator. For this case we will suppose

that A, ={1,2} and A,,={n —1,n}. The F-class H,, 4, is the symmetric group on A,
and is generated by

o=(12).
Now,
O="Ym' G,
where
&, =|ln=12||U||nlll € Ha, 4,
Ym=ln =11 U|In2|l € Hy, a,-
So, if we choose nilpotents a», . . ., @,,_; as in the above cases, we see that «,, . . ., a,,

¥,, generate U(n, r). Thus U(n,r) hasrank 14+ m —1=m.
If r =1, the symmetric group S, has rank 0, and it is easy to verify that the following
n — 1 nilpotents generate U(n, r):

2101, 1320, 1141, - . ., llze 1)1

3. Partial transformations. The semigroup V(n,r) has r +1 $-classes, namely J,,
Joers. .., Jy (Where J, consists of the empty map). For each ¢ such that 1 =¢=r we have

n—1
Jo=U [k, t].
k=t
The number of &-classes in the $-class J, of V(n, r) is the number of image sets in

X, of cardinality r, namely (}), and the number of %-classes in J, is the number of
equivalence relations p on each of the subsets A of cardinality k (where n — 1=k =r) for
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which |A/p| =r, and this number is

n

5 (Z) Stk.r)=2 (Z) S(k,r)—S(n, r)

k=r k=
=S(n+1,r+1)—S(n,r)
=(r+1)S(n,r+1).

Like U(n, r), the semigroup V(n,r) is generated by the nilpotent elements in J, (see
Lemma 2.3 in [1]). We also have from Lemma 3 in [6] that for2<r=n -2,

rank(V(n,r))=(r+ 1)S(n,r +1).
THeOREM 3.1. Forn=3and 2=r=n—2, we have
rank(V(n, r)) = niltank(V(n, r)) = (r + 1)S(n, r + 1).
The proof depends on the following lemma.

LemMA 3.2. Suppose that we can arrange the subsets A,, ... ,A,, (where m = (}) and
2=r=n-2) of X, of cardinality r in such a way that |A;,NA;,_||=r—1 for i=
1,...,m—1 and |A,NA\|=r—1. Then there exist nilpotents «,...,a, (where
p=(r+1)S(n,r+1)) such that {a,,. .., a,} is a set of generators for V(n,r).

Proof. Notice first that every element e[k, r], r<k=n—1, is expressible as a
product of a nilpotent in its own R-class and an element in [r, r]. For

o= <Al A2 v Ar—l A,.) <a2 a ... a, x)
a as ... a x/\by by ... b_, b/’
where
(A, A,)
a:
b, ... b’

r

a;,eA;forallie{2,...,r} and x € X,\dom a.

In the arrangement of our subsets A,,. ., A, we shall assume that A, ={n—r+1,
n—r+2,...,n},A,={n—r,...,n—1}and A,,={1,n—r+2,...,n}. We shall also
represent any two adjacent subsets A;, A;,, by the two subsets {x,,...,x,_,, y;} and
{xi,...,%_1, Zis1}, where z;., #y;, and z,,,, y; # x, for any i. Define H,, 4, to consist of
all elements a € [r,r] for which dom o =A; and ima=A;,. For i=1,...,m define a
mapping §; € H,, 4, as follows:

E_(n—r+1 n—r+2 ... n)

e 1 n—r+2 ... n/’
5"( n—r n-r+1 n—r+2 ... n—l)
T \n-r+2 1 n—r+3 ... n ’

and fori=2,...,m—1if

§i=<x, Xo .. Xeoy y,-)

I A S 2
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define

X, X2 ... X z)
Loty ... Lt/

i1 = <
Then it is easy to see that the mapping

¢:B(Sr’ {1’ .. ,m})—>Q,

defined by (i,7n,j)¢ = EnE; ' is an isomorphism. Here S, is the symmetric group on
{1,n—r+2,...,n}, Q,is the principal factor

r—1
/U1 0=1.r10 ).
From Proposition 2.4 in [1], the set
T={(1,g,1),0,8:2),(2,e,3),...,(m—1,e,m),(m,e, 1)},

where g, =(1n—r+2...n), g2=(n—r+2) and e is the identity permutation in §,,
generates B(S,, {1,...,m}). Thus T¢ generates Q, and hence [r, r]. If we now define

a,=E8:87", o, = EET, fori=2,...,m—-1
and
B=E.8r", o=Egé&r,
we obtain a generating set {f, 0, a),..., &, _,} of [r, r], where
a=|lnn-1...n—r+1n-r|,
o= ||yix,_1. . X1 Zid|| fori=2,..., m—1
are all nilpotents. On the other hand,

6_<n—r+1 n—-r+2 ... n—1 n )
“\n—r+2 n—-r+3 ... n n—r+1

is clearly non-nilpotent. However if r is odd we have

é=a, (3.3)
where

M=|lln=rn=r+2---n=-1n-r+ln-r+3.---n-2nj.

If r is even, and is of the form 4q + 2(g =0), then

6 = aymny, (3.4)
where
m=|n—r+ln—-r+5...n=1n—r+3n—-r+7...n=3n—rn-r+4...n-21|

Ulln—r+2n—-r+6...n|

and
m=|n—rn—-1n=-3...n—r+3n-r+1||Ulllnn-2n—-4...n—r+2|.
If r is even and of the form 4q(q =1) then

0= a Y, (3.5)
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where
Y=|ln—r+ln—rn—r+3n—-r+2n—-r+5n—-r+4.. . n—-1n-21|
and
Yo=|ln—rn—r+3n—-r+2n—-r+5...n=2n—r+1||U |[1nf.

Next, 8 may or may not be nilpotent. However, as 8 € [r, r], if § is non-nilpotent, then by
Lemma 2.1 it is expressible as a product of two nilpotents in [r, r], say

B=1C0. (3.6)

It is clear that BRE, and BLE,, thatis R, =A,, and L., = A,.
We now define A, 01, 13, ¥, ¥5 and §; as follows:

Ai:llu(lvn)y
m=mu(n,1), m=nUMr-r+l,n),
Yi=yp,U(n,n—2), yi=y,UMn,n—r+1).

Before we define {;, we note that from Theorem 2.8 in [2], {, can be expressed as a
disjoint union of k primitive nilpotents, say

L= Uu,U ... U,
If kK =2, then assume
=X ... xll and py=|ly ...yl
and define Z; as
xEy=x& if xedom,
and
x,82= y.

On the other hand if K =1 then |dom {,Uim &,|=r+1, and since r <n —2 we have
X, \(dom &, U im {,) to be non-empty. Then define §; as

LH=6UMx,n—r+1),

where x € X,\(dom {, Uim &,).

Note that A, 11, 72, ¥, ¥, and {; are distinct, and belong to [r + 1, r]. If we now
replace A,, 1y, n,, ¥, and ¥, by A, ni, 13, ¥, and vy, respectively in equations
(3.3)-(3.5) then it is easy to see that the equations remain unaltered. Since 8, &,, &, are
all one-one and of the same height, we must have

domf=dom¢,, im &, =dom §,,
and since x,, x ¢ dom £, =im {; we conclude that

€18,=C:8s

Now, if B is nilpotent then V(n, r) is generated by

{ﬁ’l‘;7(x]"'-7a[p—2}7 {ﬂ, 7’;97’;’ a/h‘~'va/p—3}
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or
{ﬁa 1/){» w;s [¢ TP a/p—3}
according to whether r is odd, even and of the form 4 +2 (¢ =0) or even and of the
form 49 (g=1), and «,,,...,®,_x (k=2, 3) are chosen arbitrarily to cover all the
R-classes in J..
If B is non-nilpotent, then V(n, r) is generated by
{Cl’ Cé’ ;’ (4 4 PN ap—?}}’ {Cl? Cé’ n;, né» (¢ S P Cl’p_4}
or
{CI, Céy w;’ Wé» ah L) ap-d}

according to whether r is odd, even and of the form 49 +2 (g =0) or even and of the
form 49 (g=1), and @,,, ..., ®,_, (k=3,4) are chosen arbitrarily to cover all the
R-classes in J,.

To conclude the proof of Theorem 3.1, it remains to prove that the listing of the
subsets of X, of cardinality r as postulated in the statement of Lemma 3.2 can actually be
carried out. Let n =4 and 2 <r =n — 2, and consider the following proposition.

(P(n,r)): there is a way of listing the subsets of X,, of cardinality ras A\, A,, ..., A,
with m=(}), Ai={n—r+1,...,n}, Ay={n—-r,...,n—-1}, A,={1, n—r+
2,...,n})such that |[A;,NA .\ |=r—1fori=1,... , m—1and |A,NA|=r-1

We shall prove this by a double induction on n and r, the key step being a kind of
Pascal’s Triangle implication.

P(n—1,r—1) and P(n—1,r)>P(n,r).
First, however, we anchor the induction with two lemmas.
LemMa 3.7. P(n,2) holds for every n = 4.
Proof. Consider the following arrangement of the subsets of X, of cardinality 2.

(1,2}, (L3}, ..., {Ln-1},  {Ln),
23}, ..., {2n-1,  {2n}

{n-2,n-1}, {n-2,n},
{n—1,n}.
If we denote the first row by R, second row by R,, etc., then we note that the first entry

in R; is {i,i+ 1} and the last entry is {i, n}. Thus the number of elements in R; is n — i,
and the total number of subsets in all the rows is

n—1 n n
; (n=i)=>(n 1)_<2>.
Hence above is a complete list of the subsets of X,, of cardinality 2.

Note that for any two subsets A, A, in R;, A, U A, = {i}, and the intersection of the
last entry in R;,, with the first entry in R; is {{ + 1}. Hence the following arrangement
satisfies P(n, 2):

R.-i,R.—2,.. ., Riv1,Ri,. .. ,R3, R,
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That is, the list begins with all the subsets in R, _,, followed by the subsets in R, _,,
followed by the subsets in R,_3, and so on, until R, is reached.

LeMMA 3.8. P(n, n —2) holds for every n = 4.

Proof. Note that P(4, 2) follows from Lemma 3.7. So we will assume that n = 5. Let
R/ be the list of the complements of the subsets in R; (defined in the proof of Lemma 3.7)
arranged in the same order as in R;. Let (R/)™' be R/ arranged in the reverse order. For
example

R, ,={n=-2,n—-1},{n—-2,n},
R, ,={1,...,n=3,n},{1,...,n=3,n—-1},
(R,_)'={1,...,n=3,n—1},{1,...,n—3,n}.

Let T=1{1,3), {1,4},...,{1,n—1} and T' = R)\({1, 2}, {1, n}").

It is clear that, for any two subsets A;, A, in R;, we have |A; N A]|=n —3, and the
intersection of the last subset in R/,, and the first subset in R/ also contains n — 3
elements. We also have n — 3 elements in the intersection of the last subset in R} with the
first subset in (R3)™', and the same number of elements in the intersection of the last
subset in T’ with the subset in R,_,. We now have the following arrangement satisfying
P(n,n—2):

A;’Aé’ le R:l—l’ erl—25 .« .. 3R:'3’ (Ré)—la
where A} ={1,2}' and A;= {1, n}'".

LEMMA 3.9. Letn=6and3=<r=n-—3. Then P(n —1,r — 1) and P(n — 1, r) together
imply P(n,r).

Proof. From the assumption P(n —1,r) we have a list A,,..., A, (where m=
("7") of the subsets of X,_, with cardinality r such that |A,NA,.,|=r—1 for
i=1,...,m—1, and

Ai={n—-r,...,n—1}Ay={n—-r—-1,...,n=-2},A,={1,n—=r+1,...,n—1}

From the assumption P(n—1,r—1), we have a list B,..., B, (where t=(72})) of

r—1

subsets of X, _; of cardinality r — 1 such that |[B,N B;,,|=r—2fori=1,...,r—1, and
Bi={n—r+1,...,n-1},B,={n—r,...,n=2},B,={1,n—r+2,...,n—1}.
Let B/ =B;U {n}. Then
A,...,A,.,Bl,...,B,

is a complete list of the subsets of X,, of cardinality r. (Notice that ¢ +m = (}).) Now,
arrange the above subsets as follows:

B;7AI,Ams' . 7A27Béa' . 7Bl'

Then it is easy to verify that this arrangement satisfies P(n, r). Hence the induction is
complete and we may deduce that P(n,r) is true for all n=4 and all r such that
2=r=n-2.
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