DERIVATIONS WHOSE ITERATES ARE ZERO OR INVERTIBLE ON A LEFT IDEAL

BEN TILLY

ABSTRACT. Let $n \in \mathbb{Z}^+$ and R be a ring which possesses a unit element, a left ideal J, and a derivation d such that $d^n(J) \neq 0$ and $d^n(r)$ is 0 or invertible, for all $r \in J$. We prove that either R is primitive, in which case R is D_i with $1 \leq i \leq n+1$, where D_i is the ring of $i \times i$ matrices over a division ring D, or else there exist positive integers i, ℓ and p with p prime and $2 \leq ip^{\ell} \leq n+1$, such that R is $D_i[x_1, x_2, \dots, x_\ell]/(x_1^p, x_2^p, \dots, x_\ell^p)$, where D is a division ring with characteristic p, and furthermore there is a derivation f of D_i and $a_1, a_2, \dots, a_\ell \in Z_{D_i}$, the center of D_i , such that $a \in D_i$ then

$$d(a) = f(a)x_1^{p-1}x_2^{p-1}\cdots x_{\ell}^{p-1},$$

$$d(x_1) = 1 + a_1x_1^{p-1}x_2^{p-1}\cdots x_{\ell}^{p-1},$$

and

$$d(x_j) = x_1^{p-1} x_2^{p-1} \cdots x_{j-1}^{p-1} + a_j x_1^{p-1} x_2^{p-1} \cdots x_{\ell}^{p-1}$$

for all $2 \leq j \leq \ell$.

Bergen, Herstein and Lanski [1] have related the structure of a ring *R* to the special behavior of one of its derivations. More precisely, they proved that if *R* is a ring with unit and $d \neq 0$ is a derivation of *R* such that for every $r \in R$, d(r) = 0 or d(r) is invertible in *R*, then *R* must be a division ring *D*, the ring D_2 of 2×2 matrices over a division ring *D*, or else $D[x]/(x^2)$ where *D* has characteristic 2, d(D) = 0, and d(x) = 1 + ax for some *a* in the centre of *D*.

For the entire paper we shall assume that $n \in \mathbb{Z}^+$, *R* is a ring with unit, *J* is a left ideal of *R*, and *d* is a derivation of *R* with $d^n(J) \neq 0$ such that for every $r \in J$, $d^n(r) = 0$ or $d^n(r)$ is invertible in *R*. The results we will obtain are similar to those of (1). In fact we shall prove the following:

THEOREM 1. Let $n \in \mathbb{Z}^+$, R be a ring with unit, J a left ideal of R, and d a derivation of R such that $d^n(J) \neq 0$ and $d^n(r) = 0$ or $d^n(r)$ is invertible, for every $r \in J$. Then there exists a division ring D such that R is either

- 1) D_i , the ring of $i \times i$ matrices over a division ring D with $1 \le i \le n + 1$, or
- 2) $D_i[x_1, x_2, ..., x_\ell]/(x_1^p, x_2^p, ..., x_\ell^p)$ where $i, \ell, p \in \mathbb{Z}^+$, p is prime, $2 \le ip^\ell \le n + 1$, and char D = p.

Furthermore, there exists a derivation f of D_i and $a_1, a_2, \ldots, a_\ell \in Z_{D_i}$, the center of D_i , with $d(a) = f(a)x_1^{p-1}x_2^{p-1}\cdots x_\ell^{p-1}$ for all $a \in D_i$,

$$d(x_1) = 1 + a_1 x_1^{p-1} x_2^{p-1} \cdots x_{\ell}^{p-1},$$

The author wishes to acknowledge the support of Dr. C. R. Miers through NSERC Grant A-7682. Received by the editors March 13, 1992.

AMS subject classification: Primary: 16W25; secondary: 16N60.

[©] Canadian Mathematical Society 1994.

$$d(x_j) = x_1^{p-1} x_2^{p-1} \cdots x_{j-1}^{p-1} + a_j x_1^{p-1} x_2^{p-1} \cdots x_{\ell}^{p-1} \quad for \, j = 2, 3, \dots, \ell$$

Let us start with an easy generalization of a lemma from [1].

LEMMA 1. If $0 \neq a \in R$ and d(a) = 0 then a is invertible.

PROOF. As $d^n(J) \neq 0 \exists r \in J$ with $d^n(r) \neq 0$ so $d^n(r)$ is invertible. Now $d^n(ar) = \sum_{i=0}^n {n \choose i} d^{n-i}(a) d^i(r) = a d^n(r)$ as $0 = d(a) = d^2(a) = \cdots$. Now $ar \in J$ and $a d^n(r) \neq 0$ because $a d^n(r) (d^n(r))^{-1} = a \neq 0$ so $a d^n(r) = d^n(ar)$ is invertible. As $d^n(R)$ is invertible, a is invertible.

Before our next lemma, note that *R* is a ring with unit so *R* has a maximal ideal *I* and R/I is primitive so we may let *V* be a faithful irreducible left R/I-module with commuting division ring *D*. By the Jacobson density theorem R/I is dense on *V* considered as a vector space over *D*. But then *V* is an irreducible left *R*-module with $Ann_R(V) = I$ where $Ann_R(V) = \{r \in R \mid rV = \{0\}\}$. Note also that *R* and *D* commute and *R* is dense on *V* considered as a vector space over *D*. From now on *I*, *V* and *D* will be fixed.

Let *W* be some finite dimensional *D*-subspace of *V*. If $a \in R$ define $W_0(a) = W$ and for $0 \le i$, $W_{i+1}(a) = W \cap \left(\bigcap_{j=0}^{i} \operatorname{Ker}(d^{j}(a))\right)$ where $d^{0}(a) = a$. It is not hard to show that for $r, s \in R$ and $i \in \{0, 1, 2, ...\}$, if $d^{j}(r)w = d^{j}(s)w \ \forall 0 \le j < i$ and $w \in W_{j}(r)$ then $W_{i}(r) = W_{i}(s)$.

LEMMA 2. If $0 \neq a \in J$ then $W_{n+1}(a) = 0$.

PROOF. Since $d^n(a) = 0$ or is invertible it is clear from Lemma 1 that $R = Ra + Rd(a) + \cdots + Rd^n(a)$. It is trivial that $0 = d^j(a)W_{n+1}(a)$ for j = 0, 1, ..., n so we have $0 = RaW_{n+1}(a) + Rd(a)W_{n+1}(a) + \cdots + Rd^n(a)W_{n+1}(a) = RW_{n+1}(a)$ so $W_{n+1}(a) = 0$ because V is irreducible.

LEMMA 3. Let $0 \neq r \in R$, $0 \neq v \in V$, and $i \in \{0, 1, 2, ...\}$. Then $\exists a \in Rr$ with $a \neq 0$ such that $d^{i}(a)W_{i}(a) \subseteq Dv$ for j = 0, 1, ..., i.

PROOF: INDUCTION ON *i*. If i = 0 then $W_j(a) = W_0(a) = W$. Since *W* is finite dimensional so is rW. If rW = 0 then trivially let a = r. If $rW \neq 0$ then, by the density of *R*, choose $b \in R$ such that brW = Dv and set a = br. Then $aW_0(a) = aW \subseteq Dv$ and $a \neq 0$.

Suppose the result holds for *i* and choose $0 \neq s \in Rr$ such that $d^{j}(s)W_{j}(s) \subseteq Dv$ $\forall 0 \leq j \leq i$. Now if $d^{i+1}(s)W_{i+1}(s) = 0 \subseteq Dv$ then take a = s. Therefore without loss of generality assume that $d^{i+1}(s)W_{i+1}(s) \neq 0$. As *W* is finite dimensional $d^{i+1}(s)W_{i+1}(s)$ is also so by density $\exists b \in R$ such that $bd^{i+1}(s)W_{i+1}(s) = Dv$ and bv = v. Now for $0 \leq j \leq i+1$ and $w \in W_{j}(s)$ note that $d^{j}(bs)w = \sum_{k=0}^{j} {j \choose k} d^{j-k}(b)d^{k}(s)w$ but if k < j then $d^{k}(s)w = 0$ so

(1)
$$d^{j}(bs)w = bd^{j}(s)w.$$

Now if $j \leq i$ then $d^{j}(s)w \in Dv$ so $d^{j}(s)w = \alpha v$ for some $\alpha \in D$. But then from (1) we get

(2)
$$d^{j}(bs)w = bd^{j}(s)w = b\alpha v = \alpha bv = \alpha v = d^{j}(s)w.$$

From (2) and the comment before Lemma 2 we get that $W_k(s) = W_k(bs) \forall 0 \le k \le i+1$. Now let a = bs. Then $a \in Rs \subseteq Rr$, by (1) we get $d^{i+1}(a)W_{i+1}(a) = bd^{i+1}(s)W_{i+1}(s) = Dv \ne 0$ so $a \ne 0$ and $d^{i+1}(a)W_{i+1}(a) \subseteq Dv$, and if $0 \le j \le i$ then from (2), $d^j(a)W_j(a) = bd^j(s)W_j(s) = d^j(s)W_j(s) \subseteq Dv$. Therefore the result holds for i + 1.

LEMMA 4. $R/I \cong D_i$ for some $1 \le i \le n+1$ where $i = \dim_D(V)$.

PROOF. Let *W* be an arbitrary finite-dimensional *D*-subspace of *V*. As $d^n(J) \neq 0$, \exists a nonzero $r \in J$. Also \exists a nonzero $v \in V$ so take i = n and a as in Lemma 3. For $0 \leq j \leq n, d^j(a): W_j(a) \rightarrow V$ is a *D*-linear map with kernel $W_{j+1}(a)$ and range contained in *Dv*. Hence

$$\dim_D(W) = \dim_D(W_0(a))$$

= dim_D(W₁(a)) + dim_D(aW₀(a)) = ··· = dim_D(W_{n+1}(a))
+ $\sum_{j=0}^n \dim_D(d^j(a)W_j(a)) \le \dim_D(W_{n+1}(a)) + n + 1.$

By Lemma 2, $W_{n+1}(a) = 0$ so $\dim_D(W) \le n+1$. Since *W* is an arbitrary finite dimensional *D*-subspace of *V* and $V \ne 0$ we have $1 \le \dim_D(V) \le n+1$. Now take $i = \dim_D(V)$ and by the density of R/I on *V* with *V* a faithful irreducible R/I-module we get $R/I \cong D_i$.

In all that follows $i = \dim_D(V)$. If I = 0 there is nothing left to prove in the theorem, so we will assume from now on that $I \neq 0$. Note again that $\operatorname{Ann}_R(V) = I$. Now define $I_0 = R$ and for $0 \leq j$, $I_j = \bigcap_{k=0}^j d^{-k}(I)$ where $d^{-k}(I) = \{r \in R \mid d^k(r) \in I\}$. It is immediate that $d(I_j) \subseteq I_{j-1}$ and that I_j is an ideal. At this point we will develop some properties of I_j .

LEMMA 5. If $j \in \{0, 1, 2, ...\}$, $r \in R$, and $a \in I_J \setminus I_{j+1}$ then $d^j(RaR) \cap (r+I) \neq \emptyset$.

PROOF. Let $\varphi: R \to R/I$ by $\varphi(r) = r+I$. Now $a \in I_j \setminus I_{j+1}$ so $d^j(a) \notin I$ so $\varphi(d^j(a)) \neq 0$. As *I* is maximal R/I is simple so $r + I \in (R/I) \varphi(d^j(a))(R/I) = \varphi(Rd^j(a)R) = \varphi(d^j(RaR))$ because $d^j(IaR) \subseteq Id^j(aR) + I \subseteq I$ with $a \in I_j$ and similarly $d^j(RaI) \subseteq I$. $\therefore d^j(RaR) \cap (r+I) \neq \emptyset$.

LEMMA 6. There is a largest m such that $I_m \cap J \neq 0$. Furthermore $1 \leq m \leq n$, $I_{m+1} = 0$ and for $0 \leq j$, $I_{j+1}d^j(I_m \cap J) = 0$.

PROOF. If $0 \neq r \in I_{n+1} \cap J$ then $R = Rr + Rd(r) + \cdots + Rd^n(r) \subseteq I$ so since I is a proper ideal of R, $I_{n+1} \cap J = 0$. As $I_0 \cap J = J \neq 0$ we have that m exists and $0 \leq m \leq n$. Let $J_m = I_m \cap J$. Now $IJ_m \subseteq I_{m+1} \cap J = 0$ so for j = 0, $I_{j+1}d^j(I_m \cap J) = 0$. If $I_{j+1}d^j(I_m \cap J) = 0$ then $0 = d(I_{j+2}d^j(J_m)) = I_{j+2}d^{j+1}(J_m)$ as $d(I_{j+2})d^j(J_m) \subseteq I_{j+1}d^j(J_m)$. Thus by induction for $0 \leq j$, $I_{j+1}d^j(I_m \cap J) = 0$. Now

$$I_{n+1} = I_{n+1}R = I_{n+1} (RJ_m + Rd(J_m) + \dots + Rd^n(J_m))$$

$$\subseteq I_1 J_m + I_2 d(J_m) + \dots + I_{n+1} d^n(J_m) = 0$$

If $I_{m+1} = I_{n+1} = 0$ then *m* cannot be zero because $I \neq 0$ so we would be done. Now let *j* be the largest *j* such that $I_j \neq I_{j+1}$. If j > m then by Lemma 5 choose $a \in I_j \setminus I_{j+1}$ such that $d^j(a) \in 1 + I$. As $a \in I_{m+1}$, $ad^m(J_m) = 0$. As for k < j, $d^k(a) \in I$ we have

$$0 \equiv d^{j}(ad^{m}(J_{m})) \equiv d^{j}(a) d^{m}(J_{m}) \equiv d^{m}(J_{m}) \pmod{I}$$

and $J_m \subseteq I_m$ so $0 \neq J_m \subseteq I_{m+1} \cap J = 0$. As this is impossible, $j \leq m$. Therefore $I_{m+1} = I_{n+1}$ and we are done.

From now on *m* and J_m will be as used in Lemma 6.

LEMMA 7. *R* and *D* have characteristic *p* with *p* prime such that $p \setminus m + 1$. Also $2 \le p \le n + 1$.

PROOF. By Lemma 5 $\exists r \in RJ_m R \subseteq I_m$ such that $d^m(r) \in 1 + I$. By Lemma 6, $d^{m-1}(r)$ exists and $0 = d^{m-1}(r)r$. Now using the fact that $\operatorname{Ann}_R(V) = I$ we obtain $0 = d^{m+1}(d^{m-1}(r)r)V = \sum_{j=0}^{m+1} {m+1 \choose j} d^{2m-j}(r) d^j(r)V = (m+1)d^m(r)V = (m+1)V$. But $m+1 \in D$ so D has characteristic p such that $p \setminus m+1$, and as D is a division ring, p is prime. But then pV = 0 so $p \in I$ which gives p = 0 in R by Lemma 1. That $2 \leq p \leq n+1$ is trivial.

From now on p will be the characteristic of R. Now the lemmas will begin to narrow in on the structure of R.

LEMMA 8. If $0 \le j \le m$ then \exists a function $\theta: R/I \to R$ such that $\theta(r+I) \in r+I$ and $d(\theta(r+I)) \in I_j$ for every $r \in R$.

PROOF: INDUCTION ON *j*. If j = 0 then take any function $\theta: R/I \to R$ such that $\theta(r+I) \in r+I$ for every $r \in R$, then $d(\theta(r+I)) \in R = I_0$ so the result holds. Suppose the result holds for some *j* with j < m. Then $\exists \gamma: R/I \to R$ with $\gamma(r+I) \in r+I$ and $d(\gamma(r+I)) \in I_j$ for every $r \in R$. Now $d^{m-j-1}(J_m)$ is nonempty and $d^{m-j-1}(J_m) \cap (I_{j+1} \setminus I_{j+2}) \neq \emptyset$ so for $a \in R \exists b \in I_{j+1}$ such that $d^{j+1}(b) \in a+I$ by Lemma 5. $\therefore \exists a$ function $\psi: R \to I_{j+1}$ such that $d^{j+1}(\psi(a)) \in a+I$ for every $a \in R$. Now take $\theta(r+I) = \gamma(r+I) - \psi(d^{j+1}(\gamma(r+I)))$. Then for $r \in R, \theta(r+I) \in r+I+I_{j+1} = r+I$ and $d(\theta(r+I)) = d(\gamma(r+I) - \psi(d^{j+1}(\gamma(r+I)))) \in I_j - d(I_{j+1}) = I_j$. But $d^j(d(\theta(r+I))) = d^{j+1}(\gamma(r+I)) - d^{j+1}(\psi(d^{j+1}(\gamma(r+I)))) \in d^{j+1}(\gamma(r+I)) - (d^{j+1}(\gamma(r+I))+I) = I$. $\therefore d(\theta(r+I)) \in I_{j+1}$.

LEMMA 9. *R* has a subring R' with $d(R') \subseteq I_m$, R = R' + I, $R' \cap I = 0$, and $R' \cong D_i$.

PROOF. Apply Lemma 8 with j = m to find $\theta: R/I \to R$ such that $\theta(r+I) \in r+I$ and $d(\theta(r+I)) \in I_m$ for every $r \in R$. Now if $r \in R$ and $r_1r_2 \in r+I$ such that $d(r_1), d(r_2) \in I_m$ then $r_1 - r_2 \in I_{m+1} = 0$ by Lemma 6 so $r_1 = r_2$. $\therefore \theta(r+I)$ is the unique element $r_1 \in r+I$ with $d(r_1) \in I_m$. Now define $R' = \theta(R/I)$. Then by definition of $R', d(R') \subseteq I_m$ and as $0 \in 0 + I = I$ and $d(0) = 0 \in I_m$, we have $R' \cap I = 0$. Now if $r, s \in R$ then $\theta(r+I) + \theta(s+I) \in r+s+I$ and $d(\theta(r+I) + \theta(s+I)) \in I_m$ so $\theta(r+s+I) = \theta(r+I) + \theta(s+I)$ by the uniqueness of $t \in r+s+I$ with $d(t) \in I_m$. Similarly $\theta(rs+I) = \theta(r+I)\theta(s+I)$.

B. TILLY

 \therefore θ is a ring homomorphism from $R/I \rightarrow R'$. Now if $\theta(r+I) = 0$ then $0 \in r+I \Rightarrow r \in I$ so θ is a ring isomorphism. Using Lemma 4, $R' = \theta(R/I) \cong D_i$ so $R' \cong D_i$ and R' is a subring of R.

For convenience R' will be called D_i from now on. Also Z_R will be the center of R and Z_{D_i} the center of D_i . The function θ in Lemma 8 will not be used again.

LEMMA 10. If
$$1 \le j \le m$$
 and $r \in R$ then $\exists s \in I$ such that $d(s) \in r + I_j$.

PROOF. Suppose that it is false and let *j* be the least $j \in \{1, 2, ..., m\}$ such that $\exists r \in R$ for which the result fails. By Lemma 6, $0 \leq m-1$ so $d^{m-1}(J_m)$ exists and $d^{m-1}(J_m) \cap (I_1 \setminus I_2) \neq \emptyset$. Therefore Lemma 5 can be applied to show that $j \neq 1$. $\therefore 1 < j$ and $\exists a \in I$ such that $r - d(a) \in I_{j-1}$. As $d^{m-j}(J_m) \cap (I_j \setminus I_{j+1}) \neq \emptyset$, by Lemma 5 $\exists b \in Rd^{m-j}(J_m)R \subseteq I_j$ such that $d^j(b) \in d^{j-1}(r - d(a)) + I$. Let $s = a + b \in I$. Now $r - d(s) = (r - d(a)) - d(b) \in I_{j-1}$ and $d^{j-1}(r - d(s)) = d^{j-1}(r - d(a)) - d^j(b) \in I$ so $r - d(s) \in I_j$. $\therefore j$ does not exist by contradiction so the lemma holds.

LEMMA 11. If $r \in Z_R$ then $\exists a \in I \cap Z_R$ with $d(a) \in r + I_m$. If in addition $r \in I$ then $r^p = 0$.

PROOF. Apply Lemma 10 to find $a \in I$ such that $r - d(a) \in I_m$. Then let $K = \{ab - ba \mid b \in R\}$. Then $K \subseteq I$ and $d(K) \subseteq K + I_m$ so it is immediate that $K \subseteq I_{m+1} = 0$ so $a \in Z_R$. If in addition $r \in I$ then $r^p \in I$ and $d(r^p) = pr^{p-1}d(r) = 0 \in I_m$ because p is the characteristic of R, so therefore $r^p \in I_{m+1} = 0$.

Suppose that $\exists x_1, x_2, \ldots, x_{\ell} \in I \cap Z_R$ such that $d(x_1) \in 1 + I$, and $d(x_j) \in x_1^{p-1} x_2^{p-1} \cdots x_{j-1}^{p-1} + I_m$ for every $j \in \{2, 3, \ldots, \ell\}$. Recall from number theory that if $k \in \{0, 1, \ldots, p^{\ell} - 1\}$ then k has a unique representation as $n_{\ell}n_{\ell-1} \cdots n_1 = n_1 + n_2 p + \cdots + n_{\ell}p^{\ell-1}$ with $n_1, n_2, \ldots, n_{\ell} \in \{0, 1, \ldots, p - 1\}$. Now define $\theta: \{0, 1, \ldots, p^{\ell} - 1\} \rightarrow R$ by $\theta(k) = \theta(n_{\ell}n_{\ell-1} \cdots n_1) = x_1^{n_1} x_2^{n_2} \cdots x_{\ell}^{n_{\ell}}$ where r^0 is defined to be 1. Note that $\theta(p^{j-1}) = x_j$. Now Lemma 12 is a technical result that is crucial in finding the structure of R.

LEMMA 12. If x_1, x_2, \ldots, x_ℓ exist and $0 \neq x_1, x_2, \ldots, x_\ell$ then $\forall 0 \leq k \leq p^\ell - 1$, $\theta(k) \in I_k \cap Z_R$ and $d^k(\theta(k))$ is invertible.

PROOF: INDUCTION ON *k*. If k = 0 then $\theta(k) = x_1^0 x_2^0 \cdots x_{\ell}^0 = 1 \in I_0 \cap Z_R$ and is also invertible. Suppose the result holds for *k* and $k < p^{\ell} - 1$. Note that $\theta(k+1)$ is the product of elements from Z_R so $\theta(k+1) \in Z(R)$. To finish, divide into cases.

CASE I. $k + 1 = p^{j-1}$ for some $j \in \{1, 2, ..., \ell\}$.

Then $\theta(k+1) = x_j$. As the result holds for k, $\theta(k) \in I_k$ and $d^k(\theta(k))$ is invertible so $0 \neq \theta(k) \in I_k \Rightarrow k \leq m$. Now $d(\theta(k+1)) = d(x_j) \in x_1^{p-1}x_2^{p-1} \cdots x_{j-1}^{p-1} + I_m =$ $\theta((p-1)(1+p+\cdots+p^{j-2})) + I_m = \theta(p^{j-1}-1) + I_m = \theta(k) + I_m$ so $d(\theta(k+1)) \in I_k$. As $\theta(k+1) = x_j \in I$, $\theta(k+1) \in I_{k+1}$. As $0 \neq \theta(k+1) \in I_{k+1}$, $k+1 \leq m$ so $d^{k+1}(\theta(k+1)) \in$ $d^k(\theta(k)+I_m) \subseteq d^k(\theta(k)+I_{k+1}) \subseteq d^k(\theta(k)) + I$. $\therefore d^{k+1}(\theta(k+1)) = d^k(\theta(k)) - a$ for some $a \in I$. As $\theta(k) \in Z_R$, $d^k(\theta(k)) \in Z_R$ and $a \in I$ so $a^{m+1} \in I_{m+1} = 0$. Since $(d^k\theta(k)) - a$ divides $(d^k(\theta(k)))^{m+1} - a^{m+1}$ and $d^k(\theta(k))$ is invertible, so is $d^{k+1}(\theta(k+1))$. CASE II. $k+1 \neq p^{j-1} \forall 1 \leq j \leq \ell$.

Let $k + 1 = n_1 + n_2 p + \dots + n_\ell p^{\ell-1}$ with $n_1, n_2, \dots, n_\ell \in \{0, 1, \dots, p-1\}$. Let $\{j_1, j_2, \dots, j_N\} = \{j \in \{1, 2, \dots, \ell\} \mid n_j \neq 0\}$ with $j_1 < j_2 < \dots < j_N$. Note that $\theta(k+1) = x_1^{n_1} x_2^{n_2} \cdots x_\ell^{n_\ell} = x_{j_1}^{n_{j_1}} x_{j_2}^{n_{j_2}} \cdots x_{j_N}^{n_{j_N}}$. Now $\theta(k+1) \in I$, $\theta(k) \in I_k$, $k \neq 0$ so n_{j_1} exists and n_{j_1} is invertible as an element of D_i (and therefore of R), and $d^k(\theta(k))$ is invertible so the lemma would follow if $d(\theta(k+1)) = n_{j_1}\theta(k)$.

Now suppose that $2 \le M \le N$. Then

$$x_{j_1}^{n_1}x_{j_2}^{n_2}\cdots x_{j_{M-1}}^{n_{j_{M-1}}}d(x_{j_M}^{n_{j_M}})x_{j_{M+1}}^{n_{j_{M+1}}}\cdots x_{j_N}^{n_{j_N}}\in x_{j_1}d(x_{j_M})R$$

using $x_1, x_2, ..., x_\ell \in Z_R$. But $x_{j_1} d(x_{j_M}) R \in x_{j_1}^p R + x_{j_1} I_m = 0$ by Lemmas 6 and 11 and the fact that $j_1 < j_M$ and the definition of $d(x_{j_M})$. Therefore

$$d(k+1) = d(x_{j_1}^{n_{j_1}} x_{j_2}^{n_{j_2}} \cdots x_{j_N}^{n_{j_N}})$$

= $\sum_{M=1}^{N} x_{j_1}^{n_1} x_{j_1}^{n_2} \cdots x_{j_{M-1}}^{n_{M-1}} d(x_{j_M}^{n_M}) x_{j_{M+1}}^{n_{M+1}} x_{j_{M+2}}^{n_{M+2}} \cdots x_{j_N}^{n_N}$
= $d(x_{j_1}^{n_{j_1}}) x_{j_2}^{n_{j_2}} \cdots x_{j_N}^{n_{j_N}} \in n_{j_1} (x_1^{p-1} x_2^{p-1} \cdots x_{j_{j-1}}^{p-1} + I_m) x_{j_1}^{n_{j_1-1}} x_{j_2}^{n_{j_2}} x_{j_3}^{n_{j_3}} \cdots x_{j_N}^{n_{j_N}}.$

However because $k + 1 \neq p^{j-1} \forall 1 \leq j \leq \ell$ we have trivially $2 \leq n_{j_1} + n_{j_2} + \dots + n_{j_N}$ and $I_m \cdot I = 0$ so

$$d(\theta(k+1)) = n_{j_1} x_1^{p-1} x_2^{p-1} \cdots x_{j_1-1}^{p-1} x_{j_1}^{n_{j_1}-1} x_{j_2}^{n_{j_2}} x_{j_3}^{n_{j_3}} \cdots x_{j_N}^{n_{j_N}}$$

= $n_{j_1} \theta((p-1)(1+p+\cdots+p^{j_1-2})-p^{j_1-1}+n_{j_1}p^{j_1-1}$
 $+ n_{j_2} p^{j_1-1} + \cdots + n_{j_N} p^{j_N-1})$
= $n_{j_1} \theta(-1+k+1) = n_{j_1} \theta(k).$

Therefore the lemma holds.

LEMMA 13. There exists a largest $\ell \in \mathbb{Z}^+$ such that x_1, x_2, \ldots, x_ℓ all exist and are nonzero. Furthermore $m = p^{\ell} - 1$.

PROOF. $1 \in Z_R$ so by Lemma 11, x_1 exists. By Lemma 6, $1 \le m$ so $d(x_1) \in 1 + I_m \subseteq 1 + I$ and $I \ne R$ so $d(x_1) \notin I \Rightarrow x_1 \ne 0$. Now if there is no last ℓ such that x_1, x_2, \ldots, x_ℓ all exist and are nonzero then take $\ell = m$ and then by Lemma 12, $0 \ne I_{p'} \subseteq I_{m+I}$ contrary to Lemma 6 so a last such ℓ exists. But now take ℓ to be maximal and by Lemma 12, $d^{p'-1}(\theta(p^{\ell}-1))$ is invertible and $\theta(p^{\ell}-1) \in I_{p'-1}$ but $d^{p'-1}(\theta(p^{\ell}-1)) \notin I$ so $m \ge p^{\ell}-1$. However by Lemma 11 $\exists x_{\ell+1} \in I \cap Z_R$ with $d(x_{\ell+1}) \in \theta(p^{\ell}-1) + I_m$ but ℓ is maximal so $x_{\ell+1} = 0$ and $\theta(p^{\ell}-1) \in I_m$, from which $m \le p^{\ell} - 1$. Therefore $m = p^{\ell} - 1$.

LEMMA 14. Let $0 \le j \le p^{\ell} - 1$. Then $I_j = I_{j+1} + D_i \theta(j)$.

PROOF. By Lemma 12, $\theta(j) \in I_j$ so as $I_{j+1} \subseteq I_j$ and I_j is an ideal, $I_{j+1} + D_i\theta(j) \subseteq I_j$. Now by Lemma 12, $d^j(\theta(j))$ is invertible so $\theta(j) \in I_j \setminus I_{j+1}$. Therefore if $r \in I_j$ then by Lemma 5 $\exists s \in R\theta(j)R = R\theta(j)$ (because $\theta(j) \in Z_R$) such that $d^j(s) \in d^j(r) + I$. However $s = (a+b)\theta(j)$ for some $a \in D_i$ and $b \in I$ by Lemma 9. But then $d^j(b\theta(j)) \in I$ so $d^j(r) \in d^j(a\theta(j)) + I$. As $r - a\theta(j) \in I_j$ this gives $r - a\theta(j) \in I_{j+1}$. $\therefore r \in a\theta(j) + I_{j+1} \subseteq D_i\theta(j) + I_{j+1}$.

Now it is a matter of putting together the pieces.

LEMMA 15. There exists a derivation f of D_i and $a_1, a_2, \ldots, a_\ell \in Z_{D_i}$ such that $\forall a \in D_i, d(a) = f(a)x_1^{p-1}x_2^{p-1} \cdots x_\ell^{p-1}, d(x_1) = 1 + a_1x_1^{p-1}x_2^{p-1} \cdots x_\ell^{p-1}, and d(x_j) = x_1^{p-1}x_2^{p-1} \cdots x_{j-1}^{p-1} + a_jx_1^{p-1}x_2^{p-1} \cdots x_j^{p-1}$ for $j = 2, 3, \ldots, \ell$.

PROOF. Note that $x_1^{p-1}x_2^{p-1}\cdots x_\ell^{p-1} = \theta(p^\ell-1)$, and by Lemma 13, $m = p^\ell - 1$ so by Lemmas 6 and 14, $I_m = D_i\theta(p^\ell - 1)$. Now suppose that $a, b \in D_i$ and $(a - b)\theta(p^\ell - 1) = 0$. Then by Lemma 9, $0 = d^{p^\ell-1}((a - b)\theta(p^\ell - 1)) \in (a - b)d^{p^\ell-1}(\theta(p^\ell - 1)) + I$ so $(a - b)d^{p^\ell-1}(\theta(p^\ell - 1)) \in I$ so by Lemma 12, $a - b \in I$. But then by Lemma 9, $a - b \in I \cap D_i = 0$ so a = b. Therefore if $a\theta(p^\ell - 1) = 0$ then a = 0. Thus there exists a unique function $f: D_i \to D_i$ such that if $a \in D_i$ then $d(a) = f(a)\theta(p^\ell - 1)$. Now if $a, b \in D_i$ then $f(a + b)\theta(p^\ell - 1) = d(a + b) = d(a) + d(b) = (f(a) + f(b))\theta(p^\ell - 1)$ so f(a + b) = f(a) + f(b). Also $f(ab)\theta(p^\ell - 1) = d(ab) = d(a)b + ad(b) = (f(a)b + af(b))\theta(p^\ell - 1)$ so f(ab) = f(a)b + af(b) so f is a derivation. Now as $I_m = D_i\theta(p^\ell - 1)$ by Lemma 14, from the definition of $x_1 \exists a_1 \in D_i$ with $d(x_1) = 1 + a_1\theta(p^\ell - 1)$. But then by the definition of $x_1, x_1 \in Z_R$ so $1 + a_1\theta(p^\ell - 1) = d(x_1) \in Z_R$ so $\forall a \in D_i$, $0 = a(1 + a_1\theta(p^\ell - 1)) - (1 + a_1\theta(p^\ell - 1))a = (aa_1 - a_1a)\theta(p^\ell - 1)$ so $aa_1 - a_1a = 0$. $\therefore a_1 \in Z_{D_i}$.

LEMMA 16. $R \cong D_i[y_1, y_2, \dots, y_\ell]/(y_1^p, y_2^p, \dots, y_\ell^p)$.

PROOF. By Lemma 11, $0 = x_1^p = x_2^p = \cdots = x_\ell^p$ so there is a unique ring homomorphism $\psi: D_i[y_1, y_2, \dots, y_\ell]/(y_1^p, y_2^p, \dots, y_\ell^p) \to R$ with $\psi(a) = a \ \forall a \in D_i$ and $\psi(y_j) = x_j$ for $j = 1, 2, \dots, \ell$. Now ψ is an epimorphism because by Lemmas 14 and 13,

$$R = I_0 = D_i + I_1$$

= $D_i + D_i\theta(1) + I_2 = \dots = D_i + D_i\theta(1) + D_i\theta(2) + \dots + D_i\theta(p^{\ell} - 1)$
 $\subseteq \psi(D_i[y_1, y_2, \dots, y_{\ell}]/(y_1, y_2, \dots, y_{\ell})).$

Now to finish it suffices to show that ψ is one-to-one. Now suppose that $a \in D_i[y_1, y_2, \dots, y_\ell]/(y_1^p, y_2^p, \dots, y_\ell^p)$ and that $\psi(a) = 0$. Formally, $\psi(a) = a_0 + a_1\theta(1) + \dots + a_{p'-1}\theta(p^\ell - 1)$ with $a_0, a_1, \dots, a_{p'-1} \in D_i$. If some $a_j \neq 0$ then let j be the least j such that $a_j \neq 0$ and note that $d^j(\psi(a)) \notin I$ contrary to $\psi(a) = 0$. Clearly if $a_0, a_1, \dots, a_{p'-1}$ are all 0 then a = 0 so ψ is one-to-one.

Let us review what part of Theorem 1 we now know. For the case where I = 0, Lemma 4 does the job. If $I \neq 0$ then Lemmas 15 and 16 give us most of Theorem 1 and together with Lemma 7 all that we do not know is $2 \le ip^{\ell} \le n + 1$. However we have $1 \le i \le n + 1$ from Lemma 4, $2 \le p \le n + 1$ from Lemma 7 and $1 \le \ell$ from Lemmas 6 and 13. Thus we know that $2 \le ip^{\ell}$. The rest of the paper will show that $ip^{\ell} \le n + 1$.

From Lemmas 6 and $14 \exists b \in D_i$ such that $0 \neq b\theta(m) \in I_m \cap J$. By similar reasoning to Lemma 3, $\exists 0 \neq a \in D_i b$ such that $\dim_D \left(f^j(a) \left(\bigcap_{k=0}^{j-1} \operatorname{Ker}(f^k(a)) \right) \right) = 0$ or 1 for j = 1, 2, ..., n and $\dim_D(aV) = 0$ or 1 also. Now define $L_0 = 0$ and for $j \in \mathbb{Z}^+, L_j = D_i a + D_i f(a) + \cdots + D_i f^{j-1}(a)$. Therefore $L_0 \subseteq L_1 \subseteq \cdots$ and $f(L_0) \subseteq L_1, f(L_1) \subseteq L_2$, $f(L_2) \subseteq L_3, \dots$ Now if $N = jp^{\ell} + k$ with $j \in \{0, 1, 2, \dots, \}$ and $k \in \{0, 1, \dots, p^{\ell} - 1\}$ then define $\mathcal{L}[N] = \mathcal{L}(j,k) = RL_j + I_{p^{\ell}-k-1}L_{j+1}$. Note that $0 \neq a \in J$ and Lemma 1 imply that $R = Ra + Rd(a) + \dots + Rd^n(a)$.

THEOREM 1. Let $n \in \mathbb{Z}^+$, R be a ring with unit, J a left ideal of R, and d a derivation of R such that $d^n(J) \neq 0$ and $d^n(r) = 0$ or $d^n(r)$ is invertible, for every $r \in J$. Then there exists a division ring D such that R is either.

- 1) D_i , the ring of $i \times i$ matrices over a division ring D with $1 \le i \le n + 1$, or
- 2) $D_i[x_1, x_2, ..., x_\ell]/(x_1^p, x_2^p, ..., x_\ell^p)$ where $i, \ell, p \in \mathbb{Z}^+$, p is prime, $2 \le ip^\ell \le n + 1$, and char D = p.

Furthermore, there exists a derivation f of D_i and $a_1, a_2, \ldots, a_\ell \in Z_{D_i}$, the center of D_i , with $d(a) = f(a)x_1^{p-1}x_2^{p-1}\cdots x_\ell^{p-1}$ for all $a \in D_i$, $d(x_1) = 1 + a_1x_1^{p-1}x_2^{p-1}\cdots x_\ell^{p-1}$, and

$$d(x_j) = x_1^{p-1} x_2^{p-1} \cdots x_{j-1}^{p-1} + a_j x_1^{p-1} x_2^{p-1} \cdots x_{\ell}^{p-1}$$

for $j = 2, 3, ..., \ell$.

PROOF. As has been noted, all that is left is to show that $ip^{\ell} \leq n + 1$. This will be proved under the assumption $d(\mathcal{L}[N]) \subseteq \mathcal{L}[N+1] \forall N \geq 0$, and then that assumption will be proved.

PART 1. Assume $d(\mathcal{L}[N]) \subseteq \mathcal{L}[N+1] \forall N \ge 0$.

Note that $\mathcal{L}[0] \subseteq \mathcal{L}[1] \subseteq \cdots \subseteq \mathcal{L}[n]$ and for $N \in \{0, 1, 2, \ldots\}$, $d^{N}(\mathcal{L}[0]) \subseteq \mathcal{L}[N]$. Now choose j, k with $0 \leq k \leq p^{\ell} - 1$ with $n + 1 = jp^{\ell} + k$. It is easy to verify that $\mathcal{L}[n] \subseteq L_j + I$. But $a\theta(p^{\ell} - 1) \in \mathcal{L}[0]$ so $R \subseteq R\mathcal{L}[0] + R\mathcal{L}[1] + \cdots + R\mathcal{L}[n] = R\mathcal{L}[n] \subseteq (D_i + I)(L_j + I) \subseteq L_j + I \subseteq R$ so $R = L_j + I$. Note that if $c_1 \in D_i$ then $c_1 \in L_j + I$ so $\exists c_2 \in L_j$ with $c_1 - c_2 \in D_i \cap I = 0$ by Lemma 9 and $L_j \subseteq D_i$ so $D_i = L_j = D_i a + D_i f(a) + \cdots + f^{j-1}(a)$ so by the same reasoning as in Lemmas 2 and $4, j \geq \dim_D(V) = i$ but $n + 1 = jp^{\ell} + k$ and $0 \leq k$ so $j \leq \frac{n+1}{p^{\ell}}$ so $ip^{\ell} \leq n + 1$.

PART 2. Prove that $d(\mathcal{L}[N]) \subseteq \mathcal{L}[N+1] \forall N \ge 0$.

INDUCTION ON *N*. If N = 0 then $\mathcal{L}[N] = \mathcal{L}(0,0) = RL_0 + I_{p'-1}L_1 = I_{p'-1}L_1$ so $d(\mathcal{L}[N]) \subseteq I_{p'-2}L_1 + Id(L_1) = RL_0 + I_{p'-1-1}L_1 = \mathcal{L}[1]$ using the fact that $d(L_1) \subseteq I_m$. Now suppose that $d(\mathcal{L}[N]) \subseteq \mathcal{L}[N+1]$ and divide into cases.

CASE I. $N + 1 = jp^{\ell} + k$ with $1 \le k < p^{\ell} - 1$.

Then by Lemma 14, $\mathcal{L}[N+1] = \mathcal{L}(j,k) = RL_j + I_{p^i-k-1}L_{j+1} = RL_j + I_{p^i-k}L_{j+1} + D_i\theta(p^\ell - k - 1)L_{j+1} \subseteq \mathcal{L}[N] + I_{p^i-k-1}L_{j+1}$. $\therefore d(\mathcal{L}[N+1]) \subseteq d(\mathcal{L}[N]) + d(I_{p^i-k-1})L_{j+1} + I_{p^i-k-1}d(L_{j+1}) \subseteq \mathcal{L}[N+1] + I_{p^i-k-2}L_{j+1} \subseteq RL_j + I_{p^i-k-2}L_{j+1} = \mathcal{L}(j,k+1) = \mathcal{L}[N+2].$

CASE II. $N + 1 = ip^{\ell} + k$ with $k = p^{\ell} - 1$.

Then $\mathcal{L}(N+1) = RL_j + I_0L_{j+1} = RL_{j+1}$ because $I_0 = R$. $\therefore d(\mathcal{L}[N+1]) \subseteq d(R)L_{j+1} + R\theta(p^{\ell} - 1)f(L_{j+1}) \subseteq RL_{j+1} + I_{p'-1}L_{j+2} = \mathcal{L}(j+1,0) = \mathcal{L}[N+2].$

CASE III. $N + 1 = jp^{\ell} + k$ with $j \in \mathbb{Z}^+$ and k = 0.

Then $\mathcal{L}[N+1] = RL_j + I_{p'-1}L_{j+1} = RL_{j-1} + I_0L_j + I_{p'-1}L_{j+1} = \mathcal{L}[N] + I_{p'-1}L_{j+1}.$ Therefore $d(\mathcal{L}[N+1]) \subseteq \mathcal{L}[N+1] + I_{p'-2}L_{j+1} = RL_j + I_{p'-2}L_{j+1} = \mathcal{L}(j, 1) = \mathcal{L}[N+2].$

B. TILLY

REFERENCES

1. J. Bergen, I. N. Herstein and C. Lanski, *Derivations with invertible values*, Can. J. Math. 35(1983), 300–310.

Department of Mathematics and Statistics University of Victoria Victoria, British Columbia V8W 3P4

Present address: 6188 Bradley Hall Dartmouth College Department of Mathematics and Computer Science Hanover, New Hampshire 03755 U.S.A.