Coloring Four-uniform Hypergraphs on Nine Vertices

Marek Kazimierz Lewkowicz

Abstract. Every 4-uniform hypergraph on 9 vertices with at most 25 edges has property B. This gives the answer $m_{9}(4)=26$ to a question raised by Erdős in 1968.

1 Introduction

In [3, p. 447] Erdős defines $m_{n}(k)$ as the smallest integer m for which there exists a k-uniform hypergraph with n vertices and m hyperedges without property B , which means that for every 2 -coloring of its vertices some hyperedge is monochromatic. In [4, p. 416] Erdős admits "I cannot compute $m_{2 k+1}(k)$ and in fact do not know the value of $m_{9}(4) "$ (compare [2, p. 155]). In 1980 Abbott and Liu ([1]) proved that $24 \leq m_{9}(4) \leq 26$. In particular, they gave an example of a 4 -uniform hypergraph with 26 hyperedges without property B.

Our main result is contained in the following theorem.
Theorem 1.1 Any family of four-element subsets of a given nine-element set without property B must have at least 26 elements.

The proof is partly based on computer calculations, which provide us with many non-isomorphic 4 -uniform hypergraphs with 26 edges without property B . In the following sample family, any two elements intersect:

```
{1234}{1235}{1237}{1456}{1467}{1489}{1567}{1589}{1789}{2369}
{2459}{2468}{2479}{2568}{2578}{2579}{2678}{3457}{3458}{3478}
{3569}{3578}{3679}{3689}{4567}{4579}.
```

Thus it is not permutation conjugate to the family given by Abbott and Liu, which has 3 disjoint pairs.

2 Separating triplets in an eight-set

Consider a 3-uniform hypergraph $\left(V_{8}, S\right)$ on eight nodes. We say that a quadruple $Q \subset V_{8}$ separates S if and only if both Q and its complement \bar{Q} in V_{8} contain an edge. Let $T(S)$ denote the family of all quadruples separating S. The maximal size of $T(S)$

[^0]Keywords: property B, coloring hypergraphs.
for S having n elements will be denoted by $\omega(n)$. These numbers (for $n \leq 11$) will be crucial in the proof of Theorem 1.1 in Section 3. They are listed in Proposition 2.1.

Proposition 2.1 The values $\omega(n)$ for $n \leq 11$ are given in the table

$$
\left[\begin{array}{crrrrrrrrrrrr}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\omega(n) & 0 & 0 & 4 & 8 & 12 & 16 & 24 & 26 & 34 & 36 & 38 & 40
\end{array}\right] .
$$

All the values have been calculated with a computer. Total CPU time on one core of the processor AMD Athlon 64 X 21.79 GHz is about 9 minutes for $\omega(10)$ and less than 50 minutes for $\omega(11)$.

The algorithm for calculating $\omega(n)$ is very simple. We consider n-element families S of triplets in V_{8} that contain at least two disjoint triplets. Up to a permutation of V_{8} we may assume these two triplets are fixed. The number of the remaining triplets is $\binom{8}{3}-2=54$. We consider all $n-2$-element subsets of this set, which, together with the two fixed triplets, form S. For each S we consider $\binom{n}{2}$ pairs (A, B) in S. If the pair is disjoint, then four quadruples separating S are created. They are two pairs of complementary sets, represented by $A \cup\{x\}$ for $x \in V_{8} \backslash(A \cup B)$. All members in $T(S)$ are obtained in this way. Thus, $|T(S)|$ is twice the number of such pairs. The total number of such operations is

$$
\binom{54}{n-2}\binom{n}{2} \cdot 2 \leq\binom{ 54}{9}\binom{11}{2} \cdot 2 \approx 5.8 \cdot 10^{11}
$$

3 Proof of Theorem 1.1

Suppose $\left(V_{9}, E\right)$ is a hypergraph on 9 nodes with $|E| \leq 25$. We have to find a coloring of V_{9} for which no edge is monochromatic. As $\sum\{|A|: A \in E\} \leq 25 \cdot 4=100<$ $108=12 \cdot\left|V_{9}\right|$, we can find $P \in V_{9}$ such that the family $E_{1}=\{A \in E: P \in A\}$ has at most 11 elements. Let

$$
\begin{array}{ll}
V_{8}=V_{9} \backslash\{P\}, & E_{0}=\{A \in E: P \notin A\} \\
S=\left\{A \backslash\{P\}: A \in E_{1}\right\}, & n=|S|=\left|E_{1}\right| \leq 11 .
\end{array}
$$

Let $T(S)$ be the family of all quadruples in V_{8} separating S. Proposition 2.1 applied to the 3-uniform hypergraph $\left(V_{8}, S\right)$ gives the maximal possible values of $|T(S)|$. In particular $|T(S)| \leq 18+2 n$. Let

$$
R=\left\{B \subset V_{8}:(|B|=4) \wedge\left(\left(B \in E_{0}\right) \vee\left(V_{8} \backslash B \in E_{0}\right)\right\}\right.
$$

We have

$$
|R| \leq 2 \cdot\left|E_{0}\right| \leq 2 \cdot\left(25-\left|E_{1}\right|\right)=50-2 n
$$

The number of quadruples in V_{8} is $\binom{8}{4}=70$. As $(18+2 n)+(50-2 n)=68<70$ we can find a quadruple K in V_{8} not belonging to $T(S) \cup R$. Clearly $\bar{K}=V_{8} \backslash K$ cannot belong to $T(S) \cup R$ either. Let

$$
S_{0}=\{C \in S:(C \subset K) \vee(C \subset \bar{K})\}, \quad S_{1}=S \backslash S_{0}
$$

As $K \notin T(S), K$ does not separate S. Therefore, all $C \in S_{0}$ are contained either in K or in \bar{K}. Replacing K with \bar{K} if necessary, we may assume that no $C \in S$ is
contained in \bar{K}. We shall easily verify now that K is a coloring for V_{9} that has no monochromatic set belonging to E. Indeed, if $A \in E$ is monochromatic, then either $A \subset K$ or $A \subset \bar{K} \cup\{P\}$. If $A \subset K$, then $K=A \in E_{0} \subset R$, which is impossible, since $K \notin T(S) \cup R$. If $A \subset \bar{K} \cup\{P\}$ and $P \notin A$, then $\bar{K}=A \in E_{0}$ and again $K \in R$. If $A \subset \bar{K} \cup\{P\}$ and $P \in A$ then $C=A \backslash\{P\} \in S, C \subset \bar{K}$, which contradicts our choice of K. This completes the proof of Theorem 1.1.
Acknowledgments I would like to sincerely thank Dr. Tomasz Furmanowski from the University of Wroclaw, Poland, for many inspiring conversations.

References

[1] H. L. Abbott and A. C. Liu, On property B of families of sets. Canad. Math. Bull. 23(1980), no. 4, 429-435. http://dx.doi.org/10.4153/CMB-1980-063-6
[2] H. L. de Vries, On property B and on Steiner systems. Math. Z. 153(1977), no. 2, 155-159. http://dx.doi.org/10.1007/BF01179788
[3] P. Erdős, On a combinatorial problem. II. Acta Math. Acad. Sci. Hungar 15(1964), 445-447. http://dx.doi.org/10.1007/BF01897152
[4] , On a combinatorial problem. III. Canad. Math. Bull. 12(1969), 413-416. http://dx.doi.org/10.4153/CMB-1969-051-5
Faculty of Mechanical and Power Engineering, Wrocław University of Technology, 50-370 Wrocław, Poland e-mail: marek.lewkowicz@pwr.edu.pl

[^0]: Received by the editors October 17, 2013.
 Published electronically March 2, 2015.
 AMS subject classification: 05 C 15 .

