ON COMMUTATIVITY OF C*-ALGEBRAS

by C.-S. LIN

(Received 7 October, 1985)

1. Two numerical characterizations of commutativity for C*-algebra \mathcal{A} (acting on the Hilbert space H) were given in [1]; one used the norms of self-adjoint operators in \mathcal{A} (Theorem 2), and the other the numerical index of \mathcal{A} (Theorem 3). In both cases the proofs were based on the result of Kaplansky which states that if the only nilpotent operator in \mathcal{A} is 0, then \mathcal{A} is commutative ([2] 2.12.21, p. 68). Of course the converse also holds.

We shall apply in this note both Kaplansky's result and Holbrook's operator radii [3] to give two types of characterizations; one is by means of operator radii, and the other in terms of C_p -classes of operators in \mathcal{A} . These also enable us to generalize Theorem 2 and 3 in [1]. Finally, a particular case of our Theorem 5 shows that \mathcal{A} is commutative if and only if every $T \in \mathcal{A}$ satisfies the first order growth condition (G_1) .

2. First we need some notation, definitions and well known results. Let $T \in \mathcal{A}$. We recall that T is in the class $C_p(p > 0)$, operators having unitary p-dilation, if

$$(ph, h) - 2\operatorname{Re}(z(p-1)Th, h) + |z|^2 ((p-2)Th, Th) \ge 0$$

holds for all $h \in H$ and $|z| \le 1$ ([4 p. 45]). Since the inequality can be rewritten as $\operatorname{Re}(p-2z(p-1)T+|z|^2(p-2)T^*T) \ge 0$, it follows easily that $T \in C_p$ if and only if for all $|z| \le 1$ we have

$$(p-2)(I-zT)^*(I-zT) + (I-zT) + (I-zT)^* \ge 0.$$
(*)

We need the following properties from [3].

(1) $T \in C_p$ if and only if $w_p(T) \leq 1$, where

$$w_p(T) = \inf\{u : u > 0, T/u \in C_p\},\$$

the operator radius of T.

(2) $w_1(T) = ||T||$, and $w_2(T)$ is the numerical radius of T.

- (3) $w_p(uT) = |u| w_p(T)$, and $w_p(T) \ge ||T||/p$.
- (4) $w_p(.)$ is a norm on \mathscr{A} whenever 0 .

THEOREM 1 (Theorem 4.4, 4.5 and 5.5 [3]). Let $T \in \mathcal{A}$,

(1) If
$$0 , then $w_{p'}(T) \le w_p(T)$ and $w_p(T) \le \left(\frac{2p'}{p} - 1\right) w_{p'}(T)$.$$

(2) If ||T|| = 1 and $T^2 = 0$, then $w_p(T) = 1/p$ for every p > 0.

Glasgow Math. J. 29 (1987) 93-97.

(3) If T is normaloid, that is ||T|| is the spectral radius of T, then

$$w_p(T) = \begin{cases} \left(\frac{2}{p} - 1\right) \|T\| & \text{if } 0$$

Note that a normal operator is normaloid.

3. Now we are ready to give characterizations.

THEOREM 2. For p > 0 and $p \neq 1$, \mathcal{A} is commutative if and only if

$$w_p(T) = \begin{cases} \left(\frac{2}{p} - 1\right) \|T\| & \text{if } 0 1, \end{cases}$$

for every $T \in \mathcal{A}$.

Proof. (\Rightarrow). The commutativity implies that every $T \in \mathcal{A}$ is normal and so we may apply (3) in Theorem 1.

(⇐). If \mathscr{A} is not commutative, then there exists a $T \in \mathscr{A}$, $T \neq 0$ and $T^2 = 0$ such that $w_p(T) = ||T||/p$, p > 0 by (2) in Theorem 1. Hence the equality in the statement does not hold.

COROLLARY 1. For p > 0 and $p \neq 1$, \mathcal{A} is not commutative if and only if $w_p(T) = ||T||/p$ for some $T \in \mathcal{A}$.

From the well known results in section two we see that

$$||T||/p \le w_p(T) \le \left(\frac{2-p}{p}\right)||T||$$

holds for $0 , and <math>||T||/p \le w_p(T) \le ||T||$ for $p \ge 1$. Let us define

$$n_p(\mathscr{A}) = \inf\{w_p(T): T \in \mathscr{A}, ||T|| = 1\}.$$

Clearly, $1/p \le n_p(\mathcal{A}) \le \frac{2-p}{p}$ for $0 , and <math>1/p \le n_p(\mathcal{A}) \le 1$ for $p \ge 1$. Note that $n_2(\mathcal{A})$ is called the *numerical index* of \mathcal{A} .

COROLLARY 2. (Theorem 3 [1] when p = 2). (1) For p > 1, \mathcal{A} is commutative or not commutative according to $n_p(\mathcal{A})$ is 1 or 1/p.

(2) For $0 , <math>\mathscr{A}$ is commutative or not commutative according to $n_p(\mathscr{A})$ is $\frac{2-p}{p}$ or 1/p.

Proof. This is a simple consequence of Theorem 2 and Corollary 1.

THEOREM 3. The following statements are equivalent.

- (1) \mathcal{A} is commutative.
- (2) $cT \notin C_p$ for all $p \ge 1$, all T with $0 \ne T \in \mathcal{A}$ and any $c > ||T||^{-1}$.
- (3) $\left(\frac{cp}{2-p}\right)T \notin C_p$ for all p with 0 , all <math>T with $0 \neq T \in \mathcal{A}$ and any $c > ||T||^{-1}$.

Proof. (1) \Rightarrow (2). Since cT is normal, $w_p(cT) = c ||T|| > 1$ for every $p \ge 1$ by (3) in Theorem 1. Hence, $cT \notin C_p$.

(2) \Rightarrow (1). If \mathscr{A} is not commutative, then $w_p(cT) = c ||T||/p$ for some $T \in \mathscr{A}$, $T \neq 0$ and $T^2 = 0$. We may select a suitable p > 1 so that $p \ge c ||T||$. This implies that $cT \in C_p$.

(1)
$$\Rightarrow$$
 (3). $w_p\left(\frac{cp}{2-p}T\right) = \left(\frac{cp}{2-p}\right)\left(\frac{2-p}{p}\right)||T|| = c||T|| > 1$ by (3) in Theorem 1 and

so $\left(\frac{cp}{2-p}\right)T \notin C_p$ for every p with 0 .

(3) \Rightarrow (1). If \mathscr{A} is not commutative, then $w_p\left(\frac{cp}{2-p}T\right) = \frac{c ||T||}{2-p}$ for some $T \in \mathscr{A}$, $T \neq 0$ and $T^2 = 0$. By choosing suitable c and $p(\leq 2-c ||T||)$ we may conclude that $\left(\frac{cp}{2-p}\right)T \in C_p$.

THEOREM 4 (Theorem 2 [1] when p = 1). The following statements are equivalent.

(1) \mathcal{A} is commutative.

(2) For any $p \ge 1$, $w_p(A + B) \le 1 + w_p(AB)$ for all self-adjoint operators A and $B \in \mathcal{A}$ with ||A|| = ||B|| = 1.

(3) For any p with $0 , <math>w_p(A+B) \le \frac{2-p}{p} + w_p(AB)$ for all self-adjoint operators A and $B \in \mathcal{A}$ with ||A|| = ||B|| = 1.

Proof. We shall adapt the original result in [1]; \mathscr{A} is commutative if and only if $||A + B|| \le 1 + ||AB||$ for all self-adjoint operators A and $B \in \mathscr{A}$ with ||A|| = ||B|| = 1.

(1) \Rightarrow (2). $w_p(A+B) = ||A+B|| \le 1 + ||AB|| = 1 + w_p(AB)$ by (3) in Theorem 1.

(2) \Rightarrow (1). If \mathscr{A} is not commutative, then for some self-adjoint operators A and B, $w_p(A+B) = ||A+B|| > 1 + ||AB|| \ge 1 + w_p(AB)$ by (1) in Theorem 1 for the last inequality.

(1)
$$\Rightarrow$$
 (3). $\left(\frac{p}{2-p}\right)w_p(A+B) = ||A+B|| \le 1 + ||AB|| = 1 + \left(\frac{p}{2-p}\right)w_p(AB)$ by (3) in

Theorem 1.

 $(3) \Rightarrow (1)$. If \mathscr{A} is not commutative, for some self-adjoint operators A and B,

$$\left(\frac{p}{2-p}\right)w_p(A+B) = ||A+B|| > 1 + ||AB|| \ge 1 + \left(\frac{p}{2-p}\right)w_p(AB)$$

by (1) in Theorem 1 for the last inequality.

C.-S. LIN

We recall that $T \in \mathcal{A}$ satisfies the first order growth condition (G_1) if $||(u - T)^{-1}|| = 1/d(u)$ for all $u \notin \sigma(T)$, the spectrum of T, where d(u) denotes the distance from u to $\sigma(T)$. It is known that $||(u - T)^{-1}|| \ge 1/d(u)$ holds for any $T \in \mathcal{A}$, and a normal operator satisfies condition (G_1) . We shall next generalize this to operator radii and prove the following result.

THEOREM 5. The following statements are equivalent.

- (1) \mathcal{A} is commutative.
- (2) For $p \ge 1$, $w_p((u-T)^{-1}) = 1/d(u)$ for every $T \in \mathcal{A}$ and $u \notin \sigma(T)$.

(3) For
$$0 , $w_p((u-T)^{-1}) = \frac{2-p}{pd(u)}$ for every $T \in \mathcal{A}$ and $u \notin \sigma(T)$.$$

Proof. (1) \Rightarrow (2). Since $(u - T)^{-1}$ is normal, $d(u)w_p((u - T)^{-1}) = d(u) ||(u - T)^{-1}|| = d(u)(1/d(u)) = 1$

by (3) in Theorem 1.

(2) \Rightarrow (1). Let $T \in \mathcal{A}$, $T^k = 0$, $k \ge 2$ and $T^{k-1} \ne 0$; then $\sigma(T) = \{0\}$. We shall show that if T satisfies the condition $w_p((u-T)^{-1}) \le 1/d(u)$, that is $u(u-T)^{-1} \in C_p$ for any complex number $u \ne 0$, then T = 0. To this end, let z = 1 in the inequality (*). We obtain

$$(p-2)(I-u(u-T)^{-1})^*(I-u(u-T)^{-1}) + (I-u(u-T)^{-1}) + (I-u(u-T)^{-1})^* \ge 0.$$

Let the left hand side in the above be F; then $(u - T)^*F(u - T) \ge 0$ and so

$$(p-2)T^*T - (u-T)^*T - T^*(u-T) \ge 0.$$

We claim that $N(T) \subseteq N(T^*)$, where $N(\cdot)$ denotes the null space. Let $x \in N(T)$, and Q be the left side in above inequality; then $Q(x) = -T^*(ux)$ so that $||Q^{1/2}(x)||^2 = (Q(x), x) = (-T^*(ux), x) = 0$ and hence $T^*(x) = 0$. Now, for any $x \in H$, $0 = T^k(x) = T^*T^{k-1}(x)$ by the claim. It follows that $T^{k-1} = 0$, contrary to our assumption. Thus, T = 0.

(1) \Rightarrow (3). Normality of $(u - T)^{-1}$ implies that

$$\frac{pd(u)}{2-p}w_p((u-T)^{-1}) = \frac{pd(u)}{2-p} ||(u-T)^{-1}|| \frac{2-p}{p} = 1$$

by (3) in Theorem 1.

(3) \Rightarrow (1). The proof may be carried out in a manner similar to the one above by showing that T = 0. To make computation simple let u = 1, and z = -1 in (*). Since $\frac{p}{2-p}(I-T)^{-1} \in C_p$, it follows that

$$S = (p-2)\left(\frac{2}{2-p} - T\right)^* \left(\frac{2}{2-p} - T\right) + (I-T)^* \left(\frac{2}{2-p} - T\right) + \left(\frac{2}{2-p} - T\right)^* (I-T) \ge 0.$$

Let $x \in N(T)$ and consider S(x); after a few simplifications we have

$$S(x) = \frac{p}{p-2} T^*(x).$$

The remainder of the proof is the same as above.

Finally, we remark that the above conditions on T may be relaxed and the result still holds. For example, $u \in U \setminus \sigma(T)$, where the set U need not contain $\sigma(T)$ but $U \setminus \sigma(T)$ must be non-empty.

REFERENCES

1. M. J. Crabb, J. Duncan and C. M. McGregor, Characterizations of commutativity for C*-algebras, Glasgow Math. J. 15 (1974), 172-175.

2. J. Dixmier, C*-algebras, (North-Holland, 1977).

3. J. A. R. Holbrook, On the power-bounded operators of Sz-Nagy and Foias, Acta Sci. Math., 29 (1968), 299-310.

4. B. Sz-Nagy and C. Foias, Harmonic analysis of operators on Hilbert Space, (Akadémiai Kiadó, Budapest, 1970).

DEPARTMENT OF MATHEMATICS BISHOP'S UNIVERSITY LENNOXVILLE, QUEBEC CANADA