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1. Introduction. Let Pn be the semigroup of all partial transformations on the set
Xn = {1,. . . , re}. As usual, we shall say that an element a in Pn is of type (k,r) or
belongs to the set [k, r] if |dom a\ = k and |im a\ = r. The completion a* of an element
a e[n - l,n — I] is an element in [re, re] defined by

ia*=j, xa* =xa otherwise,

where {i} = A'nXdom a and {/'} = A^Xim a.
For re even, the subsemigroup SL, of Pn consisting of all strictly partial one-one

transformations was proved to be nilpotent-generated by Gomes and Howie [2]. If re is
odd, they showed that the nilpotents in SL, generate SL^W,,..,, where Wn_l consists of all
ae[n — l,n — 1] whose completions are odd permutations.

Simultaneously and independently, Sullivan [7] showed that the subsemigroup SPn of Pn

consisting of all strictly partial transformations of Xn is nilpotent-generated if re is even. If
re is odd, the nilpotents in SPn generate SPn\Wn_!.

The rank of a semigroup 5 is the cardinality of any subset A of minimal order in 5 such
that (A) = S. If the generating set A consists of nilpotent elements only, then we shall
refer to the cardinality of A as the nilpotent rank of 5. Since one of the semigroups we will
be considering is an inverse semigroup, we would like to clarify the notion of a generating
set in an inverse semigroup. Given a subset A in an inverse semigroup 5, we shall always
want to consider the smallest inverse subsemigroup containing A. In effect this is the set
of all finite products of elements of A and their inverses. Following [3], we shall use the
notation ((A)} for this inverse subsemigroup. Accordingly, by the rank of an inverse
semigroup 5 we shall mean the cardinality of any subset A of minimal order in S such that
((A))=S.

Let N and M be the sets of all nilpotent elements in SL, and SPn respectively. In [3],
Gomes and Howie proved that the rank and the nilpotent rank of ((N)) are both equal
to re + 1 for all n, and in [1], Garba showed that the rank and the nilpotent rank of (A/)
are both equal to re + 2 for all re. In Section 2 we generalize the results of Gomes and
Howie [3] (in line with Howie and McFadden [6]) by showing that if 1 < r < re - 2 then
the rank and the nilpotent rank of the inverse semigroup

U(n, r) = {a eSln:\\m a\< r}

are both equal to (") + 1. In Section 3 we generalize the results of Garba [1] by showing
that i f l < r < r e - 2 then the rank and the nilpotent rank of the semigroup

V(n, r) = {a e SPn: |im a\ < r}

are both equal to (r + l)5(re, r + 1), where S(n, r + 1) is the Stirling number of the second
kind, defined by

5(re, 1) = S(n, re) = 1, 5(re, r) = S(n-l,r-l) + rS(n - 1, r).

For standard terms in semigroup theory see [4]. In all that follows, we consider re > 3.
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2. One-one partial transformations.

LEMMA 2.1. For all r < n — 2, we

w/iere 7r = {a- e SL,: |im tf | = r) is the $-class of all elements in SL, with rank r.

Proof. The result is trivial for r < l . If r > 2 then the result follows from Remark
3.16 in [2], where the authors prove that / n _ 2 s (N C\Jn_2)

2, and from Lemma 4.1 in the
same paper, which states that if Jr s (N fl Jr)

k then Jr^ c (N n 7r_i)* for 2 s r < n - 1.

It follows from this lemma that the nilpotents in Jr generate U(n, r).
Denote by Pr the principal factor U(n, r)/U(n, r — 1). Then Pr may be thought of in

the usual way as / r U {0}. Also, Pr has (") non-null 9?-classes corresponding to the (")
possible domains of cardinality r, and (") non-null .Sf-classes corresponding to the (")
possible images. It is a Brandt semigroup isomorphic to B(Sr, { 1 , . . . ,m}), where 5r is
the symmetric group on Xr and m = ("). Hence, since the rank of Sr is known to be 2, it
follows by Theorem 3.3 in [3] that Pr has inverse semigroup rank (") + 1.

From [2], we borrow the notation \\a\a2 . . . a r + i | | (1 s r < / i — 1) for the nilpotent a
with domain {a,, . . . , ar} and image {a2, • • • , ar+x) for which a,oc = a,+1 (i = 1,. . . , r).
We shall refer to these type of nilpotents as primitive in the next section.

THEOREM 2.2. Let n > 3 and let r < n - 2. Then

U"r) + 1 i f r>3,

rank<<t/(n,r>>=nilrank<<f/(/»,r)>> = j (?) if r = 2,

U - l if r = 1.
Proof. From the fact that Pr (as an inverse semigroup) has rank (") + 1 it follows that

rank ((U(n, r)))>(") + 1 . To complete the proof we must find a generating set of
((U(n,r))) consisting of (") + 1 nilpotents.

Let Au A2,. . . , Am be a list of the subsets of Xn of cardinality r. Thus m = ("). Let
HA.A denote the $?-class in Jr consisting of all the elements whose domain is A, and image
Aj (/,' j = 1, 2 , . . . , m). Suppose that Ax = {1 ,2 , . . . , r} . Then the ^f-class HAl<Al is the
symmetric group on {1,2,... ,r}, and if r s 3 then it is generated by the elements o, x,
where

a = (12), T = ( 1 2 . . . r ) .

We now show that each of a, x can be expressed as a product of nilpotents. For this
purpose, we will suppose that A2 = {2,. . . ,r,r + 1}, A3= {1 , . . . ,r — \,r + 1} and
A4 = {2,. . . , r - 1, r + 1, r + 2}. The proof depends on whether r is odd or even. For r
odd we have

a = orj'/3a'3 and T = yj'a-2,

where

ar2=| | r + l r r - l . . . 21116//

y 2 = | | r
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If for this case we now choose a nilpotent <*, e HAlyAl for i = 4,. . . , m in an arbitrary way,
we see that

a, r, a2,. . . ,ame((a2,. . . ,am,P,y2)).

By the remark before Theorem 3.3 in [3], the elements o, r, a2,. . . , <xm generate Pr. It
follows that Pr, and hence also U(n, r) is generated by the m + 1 nilpotents a2,. . . , am,
p\ y2 provided r is odd.

For r even we have

a=<*j'/3<*4 and r = y^ia4,
where

a3=\\r + l23...r-2r-llr\\eHA,,Al,

/5 = || 1 r - 2 r + 1 3 2 5 4 . . . r - 5 r-6r-3r-4r - 1 r+ 2\\ e HAyAi,

a 4 = | | r + 2 2 4 . . . r | | U | | r + l r - 1 . . . 3 1 | | € / / y l ^ I ,

y4=| |r + l r - 2 r - l r - 4 r - 3 r - 6 r - 5 . . . 9 6 7 4 5 2 3 r|| U ||r + 2 1|| e W ^ , .

In this case Pr and hence (/(«, r) is generated by the m + 1 nilpotents or2,. . . , am, /3, y4,
where a, e //>»„/), are chosen arbitrarily for i = 2, 5, 6,. . . ,m.

It now remains to show that the result is true for r = 2 and r = 1.
If r = 2, S2 is cyclic and thus has only one generator. For this case we will suppose

that i4, = {1, 2} and Am = {n — l,n}. The $f-class HAlAl is the symmetric group on /I,
and is generated by

a = (12).

Now,

where

So, if we choose nilpotents a2,. . . , <*m-i as in the above cases, we see that a2,. . . , am,
ym generate U(n, r). Thus U(n, r) has rank 1 + m — 1 = m.

If r = 1, the symmetric group 5, has rank 0, and it is easy to verify that the following
n - 1 nilpotents generate U(n, r):

3. Partial transformations. The semigroup V(n,r) has r + l ^-classes, namely Jr,
Jr+1,. . . , /„ (where JQ consists of the empty map). For each t such that 1 < f < r we have

J, = Xj[k,t].
kk = l

The number of .S'-classes in the ^-class Jr of V(n, r) is the number of image sets in
Xn of cardinality r, namely ("), and the number of ^-classes in Jr is the number of
equivalence relations p on each of the subsets A of cardinality k (where n — 1 > k > r) for

https://doi.org/10.1017/S0017089500030482 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030482


4 G. U. GARBA

which \A/p\ = r, and this number is

k=r

= (r + l)S(n,r + l).

Like U(n, r), the semigroup V(n, r) is generated by the nilpotent elements in Jr (see
Lemma 2.3 in [1]). We also have from Lemma 3 in [6] that for 2 < r < n — 2,

rank(V(n, r)) > (r + l)5(n, r + 1).

THEOREM 3.1. For n ^ 3 a/trf 2 ^ r S / ! - 2 , we /jaue

rank(V(«, r)) = nilrank(V(n, r)) = (r + l)5(n, r + 1).

The proof depends on the following lemma.

LEMMA 3.2. Suppose that we can arrange the subsets Au. . . ,Am (where m = (") and
2 < r < « —2) of Xn of cardinality r in such a way that \A,r D^4,_|| = r — 1 for i =
1,. . . , m — 1 and \Am (lA]\ = r-l. Then there exist nilpotents au . . . , ap (where
p = (r+ l)S(n, r + 1)) such that {a-,,. . . , ap} is a set of generators for V(n, r).

Proof. Notice first that every element ae[k,r], r<k^n — 1, is expressible as a
product of a nilpotent in its own ^-class and an element in [r, /•]. For

= M , A2 ... /4r_, Ar\/a2 a3 . . . ar x\

\a2 a3 . . . ar x / \bx b2 . . . br-{ bj '

where

, . . . b,J'
a, e A/ for all / e {2, . . . , / • } and x e Xn\dom a.

In the arrangement of our subsets Au . . ,Am we shall assume that A, = {n - r + 1,
n - r + 2,. . . , n}, A2 = {n - r,. . . , n - 1} and Am = {1, n - r + 2,. . . , n). We shall also
represent any two adjacent subsets Ah Ai+X by the two subsets {*,,. . . ,xr_u _y,} and
{JC,, . . . , jcr_,, z ,+ i} , where z,+, i=yh and z,+1, y,r =£*,• for any i. Define HA.A. to consist of
all elements a re [ r , r ] for which dom <* = /!, and im a = Aj. For i = l,. . . ,m define a
mapping §,- e HAAm as follows:

/ i - r + 1 n - r + 2 . . .

1 n-r + 2 . . .

_ / n-r n-r + 1 n-r + 2 . . . n — \

\n-r + 2 1 n - r + 3 . . . n

and for j = 2 , . . . , m - 1 if

c. _(x\ x2 . . . xr_| y,\

' " W , t2 ... fr_, J
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define

( v v v- T \

X\ X2 . . . Xr—\ % \

t2 h ... tr tj'
Then it is easy to see that the mapping

defined by {i,r),j)<p = 1,-Jjly"1 is an isomorphism. Here 5r is the symmetric group on
{1, n — r + 2,. . . , n}, Qr is the principal factor

From Proposition 2.4 in [1], the set

T = {(1, gl, 1), (1, g2, 2), (2, e, 3 ) , . . . , (m - 1, e, m), (m, e, 1)},

where gi = (ln-r + 2...n), g2 = (1 n -r + 2) and e is the identity permutation in Sr,
generates B(Sr, {1 , . . . , m}). Thus T<p generates Qr and hence [r, r]. If we now define

a\ = £ig2§2~\ <Xi = %&T+\ for i = 2 , . . . , m - 1

and

we obtain a generating set {/3, 6, or,,. . . , <*„,_,} of [r, r], where

ax = \\nn — 1. . . n — r + 1 n — r\\,

<Xj = Hy^r-i . . . *iz,-+1|| for i = 2,. . . , m — 1

are all nilpotents. On the other hand,

/n — r + 1 n — r + 2 ... n — 1 n \
o = I I

\n — r + 2 n — r + 3 ... n n — r + 1/

is clearly non-nilpotent. However if r is odd we have

a = M., (3.3)
where

If r is even, and is of the form 4q + 2{q S: 0), then

6 = a-,r7,?72, (3.4)

where

T/i = ||n — r + ln — r + 5 . . . n — In — r + 3n — r + 1. . . n — 3n — rn — r + A. . . n — 211|

U | | « - r + 2 n - r + 6 . . . n | |

and

IJ2 = ||/i - r n - 1 /i - 3 . . . n - r + 3 n - r + 1| |U ||1 n « - 2 n - 4 . . . « - r + 2| | .

If r is even and of the form Aq{q > 1) then

6 = (X\ip\ip2> (3-5)
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w h e r e

^1 = | | n — r + l r t — r n — r + 3 n — r + 2 n — r + 5 n — r + 4 . . . n — I n —

a n d

Next, (} may or may not be nilpotent. However, as /3 e [r, /•], if /3 is non-nilpotent, then by
Lemma 2.1 it is expressible as a product of two nilpotents in [r, r], say

P=Si&. ( 3 - 6 )

It is clear that /5$£i and /3i?£2, that is /??l = ,4m and LC2 = /4,.
We now define AJ, rjl, rj2, i/>J, i/;2 and £2

 a s follows:

V>| = V i U ( « , n - 2 ) , V 2 = ^ 2 U ( « , « - r + 1 ) .

Before we define £2,
 w e n o t e that from Theorem 2.8 in [2], £2 can be expressed as a

disjoint union of k primitive nilpotents, say

If A; > 2, then assume

JU, = ||JT,. . .xs\\ and ,u2= ||y, . . . y,\

and define £2 as

x^2 = xt,2 if Jt e dom £2

and

On the other hand if k = 1 then |dom £2 U im £2| = r + 1, and since r < n - 2 we have
A'n\(dom ^2 U im C2) to be non-empty. Then define £2 as

where x e Xn\(dom £2 U ' m £2)-
Note that AJ, rjj, rj2, i/̂ J, ^ 2 and C2 are distinct, and belong to [r + 1, r]. If we now

replace A,, rj,, r\2, i/>, and ^/2 by AJ, rj[, r)'2, ip\ and ip'2 respectively in equations
(3.3)—(3.5) then it is easy to see that the equations remain unaltered. Since /3, £,, £2 are
all one-one and of the same height, we must have

dom /3 = dom £,, im £, = dom £2,

and since JCS, x $ dom ^2
 = im £1 we conclude that

Now, if )3 is nilpotent then V(n, r) is generated by

{/3, AJ, o r , , . . . , arp_2}, {/3, i/J, TJ2, or,,. . . , ap_3}
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or

{js, v>;, v i . <x\,... ,ap-3}
according to whether r is odd, even and of the form Aq + 2 (q^O) or even and of the
form Aq (<7^1), and am,. . . ,ap_k (k = 2, 3) are chosen arbitrarily to cover all the
£%-classes in Jr.

If )8 is non-nilpotent, then V(n, r) is generated by

{£,, £2, A], a},. . . , ap_3}, {£,, £2, r]\, JJ2, or,,. . . , arp_4}
or

{£i ,£ ,Vi .V; ," I , . . . > ar # ,_ 4 }
according to whether r is odd, even and of the form Aq + 2 (^>0) or even and of the
form Aq (q^l), and am,. . . ,ap-k (A: = 3,4) are chosen arbitrarily to cover all the
32-classes in Jr.

To conclude the proof of Theorem 3.1, it remains to prove that the listing of the
subsets of Xn of cardinality r as postulated in the statement of Lemma 3.2 can actually be
carried out. Let n > 4 and 2 < r < n — 2, and consider the following proposition.

(P(«, r)): //iere is a way of listing the subsets of Xn of cardinality r as Au A2, • • . , Am

(with m = {"), Ai = {n-r + l,. . . , « } , A2= {n - r,. . . , n - 1}, Am = {\, n-r +
2,. . . ,n})such that \A,:Di4/+,| = r - 1 for i = 1,. . . ,m - 1 and |/4m n.4,1 = r - 1 .

We shall prove this by a double induction on n and r, the key step being a kind of
Pascal's Triangle implication.

P ( n - l , r - l ) and P(n - 1, r)^»P(n, r).

First, however, we anchor the induction with two lemmas.

LEMMA 3.7. P(n, 2) holds for every n £ 4.

/V00/. Consider the following arrangement of the subsets of Xn of cardinality 2.

{1,2}, {1,3}, . . . , { l , n - l } , {l ,n},
{2,3}, . . . , { 2 , n - l } , {2,n},

{ / i - 2 , n - l } , {n-2,n},

If we denote the first row by /?,, second row by /?2>
 etc-» then we note that the first entry

in R/ is {/, i + 1} and the last entry is {/,«}. Thus the number of elements in /?, is n — i,
and the total number of subsets in all the rows is

Hence above is a complete list of the subsets of Xn of cardinality 2.
Note that for any two subsets As, Ar in Rh As \J Ar = {/}, and the intersection of the

last entry in Ri+l with the first entry in R, is {i + 1}. Hence the following arrangement
satisfies P(/z,2):
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That is, the list begins with all the subsets in /?„_[, followed by the subsets in /?n_2,
followed by the subsets in Rn-3, and so on, until # , is reached.

LEMMA 3.8. P(«, n - 2) holds for every n > 4.

Proof. Note that P(4, 2) follows from Lemma 3.7. So we will assume that n > 5. Let
R'i be the list of the complements of the subsets in R, (defined in the proof of Lemma 3.7)
arranged in the same order as in /?,. Let (/?,')"' be R] arranged in the reverse order. For
example

Rn.2={n-2,n-l},{n-2,n},

(R'n-2y
l = { 1 , . . . , / ! - 3, « - 1}, { 1 , . . . , « - 3, n}.

Let T = {1, 3}, {1, 4}, . . . , {1, n - 1} and T = R[\({1, 2}', {1, n}').
It is clear that, for any two subsets A,, A'r in /?,', we have \A'S D A'r\ = n - 3, and the

intersection of the last subset in /?,'+i and the first subset in /?,' also contains n — 3
elements. We also have n — 3 elements in the intersection of the last subset in /?3 with the
first subset in (R'2)~

l, and the same number of elements in the intersection of the last
subset in T with the subset in R'n-V We now have the following arrangement satisfying
P ( n , « - 2 ) :

A'\,A'2, T', R'n-\, R'n-2, • • • , R3, (R-i)~ .

where A\ = {1,2}' and A2 = {l ,n} ' .

LEMMA 3.9. Letn>6 and 3 < r £ n - 3. 77ien P(« - 1, r - 1) and P(n - 1, r) together
imply P(n, r).

Proof. From the assumption P(n — l , r ) we have a list .4,, . . . ,Am (where m =
("71)) of the subsets of A^-i with cardinality r such that \AiC\Ai+]\ = r -1 for
i = 1,. . . ,/n - 1, and

From the assumption P ( n - l , r - l ) , we have a list BU...,B, (where t = ("ll)) of
subsets of Xn_x of cardinality r - 1 such that |B, D B, + l | = r - 2 for / = 1,. . . , r - 1, and

Bi = { n - r + l , . . . , n - l } , B 2 = { n - r , . . . , n - 2 } , B , = { l , n - r + 2 , . . . , n - \ ) .

Let fi,' = fi,U{«}. Then

A \ , . • • , A m , B ! , . . . , B ,

is a complete list of the subsets of Xn of cardinality r. (Notice that t + m = (").) Now,
arrange the above subsets as follows:

B\,A\,Am,. . . ,A2, B2,. . . ,B',.

Then it is easy to verify that this arrangement satisfies ¥(n,r). Hence the induction is
complete and we may deduce that P(n, r) is true for all n s 4 and all r such that
2<r<n-2.
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