DERIVATIONS WHOSE ITERATES ARE ZERO OR INVERTIBLE ON A LEFT IDEAL

BEN TILLY

Abstract

Let $n \in \mathbb{Z}^{+}$and R be a ring which possesses a unit element, a left ideal J, and a derivation d such that $d^{n}(J) \neq 0$ and $d^{n}(r)$ is 0 or invertible, for all $r \in J$. We prove that either R is primitive, in which case R is D_{i} with $1 \leq i \leq n+1$, where D_{i} is the ring of $i \times i$ matrices over a division ring D, or else there exist positive integers i, ℓ and p with p prime and $2 \leq i p^{f} \leq n+1$, such that R is $D_{i}\left|x_{1}, x_{2}, \ldots, x_{f}\right| /\left(x_{1}^{p}, x_{2}^{p}, \ldots, x_{f}^{p}\right)$, where D is a division ring with characteristic p, and furthermore there is a derivation f

 of D_{i} and $a_{1}, a_{2}, \ldots, a_{\ell} \in Z_{D_{i}}$, the center of D_{i}, such that $a \in D_{i}$ then$$
\begin{aligned}
d(a) & =f(a) x_{1}^{p-1} x_{2}^{p-1} \cdots x_{t}^{p-1}, \\
d\left(x_{1}\right) & =1+a_{1} x_{1}^{p-1} x_{2}^{p-1} \cdots x_{t}^{p-1},
\end{aligned}
$$

and

$$
d\left(x_{j}\right)=x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j-1}^{p-1}+a_{j} x_{1}^{p-1} x_{2}^{p-1} \cdots x_{f}^{p-1}
$$

for all $2 \leq j \leq \ell$.
Bergen, Herstein and Lanski [1] have related the structure of a ring R to the special behavior of one of its derivations. More precisely, they proved that if R is a ring with unit and $d \neq 0$ is a derivation of R such that for every $r \in R, d(r)=0$ or $d(r)$ is invertible in R, then R must be a division ring D, the ring D_{2} of 2×2 matrices over a division ring D, or else $D[x] /\left(x^{2}\right)$ where D has characteristic $2, d(D)=0$, and $d(x)=1+a x$ for some a in the centre of D.

For the entire paper we shall assume that $n \in \mathbb{Z}^{+}, R$ is a ring with unit, J is a left ideal of R, and d is a derivation of R with $d^{n}(J) \neq 0$ such that for every $r \in J, d^{n}(r)=0$ or $d^{n}(r)$ is invertible in R. The results we will obtain are similar to those of (1). In fact we shall prove the following:

Theorem 1. Let $n \in \mathbb{Z}^{+}, R$ be a ring with unit, J a left ideal of R, and d a derivation of R such that $d^{n}(J) \neq 0$ and $d^{n}(r)=0$ or $d^{n}(r)$ is invertible, for every $r \in J$. Then there exists a division ring D such that R is either

1) D_{i}, the ring of $i \times i$ matrices over a division ring D with $1 \leq i \leq n+1$, or
2) $D_{i}\left[x_{1}, x_{2}, \ldots, x_{\ell}\right] /\left(x_{1}^{p}, x_{2}^{p}, \ldots, x_{\ell}^{p}\right)$ where $i, \ell, p \in \mathbb{Z}^{+}, p$ is prime, $2 \leq i p^{\ell} \leq n+1$, and $\operatorname{char} D=p$.
Furthermore, there exists a derivation f of D_{i} and $a_{1}, a_{2}, \ldots, a_{f} \in Z_{D_{i}}$, the center of D_{i}, with $d(a)=f(a) x_{1}^{p-1} x_{2}^{p-1} \cdots x_{f}^{p-1}$ for all $a \in D_{i}$,

$$
d\left(x_{1}\right)=1+a_{1} x_{1}^{p-1} x_{2}^{p-1} \cdots x_{\ell}^{p-1},
$$

[^0]and
$$
d\left(x_{j}\right)=x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j-1}^{p-1}+a_{j} x_{1}^{p-1} x_{2}^{p-1} \cdots x_{\ell}^{p-1} \quad \text { for } j=2,3, \ldots, \ell .
$$

Let us start with an easy generalization of a lemma from [1].
Lemma 1. If $0 \neq a \in R$ and $d(a)=0$ then a is invertible.
Proof. As $d^{n}(J) \neq 0 \exists r \in J$ with $d^{n}(r) \neq 0$ so $d^{n}(r)$ is invertible. Now $d^{n}(a r)=$ $\sum_{i=0}^{n}\binom{n}{i} d^{n-i}(a) d^{i}(r)=a d^{n}(r)$ as $0=d(a)=d^{2}(a)=\cdots$. Now $a r \in J$ and $a d^{n}(r) \neq 0$ because $a d^{n}(r)\left(d^{n}(r)\right)^{-1}=a \neq 0$ so $a d^{n}(r)=d^{n}(a r)$ is invertible. As $d^{n}(R)$ is invertible, a is invertible.

Before our next lemma, note that R is a ring with unit so R has a maximal ideal I and R / I is primitive so we may let V be a faithful irreducible left R / I-module with commuting division ring D. By the Jacobson density theorem R / I is dense on V considered as a vector space over D. But then V is an irreducible left R-module with $\operatorname{Ann}_{R}(V)=I$ where $\operatorname{Ann}_{R}(V)=\{r \in R \mid r V=\{0\}\}$. Note also that R and D commute and R is dense on V considered as a vector space over D. From now on I, V and D will be fixed.

Let W be some finite dimensional D-subspace of V. If $a \in R$ define $W_{0}(a)=W$ and for $0 \leq i, W_{i+1}(a)=W \cap\left(\bigcap_{j=0}^{i} \operatorname{Ker}\left(d^{j}(a)\right)\right)$ where $d^{0}(a)=a$. It is not hard to show that for $r, s \in R$ and $i \in\{0,1,2, \ldots\}$, if $d^{j}(r) w=d^{j}(s) w \forall 0 \leq j<i$ and $w \in W_{j}(r)$ then $W_{i}(r)=W_{i}(s)$.

Lemma 2. If $0 \neq a \in J$ then $W_{n+1}(a)=0$.
Proof. Since $d^{n}(a)=0$ or is invertible it is clear from Lemma 1 that $R=R a+$ $R d(a)+\cdots+R d^{n}(a)$. It is trivial that $0=d^{j}(a) W_{n+1}(a)$ for $j=0,1, \ldots, n$ so we have $0=R a W_{n+1}(a)+R d(a) W_{n+1}(a)+\cdots+R d^{n}(a) W_{n+1}(a)=R W_{n+1}(a)$ so $W_{n+1}(a)=0$ because V is irreducible.

Lemma 3. Let $0 \neq r \in R, 0 \neq v \in V$, and $i \in\{0,1,2, \ldots\}$. Then $\exists a \in R r$ with $a \neq 0$ such that $d^{j}(a) W_{j}(a) \subseteq D v$ for $j=0,1, \ldots, i$.

PROOF: Induction on i. If $i=0$ then $W_{j}(a)=W_{0}(a)=W$. Since W is finite dimensional so is $r W$. If $r W=0$ then trivially let $a=r$. If $r W \neq 0$ then, by the density of R, choose $b \in R$ such that $b r W=D v$ and set $a=b r$. Then $a W_{0}(a)=a W \subseteq D v$ and $a \neq 0$.

Suppose the result holds for i and choose $0 \neq s \in R r$ such that $d^{j}(s) W_{j}(s) \subseteq D v$ $\forall 0 \leq j \leq i$. Now if $d^{i+1}(s) W_{i+1}(s)=0 \subseteq D v$ then take $a=s$. Therefore without loss of generality assume that $d^{i+1}(s) W_{i+1}(s) \neq 0$. As W is finite dimensional $d^{i+1}(s) W_{i+1}(s)$ is also so by density $\exists b \in R$ such that $b d^{i+1}(s) W_{i+1}(s)=D v$ and $b v=v$. Now for $0 \leq j \leq i+1$ and $w \in W_{j}(s)$ note that $d^{j}(b s) w=\sum_{k=0}^{j}\binom{j}{k} d^{j-k}(b) d^{k}(s) w$ but if $k<j$ then $d^{k}(s) w=0$ so

$$
\begin{equation*}
d^{j}(b s) w=b d^{j}(s) w . \tag{1}
\end{equation*}
$$

Now if $j \leq i$ then $d^{j}(s) w \in D v$ so $d^{j}(s) w=\alpha v$ for some $\alpha \in D$. But then from (1) we get

$$
\begin{equation*}
d^{j}(b s) w=b d^{j}(s) w=b \alpha v=\alpha b v=\alpha v=d^{j}(s) w . \tag{2}
\end{equation*}
$$

From (2) and the comment before Lemma 2 we get that $W_{k}(s)=W_{k}(b s) \forall 0 \leq k \leq i+1$. Now let $a=b s$. Then $a \in R s \subseteq R r$, by (1) we get $d^{i+1}(a) W_{i+1}(a)=b d^{i+1}(s) W_{i+1}(s)=$ $D v \neq 0$ so $a \neq 0$ and $d^{i+1}(a) W_{i+1}(a) \subseteq D v$, and if $0 \leq j \leq i$ then from (2), $d^{j}(a) W_{j}(a)=$ $b d^{j}(s) W_{j}(s)=d^{j}(s) W_{j}(s) \subseteq D v$. Therefore the result holds for $i+1$.

Lemma 4. $R / I \cong D_{i}$ for some $1 \leq i \leq n+1$ where $i=\operatorname{dim}_{D}(V)$.
Proof. Let W be an arbitrary finite-dimensional D-subspace of V. As $d^{n}(J) \neq 0$, \exists a nonzero $r \in J$. Also \exists a nonzero $v \in V$ so take $i=n$ and a as in Lemma 3. For $0 \leq j \leq n, d^{j}(a): W_{j}(a) \longrightarrow V$ is a D-linear map with kernel $W_{j+1}(a)$ and range contained in $D v$. Hence

$$
\begin{aligned}
\operatorname{dim}_{D}(W)= & \operatorname{dim}_{D}\left(W_{0}(a)\right) \\
= & \operatorname{dim}_{D}\left(W_{1}(a)\right)+\operatorname{dim}_{D}\left(a W_{0}(a)\right)=\cdots=\operatorname{dim}_{D}\left(W_{n+1}(a)\right) \\
& +\sum_{j=0}^{n} \operatorname{dim}_{D}\left(d^{j}(a) W_{j}(a)\right) \leq \operatorname{dim}_{D}\left(W_{n+1}(a)\right)+n+1 .
\end{aligned}
$$

By Lemma 2, $W_{n+1}(a)=0$ so $\operatorname{dim}_{D}(W) \leq n+1$. Since W is an arbitrary finite dimensional D-subspace of V and $V \neq 0$ we have $1 \leq \operatorname{dim}_{D}(V) \leq n+1$. Now take $i=\operatorname{dim}_{D}(V)$ and by the density of R / I on V with V a faithful irreducible R / I-module we get $R / I \cong D_{i}$. \square

In all that follows $i=\operatorname{dim}_{D}(V)$. If $I=0$ there is nothing left to prove in the theorem, so we will assume from now on that $I \neq 0$. Note again that $\operatorname{Ann}_{R}(V)=I$. Now define $I_{0}=R$ and for $0 \leq j, I_{j}=\bigcap_{k=0}^{j} d^{-k}(I)$ where $d^{-k}(I)=\left\{r \in R \mid d^{k}(r) \in I\right\}$. It is immediate that $d\left(I_{j}\right) \subseteq I_{j-1}$ and that I_{j} is an ideal. At this point we will develop some properties of I_{j}.

Lemma 5. If $j \in\{0,1,2, \ldots\}, r \in R$, and $a \in I_{J} \backslash I_{j+1}$ then $d^{j}(R a R) \cap(r+I) \neq \emptyset$.
Proof. Let $\varphi: R \rightarrow R / I$ by $\varphi(r)=r+I$. Now $a \in I_{j} \backslash I_{j+1}$ so $d^{j}(a) \notin I$ so $\varphi\left(d^{j}(a)\right) \neq$ 0. As I is maximal R / I is simple so $r+I \in(R / I) \varphi\left(d^{j}(a)\right)(R / I)=\varphi\left(R d^{j}(a) R\right)=$ $\varphi\left(d^{j}(R a R)\right)$ because $d^{j}(I a R) \subseteq I d^{j}(a R)+I \subseteq I$ with $a \in I_{j}$ and similarly $d^{j}(R a I) \subseteq I$. $\therefore d^{j}(R a R) \cap(r+I) \neq \emptyset$.

Lemma 6. There is a largest m such that $I_{m} \cap J \neq 0$. Furthermore $1 \leq m \leq n$, $I_{m+1}=0$ and for $0 \leq j, I_{j+1} d^{j}\left(I_{m} \cap J\right)=0$.

Proof. If $0 \neq r \in I_{n+1} \cap J$ then $R=R r+R d(r)+\cdots+R d^{n}(r) \subseteq I$ so since I is a proper ideal of $R, I_{n+1} \cap J=0$. As $I_{0} \cap J=J \neq 0$ we have that m exists and $0 \leq m \leq n$. Let $J_{m}=I_{m} \cap J$. Now $I J_{m} \subseteq I_{m+1} \cap J=0$ so for $j=0, I_{j+1} d^{j}\left(I_{m} \cap J\right)=0$. If $I_{j+1} d^{j}\left(I_{m} \cap J\right)=0$ then $0=d\left(I_{j+2} d^{j}\left(J_{m}\right)\right)=I_{j+2} d^{j+1}\left(J_{m}\right)$ as $d\left(I_{j+2}\right) d^{j}\left(J_{m}\right) \subseteq I_{j+1} d^{j}\left(J_{m}\right)$. Thus by induction for $0 \leq j, I_{j+1} d^{j}\left(I_{m} \cap J\right)=0$. Now

$$
\begin{aligned}
I_{n+1} & =I_{n+1} R=I_{n+1}\left(R J_{m}+R d\left(J_{m}\right)+\cdots+R d^{n}\left(J_{m}\right)\right) \\
& \subseteq I_{1} J_{m}+I_{2} d\left(J_{m}\right)+\cdots+I_{n+1} d^{n}\left(J_{m}\right)=0
\end{aligned}
$$

If $I_{m+1}=I_{n+1}=0$ then m cannot be zero because $I \neq 0$ so we would be done. Now let j be the largest j such that $I_{j} \neq I_{j+1}$. If $j>m$ then by Lemma 5 choose $a \in I_{j} \backslash I_{j+1}$ such that $d^{j}(a) \in 1+I$. As $a \in I_{m+1}, a d^{m}\left(J_{m}\right)=0$. As for $k<j, d^{k}(a) \in I$ we have

$$
0 \equiv d^{j}\left(a d^{m}\left(J_{m}\right)\right) \equiv d^{j}(a) d^{m}\left(J_{m}\right) \equiv d^{m}\left(J_{m}\right)(\bmod I)
$$

and $J_{m} \subseteq I_{m}$ so $0 \neq J_{m} \subseteq I_{m+1} \cap J=0$. As this is impossible, $j \leq m$. Therefore $I_{m+1}=I_{n+1}$ and we are done.

From now on m and J_{m} will be as used in Lemma 6.
LEMMA 7. R and D have characteristic p with p prime such that $p \backslash m+1$. Also $2 \leq p \leq n+1$.

Proof. By Lemma $5 \exists r \in R J_{m} R \subseteq I_{m}$ such that $d^{m}(r) \in 1+I$. By Lemma 6, $d^{m-1}(r)$ exists and $0=d^{m-1}(r) r$. Now using the fact that $\operatorname{Ann}_{R}(V)=I$ we obtain $0=$ $d^{m+1}\left(d^{m-1}(r) r\right) V=\sum_{j=0}^{m+1}\binom{m+1}{j} d^{2 m-j}(r) d^{j}(r) V=(m+1) d^{m}(r) d^{m}(r) V=(m+1) V$. But $m+1 \in D$ so D has characteristic p such that $p \backslash m+1$, and as D is a division ring, p is prime. But then $p V=0$ so $p \in I$ which gives $p=0$ in R by Lemma 1. That $2 \leq p \leq n+1$ is trivial.

From now on p will be the characteristic of R. Now the lemmas will begin to narrow in on the structure of R.

Lemma 8. If $0 \leq j \leq m$ then \exists a function $\theta: R / I \rightarrow R$ such that $\theta(r+I) \in r+I$ and $d(\theta(r+I)) \in I_{j}$ for every $r \in R$.

Proof: Induction on j. If $j=0$ then take any function $\theta: R / I \rightarrow R$ such that $\theta(r+I) \in r+I$ for every $r \in R$, then $d(\theta(r+I)) \in R=I_{0}$ so the result holds. Suppose the result holds for some j with $j<m$. Then $\exists \gamma: R / I \rightarrow R$ with $\gamma(r+I) \in r+I$ and $d(\gamma(r+I)) \in I_{j}$ for every $r \in R$. Now $d^{m-j-1}\left(J_{m}\right)$ is nonempty and $d^{m-j-1}\left(J_{m}\right) \cap$ $\left(I_{j+1} \backslash I_{j+2}\right) \neq \emptyset$ so for $a \in R \exists b \in I_{j+1}$ such that $d^{j+1}(b) \in a+I$ by Lemma 5. $\therefore \exists \mathrm{a}$ function $\psi: R \rightarrow I_{j+1}$ such that $d^{j+1}(\psi(a)) \in a+I$ for every $a \in R$. Now take $\theta(r+I)=$ $\gamma(r+I)-\psi\left(d^{j+1}(\gamma(r+I))\right)$. Then for $r \in R, \theta(r+I) \in r+I+I_{j+1}=r+I$ and $d(\theta(r+I))=$ $d\left(\gamma(r+I)-\psi\left(d^{j+1}(\gamma(r+I))\right)\right) \in I_{j}-d\left(I_{j+1}\right)=I_{j}$. But $d^{j}(d(\theta(r+I)))=d^{j+1}(\gamma(r+I))-$ $d^{j+1}\left(\psi\left(d^{j+1}(\gamma(r+I))\right)\right) \in d^{j+1}(\gamma(r+I))-\left(d^{j+1}(\gamma(r+I))+I\right)=I . \therefore d(\theta(r+I)) \in I_{j+1}$.

LEmma 9. R has a subring R^{\prime} with $d\left(R^{\prime}\right) \subseteq I_{m}, R=R^{\prime}+I, R^{\prime} \cap I=0$, and $R^{\prime} \cong D_{i}$.
Proof. Apply Lemma 8 with $j=m$ to find $\theta: R / I \rightarrow R$ such that $\theta(r+I) \in r+I$ and $d(\theta(r+I)) \in I_{m}$ for every $r \in R$. Now if $r \in R$ and $r_{1} r_{2} \in r+I$ such that $d\left(r_{1}\right), d\left(r_{2}\right) \in I_{m}$ then $r_{1}-r_{2} \in I_{m+1}=0$ by Lemma 6 so $r_{1}=r_{2} . \therefore \theta(r+I)$ is the unique element $r_{1} \in r+I$ with $d\left(r_{1}\right) \in I_{m}$. Now define $R^{\prime}=\theta(R / I)$. Then by definition of $R^{\prime}, d\left(R^{\prime}\right) \subseteq I_{m}$ and as $0 \in 0+I=I$ and $d(0)=0 \in I_{m}$, we have $R^{\prime} \cap I=0$. Now if $r, s \in R$ then $\theta(r+I)+\theta(s+I) \in r+s+I$ and $d(\theta(r+I)+\theta(s+I)) \in I_{m}$ so $\theta(r+s+I)=\theta(r+I)+\theta(s+I)$ by the uniqueness of $t \in r+s+I$ with $d(t) \in I_{m}$. Similarly $\theta(r s+I)=\theta(r+I) \theta(s+I)$.
$\therefore \theta$ is a ring homomorphism from $R / I \rightarrow R^{\prime}$. Now if $\theta(r+I)=0$ then $0 \in r+I \Rightarrow r \in I$ so θ is a ring isomorphism. Using Lemma $4, R^{\prime}=\theta(R / I) \cong D_{i}$ so $R^{\prime} \cong D_{i}$ and R^{\prime} is a subring of R.

For convenience R^{\prime} will be called D_{i} from now on. Also Z_{R} will be the center of R and $Z_{D_{i}}$ the center of D_{i}. The function θ in Lemma 8 will not be used again.

Lemma 10. If $1 \leq j \leq m$ and $r \in R$ then $\exists s \in I$ such that $d(s) \in r+I_{j}$.
Proof. Suppose that it is false and let j be the least $j \in\{1,2, \ldots, m\}$ such that $\exists r \in R$ for which the result fails. By Lemma $6,0 \leq m-1$ so $d^{m-1}\left(J_{m}\right)$ exists and $d^{m-1}\left(J_{m}\right) \cap\left(I_{1} \backslash I_{2}\right) \neq \emptyset$. Therefore Lemma 5 can be applied to show that $j \neq 1 . \therefore 1<j$ and $\exists a \in I$ such that $r-d(a) \in I_{j-1}$. As $d^{m-j}\left(J_{m}\right) \cap\left(I_{j} \backslash I_{j+1}\right) \neq \emptyset$, by Lemma 5 $\exists b \in R d^{m-j}\left(J_{m}\right) R \subseteq I_{j}$ such that $d^{j}(b) \in d^{j-1}(r-d(a))+I$. Let $s=a+b \in I$. Now $r-d(s)=(r-d(a))-d(b) \in I_{j-1}$ and $d^{j-1}(r-d(s))=d^{j-1}(r-d(a))-d^{j}(b) \in I$ so $r-d(s) \in I_{j} . \therefore j$ does not exist by contradiction so the lemma holds.

Lemma 11. If $r \in Z_{R}$ then $\exists a \in I \cap Z_{R}$ with $d(a) \in r+I_{m}$. If in addition $r \in I$ then $r^{\prime \prime}=0$.

Proof. Apply Lemma 10 to find $a \in I$ such that $r-d(a) \in I_{m}$. Then let $K=$ $\{a b-b a \mid b \in R\}$. Then $K \subseteq I$ and $d(K) \subseteq K+I_{m}$ so it is immediate that $K \subseteq I_{m+1}=0$ so $a \in Z_{R}$. If in addition $r \in I$ then $r^{p} \in I$ and $d\left(r^{p}\right)=p r^{p-1} d(r)=0 \in I_{m}$ because p is the characteristic of R, so therefore $r^{\prime \prime} \in I_{m+1}=0$.

Suppose that $\exists x_{1}, x_{2}, \ldots, x_{\ell} \in I \cap Z_{R}$ such that $d\left(x_{1}\right) \in 1+I$, and $d\left(x_{j}\right) \in$ $x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j-1}^{p-1}+I_{m}$ for every $j \in\{2,3, \ldots, \ell\}$. Recall from number theory that if $k \in\left\{0,1, \ldots, p^{\ell}-1\right\}$ then k has a unique representation as $n_{\ell} n_{\ell-1} \cdots n_{1}=n_{1}+n_{2} p+\cdots+$ $n_{\ell} p^{\ell-1}$ with $n_{1}, n_{2}, \ldots, n_{\ell} \in\{0,1, \ldots, p-1\}$. Now define $\theta:\left\{0,1, \ldots, p^{\ell}-1\right\} \rightarrow R$ by $\theta(k)=\theta\left(n_{\ell} n_{\ell-1} \cdots n_{1}\right)=x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{\ell}^{n_{i}}$ where r^{0} is defined to be 1 . Note that $\theta\left(p^{j-1}\right)=x_{j}$. Now Lemma 12 is a technical result that is crucial in finding the structure of R.

LEMMA 12. If $x_{1}, x_{2}, \ldots, x_{\ell}$ exist and $0 \neq x_{1}, x_{2}, \ldots, x_{\ell}$ then $\forall 0 \leq k \leq p^{\ell}-1$, $\theta(k) \in I_{k} \cap Z_{R}$ and $d^{k}(\theta(k))$ is invertible.

PROOF: Induction on k. If $k=0$ then $\theta(k)=x_{1}^{0} x_{2}^{0} \cdots x_{q}^{0}=1 \in I_{0} \cap Z_{R}$ and is also invertible. Suppose the result holds for k and $k<p^{\ell}-1$. Note that $\theta(k+1)$ is the product of elements from Z_{R} so $\theta(k+1) \in Z(R)$. To finish, divide into cases.

CASE I. $k+1=p^{j-1}$ for some $j \in\{1,2, \ldots, \ell\}$.
Then $\theta(k+1)=x_{j}$. As the result holds for $k, \theta(k) \in I_{k}$ and $d^{k}(\theta(k))$ is invertible so $0 \neq \theta(k) \in I_{k} \Rightarrow k \leq m$. Now $d(\theta(k+1))=d\left(x_{j}\right) \in x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j-1}^{p-1}+I_{m}=$ $\theta\left((p-1)\left(1+p+\cdots+p^{j-2}\right)\right)+I_{m}=\theta\left(p^{j-1}-1\right)+I_{m}=\theta(k)+I_{m}$ so $d(\theta(k+1)) \in I_{k}$. As $\theta(k+1)=x_{j} \in I, \theta(k+1) \in I_{k+1}$. As $0 \neq \theta(k+1) \in I_{k+1}, k+1 \leq m$ so $d^{k+1}(\theta(k+1)) \in$ $d^{k}\left(\theta(k)+I_{m}\right) \subseteq d^{k}\left(\theta(k)+I_{k+1}\right) \subseteq d^{k}(\theta(k))+I . \therefore d^{k+1}(\theta(k+1))=d^{k}(\theta(k))-a$ for some $a \in I$. As $\theta(k) \in Z_{R}, d^{k}(\theta(k)) \in Z_{R}$ and $a \in I$ so $a^{m+1} \in I_{m+1}=0$. Since $\left.\left(d^{k} \theta(k)\right)-a\right)$ divides $\left(d^{k}(\theta(k))\right)^{m+1}-a^{m+1}$ and $d^{k}(\theta(k))$ is invertible, so is $d^{k+1}(\theta(k+1))$.

CASE II. $\quad k+1 \neq p^{j-1} \forall 1 \leq j \leq \ell$.
Let $k+1=n_{1}+n_{2} p+\cdots+n_{\ell} p^{\ell-1}$ with $n_{1}, n_{2}, \ldots, n_{\ell} \in\{0,1, \ldots, p-1\}$. Let $\left\{j_{1}, j_{2}, \ldots, j_{N}\right\}=\left\{j \in\{1,2, \ldots, \ell\} \mid n_{j} \neq 0\right\}$ with $j_{1}<j_{2}<\cdots<j_{N}$. Note that $\theta(k+1)=x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{\ell}^{n_{f}}=x_{j_{1}}^{n_{j_{1}}} x_{j_{2}}^{n_{j_{2}}} \cdots x_{j_{N}}^{n_{j_{N}}}$. Now $\theta(k+1) \in I, \theta(k) \in I_{k}, k \neq 0$ so $n_{j_{1}}$ exists and $n_{j_{1}}$ is invertible as an element of D_{i} (and therefore of R), and $d^{k}(\theta(k))$ is invertible so the lemma would follow if $d(\theta(k+1))=n_{j_{1}} \theta(k)$.

Now suppose that $2 \leq M \leq N$. Then

$$
x_{j_{1}}^{n_{1}} x_{j_{2}}^{n_{2}} \cdots x_{j_{M-1}}^{n_{j_{M-1}}} d\left(x_{j_{M}}^{n_{j_{M}}}\right) x_{j_{M+1}}^{n_{j_{M+1}}} \cdots x_{j_{N}}^{n_{j_{N}}} \in x_{j_{1}} d\left(x_{j_{M}}\right) R
$$

using $x_{1}, x_{2}, \ldots, x_{\ell} \in Z_{R}$. But $x_{j_{1}} d\left(x_{j_{M}}\right) R \in x_{j_{1}}^{p} R+x_{j_{1}} I_{m}=0$ by Lemmas 6 and 11 and the fact that $j_{1}<j_{M}$ and the definition of $d\left(x_{j_{M}}\right)$. Therefore

$$
\begin{aligned}
d(k+1) & =d\left(x_{j_{1}}^{n_{j_{1}}} x_{j_{2}}^{n_{j_{2}}} \cdots x_{j_{N}}^{n_{j_{N}}}\right) \\
& =\sum_{M=1}^{N} x_{j_{1}}^{n_{1}} x_{j_{1}}^{n_{2}} \cdots x_{j_{M-1}}^{n_{M-1}} d\left(x_{j_{M}}^{n_{M}}\right) x_{j_{M+1}}^{n_{M+1}} x_{j_{M+2}}^{n_{M+2}} \cdots x_{j_{N}}^{n_{N}} \\
& =d\left(x_{j_{1}}^{n_{j_{1}}}\right) x_{j_{2}}^{n_{j_{2}}} \cdots x_{j_{N}}^{n_{j_{N}}} \in n_{j_{1}}\left(x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j_{1}-1}^{p-1}+I_{m}\right) x_{j_{1}}^{n_{j_{1}-1}} x_{j_{2}}^{n_{j_{2}}} x_{j_{3}}^{n_{j_{3}}} \cdots x_{j_{N}}^{n_{J_{N}}} .
\end{aligned}
$$

However because $k+1 \neq p^{j-1} \forall 1 \leq j \leq \ell$ we have trivially $2 \leq n_{j_{1}}+n_{j_{2}}+\cdots+n_{j_{N}}$ and $I_{m} \cdot I=0$ so

$$
\begin{aligned}
d(\theta(k+1))= & n_{j_{1}} x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j_{1}-1}^{p-1} x_{j_{1}}^{n_{j_{1}}-1} x_{j_{2}}^{n_{j_{2}}} x_{j_{3}}^{n_{j_{3}}} \cdots x_{j_{N}}^{n_{j_{N}}} \\
= & n_{j_{1}} \theta\left((p-1)\left(1+p+\cdots+p^{j_{1}-2}\right)-p^{j_{1}-1}+n_{j_{1}} p^{j_{1}-1}\right. \\
& \left.\quad+n_{j_{2}} p^{j_{1}-1}+\cdots+n_{j_{N}} p^{j_{N}-1}\right) \\
= & n_{j_{1}} \theta(-1+k+1)=n_{j_{1}} \theta(k) .
\end{aligned}
$$

Therefore the lemma holds.
LEMMA 13. There exists a largest $\ell \in \mathbb{Z}^{+}$such that $x_{1}, x_{2}, \ldots, x_{\ell}$ all exist and are nonzero. Furthermore $m=p^{\ell}-1$.

Proof. $\quad 1 \in Z_{R}$ so by Lemma 11, x_{1} exists. By Lemma $6,1 \leq m$ so $d\left(x_{1}\right) \in 1+I_{m} \subseteq$ $1+I$ and $I \neq R$ so $d\left(x_{1}\right) \notin I \Rightarrow x_{1} \neq 0$. Now if there is no last ℓ such that $x_{1}, x_{2}, \ldots, x_{\ell}$ all exist and are nonzero then take $\ell=m$ and then by Lemma $12,0 \neq I_{p^{\ell}} \subseteq I_{m+I}$ contrary to Lemma 6 so a last such ℓ exists. But now take ℓ to be maximal and by Lemma 12, $d^{p^{\prime}-1}\left(\theta\left(p^{\ell}-1\right)\right)$ is invertible and $\theta\left(p^{\ell}-1\right) \in I_{p^{\prime}-1}$ but $d^{p^{\ell}-1}\left(\theta\left(p^{\ell}-1\right)\right) \notin I$ so $m \geq p^{\ell}-1$. However by Lemma $11 \exists x_{\ell+1} \in I \cap Z_{R}$ with $d\left(x_{\ell+1}\right) \in \theta\left(p^{\ell}-1\right)+I_{m}$ but ℓ is maximal so $x_{\ell+1}=0$ and $\theta\left(p^{\ell}-1\right) \in I_{m}$, from which $m \leq p^{\ell}-1$. Therefore $m=p^{\ell}-1$.

Lemma 14. Let $0 \leq j \leq p^{\ell}-1$. Then $I_{j}=I_{j+1}+D_{i} \theta(j)$.
Proof. By Lemma $12, \theta(j) \in I_{j}$ so as $I_{j+1} \subseteq I_{j}$ and I_{j} is an ideal, $I_{j+1}+D_{i} \theta(j) \subseteq I_{j}$. Now by Lemma 12, $d^{j}(\theta(j))$ is invertible so $\theta(j) \in I_{j} \backslash I_{j+1}$. Therefore if $r \in I_{j}$ then by Lemma $5 \exists s \in R \theta(j) R=R \theta(j)$ (because $\left.\theta(j) \in Z_{R}\right)$ such that $d^{j}(s) \in d^{j}(r)+I$. However $s=(a+b) \theta(j)$ for some $a \in D_{i}$ and $b \in I$ by Lemma 9 . But then $d^{j}(b \theta(j)) \in I$ so $d^{j}(r) \in$ $d^{j}(a \theta(j))+I$. As $r-a \theta(j) \in I_{j}$ this gives $r-a \theta(j) \in I_{j+1} . \therefore r \in a \theta(j)+I_{j+1} \subseteq D_{i} \theta(j)+I_{j+1}$. $\therefore I_{j} \subseteq D_{i} \theta(j)+I_{j+1}$ so $I_{j}=D_{i} \theta(j)+I_{j+1}$.

Now it is a matter of putting together the pieces.

LEMMA 15. There exists a derivation f of D_{i} and $a_{1}, a_{2}, \ldots, a_{\ell} \in Z_{D_{i}}$ such that $\forall a \in D_{i}, d(a)=f(a) x_{1}^{p-1} x_{2}^{p-1} \cdots x_{f}^{p-1}, d\left(x_{1}\right)=1+a_{1} x_{1}^{p-1} x_{2}^{p-1} \cdots x_{f}^{p-1}$, and $d\left(x_{j}\right)=$ $x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j-1}^{p-1}+a_{j} x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j}^{p-1}$ for $j=2,3, \ldots, \ell$.

Proof. Note that $x_{1}^{p-1} x_{2}^{p-1} \cdots x_{f}^{p-1}=\theta\left(p^{\ell}-1\right)$, and by Lemma 13, $m=p^{t}-1$ so by Lemmas 6 and 14, $I_{m}=D_{i} \theta\left(p^{\prime}-1\right)$. Now suppose that $a, b \in D_{i}$ and $(a-b) \theta\left(p^{t}-1\right)=0$. Then by Lemma 9, $0=d^{p^{\prime}-1}\left((a-b) \theta\left(p^{t}-1\right)\right) \in$ $(a-b) d^{p^{\prime}-1}\left(\theta\left(p^{\ell}-1\right)\right)+I$ so $(a-b) d^{p^{\prime}-1}\left(\theta\left(p^{t}-1\right)\right) \in I$ so by Lemma $12, a-b \in I$. But then by Lemma 9, $a-b \in I \cap D_{i}=0$ so $a=b$. Therefore if $a \theta\left(p^{\prime}-1\right)=0$ then $a=0$. Thus there exists a unique function $f: D_{i} \rightarrow D_{i}$ such that if $a \in D_{i}$ then $d(a)=$ $f(a) \theta\left(p^{\ell}-1\right)$. Now if $a, b \in D_{i}$ then $f(a+b) \theta\left(p^{\ell}-1\right)=d(a+b)=d(a)+d(b)=$ $(f(a)+f(b)) \theta\left(p^{\ell}-1\right)$ so $f(a+b)=f(a)+f(b)$. Also $f(a b) \theta\left(p^{t}-1\right)=d(a b)=d(a) b+$ $a d(b)=(f(a) b+a f(b)) \theta\left(p^{t}-1\right)$ so $f(a b)=f(a) b+a f(b)$ so f is a derivation. Now as $I_{m}=$ $D_{i} \theta\left(p^{\prime}-1\right)$ by Lemma 14, from the definition of $x_{1} \exists a_{1} \in D_{i}$ with $d\left(x_{1}\right)=1+a_{1} \theta\left(p^{t}-1\right)$. But then by the definition of $x_{1}, x_{1} \in Z_{R}$ so $1+a_{1} \theta\left(p^{f}-1\right)=d\left(x_{1}\right) \in Z_{R}$ so $\forall a \in D_{i}$, $0=a\left(1+a_{1} \theta\left(p^{t}-1\right)\right)-\left(1+a_{1} \theta\left(p^{t}-1\right)\right) a=\left(a a_{1}-a_{1} a\right) \theta\left(p^{t}-1\right)$ so $a a_{1}-a_{1} a=0$. $\therefore a_{1} \in Z_{D_{i}}$. Similarly if $j=2,3, \ldots, \ell$ then $d\left(x_{j}\right)=x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j-1}^{p-1}+a_{j} \theta\left(p^{\prime}-1\right)$ with $a_{j} \in Z_{D_{i}}$.

LEMMA 16. $R \cong D_{i}\left[y_{1}, y_{2}, \ldots, y_{t}\right] /\left(y_{1}^{p}, y_{2}^{p}, \ldots, y_{t}^{p}\right)$.
Proof. By Lemma 11, $0=x_{1}^{p}=x_{2}^{p}=\cdots=x_{f}^{p}$ so there is a unique ring homomorphism $\psi: D_{i}\left[y_{1}, y_{2}, \ldots, y_{t}\right] /\left(y_{1}^{p}, y_{2}^{p}, \ldots, y_{f}^{\prime}\right) \rightarrow R$ with $\psi(a)=a \forall a \in D_{i}$ and $\psi\left(y_{j}\right)=x_{j}$ for $j=1,2, \ldots, \ell$. Now ψ is an epimorphism because by Lemmas 14 and 13,

$$
\begin{aligned}
R & =I_{0}=D_{i}+I_{1} \\
& =D_{i}+D_{i} \theta(1)+I_{2}=\cdots=D_{i}+D_{i} \theta(1)+D_{i} \theta(2)+\cdots+D_{i} \theta\left(p^{\prime}-1\right) \\
& \subseteq \psi\left(D_{i}\left[y_{1}, y_{2}, \ldots, y_{\ell}\right] /\left(y_{1}, y_{2}, \ldots, y_{t}\right)\right) .
\end{aligned}
$$

Now to finish it suffices to show that ψ is one-to-one. Now suppose that $a \in$ $D_{i}\left[y_{1}, y_{2}, \ldots, y_{f}\right] /\left(y_{1}^{p}, y_{2}^{p}, \ldots, y_{t}^{p}\right)$ and that $\psi(a)=0$. Formally, $\psi(a)=a_{0}+a_{1} \theta(1)+\cdots+$ $a_{p^{\prime}-1} \theta\left(p^{\prime}-1\right)$ with $a_{0}, a_{1}, \ldots, a_{p^{\prime}-1} \in D_{i}$. If some $a_{j} \neq 0$ then let j be the least j such that $a_{j} \neq 0$ and note that $d^{j}(\psi(a)) \notin I$ contrary to $\psi(a)=0$. Clearly if $a_{0}, a_{1}, \ldots, a_{p^{\prime}-1}$ are all 0 then $a=0$ so ψ is one-to-one.

Let us review what part of Theorem 1 we now know. For the case where $I=0$, Lemma 4 does the job. If $I \neq 0$ then Lemmas 15 and 16 give us most of Theorem 1 and together with Lemma 7 all that we do not know is $2 \leq i p^{\ell} \leq n+1$. However we have $1 \leq i \leq n+1$ from Lemma $4,2 \leq p \leq n+1$ from Lemma 7 and $1 \leq \ell$ from Lemmas 6 and 13. Thus we know that $2 \leq i p^{\prime}$. The rest of the paper will show that $i p^{\prime} \leq n+1$.

From Lemmas 6 and $14 \exists b \in D_{i}$ such that $0 \neq b \theta(m) \in I_{m} \cap J$. By similar reasoning to Lemma 3, $\exists 0 \neq a \in D_{i} b$ such that $\operatorname{dim}_{D}\left(f^{j}(a)\left(\bigcap_{k=0}^{j-1} \operatorname{Ker}\left(f^{k}(a)\right)\right)\right)=0$ or 1 for $j=1,2, \ldots, n$ and $\operatorname{dim}_{D}(a V)=0$ or 1 also. Now define $L_{0}=0$ and for $j \in \mathbb{Z}^{+}, L_{j}=$ $D_{i} a+D_{i} f(a)+\cdots+D_{i} f^{j-1}(a)$. Therefore $L_{0} \subseteq L_{1} \subseteq \cdots$ and $f\left(L_{0}\right) \subseteq L_{1}, f\left(L_{1}\right) \subseteq L_{2}$,
$f\left(L_{2}\right) \subseteq L_{3}, \ldots$ Now if $N=j p^{\ell}+k$ with $j \in\{0,1,2, \ldots$,$\} and k \in\left\{0,1, \ldots, p^{\ell}-1\right\}$ then define $\mathcal{L}[N]=\mathcal{L}(j, k)=R L_{j}+I_{p^{t}-k-1} L_{j+1}$. Note that $0 \neq a \in J$ and Lemma 1 imply that $R=R a+R d(a)+\cdots+R d^{n}(a)$.

THEOREM 1. Let $n \in \mathbb{Z}^{+}, R$ be a ring with unit, J a left ideal of R, and d a derivation of R such that $d^{n}(J) \neq 0$ and $d^{n}(r)=0$ or $d^{n}(r)$ is invertible, for every $r \in J$. Then there exists a division ring D such that R is either.

1) D_{i}, the ring of $i \times i$ matrices over a division ring D with $1 \leq i \leq n+1$, or
2) $D_{i}\left[x_{1}, x_{2}, \ldots, x_{\ell}\right] /\left(x_{1}^{p}, x_{2}^{p}, \ldots, x_{\ell}^{p}\right)$ where $i, \ell, p \in \mathbb{Z}^{+}, p$ is prime, $2 \leq i p^{\ell} \leq n+1$, and char $D=p$.
Furthermore, there exists a derivation f of D_{i} and $a_{1}, a_{2}, \ldots, a_{f} \in Z_{D_{i}}$, the center of D_{i}, with $d(a)=f(a) x_{1}^{p-1} x_{2}^{p-1} \cdots x_{\ell}^{p-1}$ for all $a \in D_{i}, d\left(x_{1}\right)=1+a_{1} x_{1}^{p-1} x_{2}^{p-1} \cdots x_{f}^{p-1}$, and

$$
d\left(x_{j}\right)=x_{1}^{p-1} x_{2}^{p-1} \cdots x_{j-1}^{p-1}+a_{j} x_{1}^{p-1} x_{2}^{p-1} \cdots x_{f}^{p-1}
$$

for $j=2,3, \ldots, \ell$.
Proof. As has been noted, all that is left is to show that ip $\leq n+1$. This will be proved under the assumption $d(\mathcal{L}[N]) \subseteq \mathcal{L}[N+1] \forall N \geq 0$, and then that assumption will be proved.

Part 1. Assume $d(\mathcal{L}[N]) \subseteq \mathcal{L}[N+1] \forall N \geq 0$.
Note that $\mathcal{L}[0] \subseteq \mathcal{L}[1] \subseteq \cdots \subseteq \mathcal{L}[n]$ and for $N \in\{0,1,2, \ldots\}, d^{N}(\mathcal{L}[0]) \subseteq \mathcal{L}[N]$. Now choose j, k with $0 \leq k \leq p^{\ell}-1$ with $n+1=j p^{\ell}+k$. It is easy to verify that $\mathcal{L}[n] \subseteq L_{j}+I$. But $a \theta\left(p^{\ell}-1\right) \in \mathcal{L}[0]$ so $R \subseteq R \mathcal{L}[0]+R \mathcal{L}[1]+\cdots+R \mathcal{L}[n]=R \mathcal{L}[n] \subseteq$ $\left(D_{i}+I\right)\left(L_{j}+I\right) \subseteq L_{j}+I \subseteq R$ so $R=L_{j}+I$. Note that if $c_{1} \in D_{i}$ then $c_{1} \in L_{j}+I$ so $\exists c_{2} \in L_{j}$ with $c_{1}-c_{2} \in D_{i} \cap I=0$ by Lemma 9 and $L_{j} \subseteq D_{i}$ so $D_{i}=L_{j}=D_{i} a+D_{i} f(a)+\cdots+f^{j-1}(a)$ so by the same reasoning as in Lemmas 2 and $4, j \geq \operatorname{dim}_{D}(V)=i$ but $n+1=j p^{\ell}+k$ and $0 \leq k$ so $j \leq \frac{n+1}{p^{\prime}}$ so $i p^{\ell} \leq n+1$.

PART 2. Prove that $d(\mathcal{L}[N]) \subseteq \mathcal{L}[N+1] \forall N \geq 0$.
Induction on N. If $N=0$ then $\mathcal{L}[N]=\mathcal{L}(0,0)=R L_{0}+I_{p^{\prime}-1} L_{1}=I_{p^{\prime}-1} L_{1}$ so $d(\mathcal{L}[N]) \subseteq I_{p^{\prime}-2} L_{1}+I d\left(L_{1}\right)=R L_{0}+I_{p^{\prime}-1-1} L_{1}=\mathcal{L}[1]$ using the fact that $d\left(L_{1}\right) \subseteq I_{m}$. Now suppose that $d(\mathcal{L}[N]) \subseteq \mathcal{L}[N+1]$ and divide into cases.

CASE I. $\quad N+1=j p^{\ell}+k$ with $1 \leq k<p^{\ell}-1$.
Then by Lemma 14, $\mathcal{L}[N+1]=\mathcal{L}(j, k)=R L_{j}+I_{p^{\prime}-k-1} L_{j+1}=R L_{j}+I_{p^{\prime}-k} L_{j+1}+$ $D_{i} \theta\left(p^{\ell}-k-1\right) L_{j+1} \subseteq \mathcal{L}[N]+I_{p^{\prime}-k-1} L_{j+1} . \therefore d(\mathcal{L}[N+1]) \subseteq d(\mathcal{L}[N])+d\left(I_{p^{\prime}-k-1}\right) L_{j+1}+$ $I_{p^{\prime}-k-1} d\left(L_{j+1}\right) \subseteq \mathcal{L}[N+1]+I_{p^{\prime}-k-2} L_{j+1} \subseteq R L_{j}+I_{p^{\prime}-k-2} L_{j+1}=\mathcal{L}(j, k+1)=\mathcal{L}[N+2]$.

CASE II. $\quad N+1=j p^{\ell}+k$ with $k=p^{\ell}-1$.
Then $\mathcal{L}(N+1)=R L_{j}+I_{0} L_{j+1}=R L_{j+1}$ because $I_{0}=R . \therefore d(\mathcal{L}[N+1]) \subseteq d(R) L_{j+1}+$ $R \theta\left(p^{\ell}-1\right) f\left(L_{j+1}\right) \subseteq R L_{j+1}+I_{p^{\prime}-1} L_{j+2}=\mathcal{L}(j+1,0)=\mathcal{L}[N+2]$.

CASE III. $\quad N+1=j p^{\ell}+k$ with $j \in \mathbb{Z}^{+}$and $k=0$.
Then $\mathcal{L}[N+1]=R L_{j}+I_{p^{\prime}-1} L_{j+1}=R L_{j-1}+I_{0} L_{j}+I_{p^{\prime}-1} L_{j+1}=\mathcal{L}[N]+I_{p^{\prime}-1} L_{j+1}$. Therefore $d(\mathcal{L}[N+1]) \subseteq \mathcal{L}[N+1]+I_{p^{\prime}-2} L_{j+1}=R L_{j}+I_{p^{\prime}-2} L_{j+1}=\mathcal{L}(j, 1)=\mathcal{L}[N+2]$.

References

1. J. Bergen, I. N. Herstein and C. Lanski, Derivations with invertible values, Can. J. Math. 35(1983), 300310.

Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia
V8W 3P4

Present address:
6188 Bradley Hall
Dartmouth College
Department of Mathematics and Computer Science
Hanover, New Hampshire 03755
U.S.A.

[^0]: The author wishes to acknowledge the support of Dr. C. R. Miers through NSERC Grant A-7682.
 Received by the editors March 13, 1992.
 AMS subject classification: Primary: 16W25; secondary: 16N60.
 (c) Canadian Mathematical Society 1994.

