
ON THE LOWER DERIVATE OF A SET FUNCTION 

W. F. P F E F F E R 

Introduction. In (5), the following theorem was proved in a very general 
setting: 

(1) An additive set function is non-negative whenever its lower derivative is 
non-negative. 

For a continuous additive function of intervals, theorem (1) can be improved 
as follows: 

(2) A continuous additive set function is non-negative whenever its lower 
derivative is non-negative except, perhaps, on a countable set. 

Our aim in this paper is to show that theorem (2), the importance of which 
for Perron integration is well known (see, e.g., 3, Chapter V), also holds under 
rather general assumptions. A method very similar to that used in (5) will be 
applied here. In § 1, semihereditary and stable systems of sets are introduced. 
Their definitions, (1.1 and 1.2), are motivated later by Propositions 4.2 and 
4.4. The main results are proved in §§ 2 and 3. They are formulated in topo
logical terms using cluster points of families of sets. In § 4, an easy application 
of these results gives an analogue of theorem (2). 

In order to include such important special cases as additive functions of 
intervals and additive functions of convex linear cells, the basic system of sets 
is not assumed to be closed with respect to the formation of set differences. For 
this reason also the definition of a semihereditary system of sets used here is 
slightly different from that in (5, § 3.2). 

I t is, of course, well known that the classical form of theorem (2) admits a 
series of important generalizations (see, e.g., 2, § 13). However, most of them 
strongly utilize characteristic properties of real functions, so that there is 
hardly any hope that they could be transferred into a more general situation. 

1. Preliminaries. Throughout, P is a topological space and P~ — 
P \J (oo) is a one-point compactification of P (see 4, p. 150). For x £ P~~, Tz 

denotes a local base for x in P" (see 4, p. 50). Let1 cr C exp P be a non-empty 
system which satisfies the following conditions: 

(i) For every A, B £ <r, Af^Bea and A-B = Ul-iC<, where d, . . . , 
Cn are disjoint sets from2 a; 

Received June 16, 1967. 
*exp P is the collection of all subsets of P. 
2In (1), a non-empty system a satisfying condition (i) is called a pre-ring. 
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(ii) For every x G P , Tx C c. 
For 4̂ C P~~, ^4" and ^4° denote the closure and the interior of A in P ~ , re
spectively. If ô C exp P and 4 C P " , we let 8A = {5 G 5 : 5 C A}. 

Definition 1.1. A system 8 C cr is said to be semihereditary if and only if 
cr0 P\ 5 9e 0 for every finite disjoint collection ao Q & whose union belongs to <5. 

Notice t h a t the condition required by this definition is weaker than t h a t 
required by the corresponding definition in (5, § 3.2). These definitions 
coincide whenever a is closed with respect to the formation of set differences. 

Definition 1.2. A system ô C exp P is said to be stable if and only if 0 G ô 

and for every A £ ô and every x G P~ there is U G Tx such t h a t SA-u ^ 0-

W e note t h a t no stable system contains a finite set. If ô is a semiheredi tary 

or s table system, then so is 8A for every set A C P~-

Example 1.3. Le t P be Hausdorff and locally compact , a = exp P , and let 
Q C P be a non-empty set wi thou t isolated points. Then the system ô of all 
sets A £ a for which A C\ Q contains a non-empty subset wi thout isolated 
points is non-empty , semihereditary, and stable. 

Example 1.4. For an ordinal a, P(a) is the set of all ordinals less than a. 
T h e set P(a) with the order topology is a locally compact Hausdorff space. W e 
shall prove t h a t there is no non-empty stable system in P(a). This is t rue for 
a = 1. Assume t h a t it is t rue for all ordinals j3 less t han a and suppose t h a t there 
is a non-empty stable system 8 C exp P(a). Since all one-point compactifica-
tions of P(a) are homeomorphic to P(a + 1), there is a neighbourhood U of 
a + 1 such t h a t 8P(a)-u is also a non-empty stable system. Since P ( a ) — U C 
P(/3) for some ordinal /3 less than a, we have obtained a contradict ion with the 
induction hypothesis . 

Definition 1.5. Le t ô C exp P and let x G P ~ . T h e point x is said to be a 
weak cluster point of 5 if and only if du ^ 0 for every [/ G IV T h e point # is 
said to be a cluster point, or a strong cluster point of 5 if and only if for every 
U Ç: Vx there is an A G 8V such t h a t ^ Ç i " , o r x Ç i , respectively. 

T h e set of all weak cluster points, or cluster points, or s t rong cluster points 
of ô is denoted by ôw, or 8C, or 8s, respectively. When no confusion can arise, ô* 
s tands for 8W or 8C or 8s. 

W e note t h a t if 0 G 8, then 8W = P ~ . I t is easy to see t h a t for 8 from Example 
1.3, a» = 5C = Q - and 0s = <2~ Pi P . In part icular , 8W = 8C = 8s whenever the 
space P in t h a t example is compact . Generally, 8W C 8e C <55 and, as Example 
2.2 will show, the inclusions can be proper even for a compact space P . 

T h e following simple properties of the system a will be useful. 

(1.1) To every collection of sets {Ax]
n

i=i C o" there is a disjoint collection of 

sets {Bjlf^! C cr such that every Bj is contained in some At and U?=i Bj — 

U"-ii4<. 
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Proof. Let A0 = 0. For all integers i, j , 0 S j < i ^ ft, there are disjoint 
sets C(i,j, k) e a, k = 1, 2 , . . . , n(i,j), such that 4 , - A, = U^ iPCf t j , i ) . 
Given integers i, kjf l ^ i ^ n . l ^ k j ^ n(i, j ) , j = 0, 1, . . . , i — 1, we let 

i-l 

B(i, ko, . . . , *i_i) = H C(i, j , &,). 

These sets are clearly disjoint, belong to a, and B(i, k0, . . . , &i_i) C At for 
each i = 1, 2, . . . , n and each combination of ko, . . . , &*_i. Furthermore, 

n n / i—l \ 7i i—1 

î= l i= l \ j=0 / i= l j=0 

U (1 U C(i,j, k) = U{B(i, h,..., *«_i) : H « g « , 

l ^ h S n(i, 0), . . . , 1 S *«-i ^ w(i, * - 1)}. 

(1.2) Let A G (J and let Ai, . . . , An be sets from aA. Then there are disjoint 
sets 5 i , . . . , Bmfrom aA such that (J™=iBj = A — Ul=i^U. 

Proof. For i = 1, 2, . . . , n, there are disjoint sets C(i, j ) G cr, j = 1, 2, 
. . . , &*, such that A — At ~ U**=iC(i, i ) . Given integers j \ , 1 ^ j t ^ &;, 
i = 1, 2, . . . , n, we let J3(J'I, . . . , jn) = C\n

i==iC(i, ji). These sets are disjoint, 
belong to aAl and 

A-\JAi= n(4-Ai)= Cl U C(i, i) = 
* = 1 f = l 1=1 ; = 1 

U { ^ ( i i , . . . , i J : l £ j , £ * „ * = 1,2,...,»}. 
(1.3) Le£ i Ç(7 a?zd let { U) be an open cover of A~. Then there is a finite 

disjoint cover {B} C &A of A which refines { U}. 

Proof. Obviously, the cover { U] has an open refinement { Vx°}x£A- such that 
Vx G Tx for every x G A~. Since A~ is compact, the cover {Vx°}xeA- has a 
finite subcover { Fzi°}l=i. Without loss of generality, we may assume that 
{ l ^ n i î C o-. I t suffices now to let At = A C\ Vxi for i = 1, 2, . . . , n — 1 
and apply (1.1) and (1.2). 

2. Weak cluster points. We start with an elementary observation. 

PROPOSITION 2.1. For any ô C exp P , 5W is closed in P~. 

Proof. Let x G (ôw)~ and U G Tx. Since U° H ôw ^ 0, there is y G ôw and 
F G I \ such that F C Z7. I t follows that 0^ 5* 0, and thus * G 0". 

The following example shows that Proposition 2.1 does not hold if we 
replace dw by dc or 0s. 

Example 2.2. Let P = [0, 1] X [0, 1], Q = [0, 1) X [0, 1), R = 
(0, 1) X (0, 1) and let a be the family of all Lebesgue measurable subsets of P . 
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Denote by /x the Lebesgue measure in P and let 

Ô = {A e <rB: n(A) > 0 and A~ C Q}. 

Then ô is a non-empty semihereditary, stable system for which 8W = P, 
8C = Q, and 8s = R. 

PROPOSITION 2.3. Let 8 C o- be a non-empty semihereditary system. Then 8W is 
non-empty. 

Proof. Assume that the proposition is not true. Then for every x G P~ we 
can find an open neighbourhood Ux which does not contain any set B £ 8. 
Let A Ç 8. Then, according to (1.3), there are disjoint sets f>i, . . . , Bn from 
a — 8 such that A = Ul=i5*. This contradicts the semihereditariness of ô. 

THEOREM 2.4. Let 8 C exp P be a non-empty stable system and let (8A)* ^ 0 
for every A 6 8. Then 8* is uncountable whenever it is compact. 

Proof. Suppose that <5* = {x1} x2, . . .} is countable and choose A £ 8. Since 
8 is stable, there is Ui € TX1 for which 8A-m 9^ 0. Thus, we can choose A± Ç 8 
such that Ai C A — U\. Assume that we have already chosen Un G TXn and 
An £ 8 such that An C A — Ul=i?7«. Then, according to the stability of 8, we 
can find Un+i € TXn+1 for which 8An-Un+1 p̂  0. Hence, there is ^ w + i G ô such 
that An+1 CAn- Un+1 C A - U l i î t /« . The family { t ^ , t/2°, . . .} is an 
open cover of 8*. If <5* is compact, then { Ui°, . . . , &V5} covers ô* for any 
sufficiently large JV. Take such N and let y = 8AN. Clearly, 7* C <5*. On the 
other hand, since 0 C? 7, we have that 7* Pi 5* = 0. Therefore, 7* = 0, which 
contradicts the assumption. 

COROLLARY 2.5. Le/ 8 C cr be a non-empty semihereditary, stable system. Then 
8W is uncountable. 

The corollary follows from Propositions 2.1 and 2.3. 

COROLLARY 2.6. Let P be Hausdorff and locally compact and let a be closed 
with respect to the formation of set differences. If 8 C <r is a non-empty semi-
hereditary, stable systemy then 8C is infinite. 

The corollary follows from (5, §§ 4.1 and 4.3). 

PROPOSITION 2.7. Assume that P is regular. Let 8 C exp P be a stable system 
and let (ôA)* ^ 0 for every A Ç 8. Then 8* C\ P has no isolated points. 

Proof. Given x € <5* P P and U G 1^, we can find A £ 8 for which 
A- r\P C U. Since 8 is stable, there are V £ Tx and W £ Tra such that 
8A-vuw ?*• 0. Select B 6 ôA_FUTrand y G (ôB)*. Since 0 g 8BJ y G ô* Pi U and 
3/ ^ x. 

Notice that if P is regular and locally compact, then under the assumptions 
of Proposition 2.7, not even 00 can be an isolated point of <5*; for in this case, 
P~ is regular. 
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COROLLARY 2.8. Let P be Hausdorff and locally compact, and let 8 Q. & be a 
non-empty semihereditary, stable system. Then the cardinality of 8W is not less than 
the continuum. 

By Proposit ions 2.1 and 2.3 and the previous remark, 8* is a non-empty 
perfect subset of a compact Hausdorff space P~ ; the corollary follows. 

COROLLARY 2.9. Let P be Hausdorff and locally compact and let a be closed 
with respect to the formation of set differences. If 8 d o- is a semihereditary, stable 
system, then 8C has no isolated points. 

T h e corollary follows from (5, §§ 4.1 and 4.3). 

3. C lus ter p o i n t s . In a general topological space P we are unable to 
decide whether 8C is uncountable for every non-empty semihereditary, stable 
system 8 C 0". If, e.g., the space P is no t Hausdorff or no t locally compact, or if 
the system a is not closed with respect to the formation of set differences, 
(5, Theorem 4.3) cannot be applied, and hence in this case we do not even 
know whether 8C is non-empty. In this section it will be shown t h a t theorems 
similar to Proposition 2.3 and Theorem 2.4 also hold for dc, provided the space 
P is locally pseudo-metrizable. 

PROPOSITION 3.1. Let P be regular and locally pseudo-metrizable and let 
8 C cr be a semihereditary system containing a non-empty set. Then 8C is non
empty. 

Proof. Assume first t h a t 8 contains a non-empty set A for which A~ C_ P. 
Being compact and locally pseudo-metrizable, A~ is pseudo-metrizable (see 7, 
Theorem 2) . Using (1.3) we can find sets Ct G a such tha t 3 d(d) < 1, i = 1, 
2, . . . , n, and A = Ul=iCV From the semihereditariness of 8, it follows t h a t 
a t least one of the sets Cx, . . . , Cn belongs to 8. W e denote it by Ai. I t is 
a ma t t e r of an easy induction to construct a decreasing sequence { ^ j ^ i C à A 
of non-empty sets for which d(Ak) < 1/k, k = 1, 2, . . . . Obviously, 0 ^ 

Now, suppose t h a t oo £ B~ for every non-empty set B G ô and t h a t oo g ôc; 
for, if oo ç dc

} there is nothing to prove. Then there exists an open neighbour
hood [/oo of oo which does not contain any non-empty set B Ç 6. For every 
x Ç P, let Ux be a speudo-metrizable neighbourhood of x which is closed in P. 
Choose a non-empty set A G 8. By (1.3), there is a finite disjoint cover 
{B} C 8A of A which refines {UX

0}X£A-- From the semihereditariness of 8, i t 
follows t h a t a t least one non-empty set from \B), say B, belongs to 8. Clearly, 
B~ C\ P C Ux for some x G P. Using (1.3) again, we can find disjoint non
empty sets C\, . . . , Cn from a such t h a t d(d) < 1 or d C Uœ for i = 1, 2, 

3If Q is a pseudo-metrizable subspace of P and C C.Q, then d(C) denotes a diameter of C 
with respect to a pseudo-metric coherent with the topology in Q. 
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. . . , n and B = Ul=iCV At least one of the sets G, . . . , Cn belongs to <5; we 
denote it by Bx. Since B1 (J_ Uœ, we have that d(Bi) < 1. We construct 
inductively a decreasing sequence {Bk}™=i C 8B of non-empty sets for which 
d{Bk) < 1/k, k = 1, 2, Since Bk <£ Uœy we obtain 

oo oo 

0 ̂  n (Bt- -ujc n (Bk~ C\P)C sc, 

and the proof is completed. 

THEOREM 3.2. L ^ P be locally pseudo-metrizable and let 6 <Z. <?be a non-empty 
semihereditary, stable system. Then the cardinality of 8C is not less than the 
continuum. 

Proof. Since 8 is non-empty and stable, we can find a set A G ô for which 
A~ d P- Being compact, A~ is pseudo-metrizable (see 7, Theorem 2). By 
Proposition 3.1, there is x0 G (8A)C; for A 9e 0. Again, from Proposition 3.1 
and the stability of ô follows the existence of U G TXQ and Xi G (^-c/)c-
According to the definition of a cluster point and the regularity of A~, there are 
sets At G à A for which3 d(.4 *) < 1, i = 0, 1, and A0~ (^ Ai~ — 0. By a simple 
induction, we can define sets A tl . . . ï n G ôAj n = 1, 2 , . . . , for w h i c h 

A il...in-\in CI ^Ml...în-l> A ^ ... in_ x 0 ( 1 -<4 * i . . . * n - l 1 = ^ > 

and 6̂ 04 Ù . . .*„) < 1/w, ^- = 0, 1, j = 1, 2, . . . , n. Using the axiom of choice 
we associate with every sequence {ij}f=i of zeros and ones a point4 xili2 . . . G 
Dn^iA^ . . . in; this is possible, since all sets from ô are non-empty. Clearly, 
xili2 . . . G <5C and since different points are associated with different sequences, 
the theorem follows. 

We shall close this section with a few comments concerning the properties 
of strong cluster points. The question of the existence of a strong cluster point 
was answered in a fairly satisfactory way in (5, § 4.3, the second part of the 
theorem and § 2, example). Concerning the cardinality of the set ôs we know 
very little. Fortunately, an estimation of the cardinality of 8s is not essential 
for the applications treated in the next section (seeTheorem 4.9). The follow
ing proposition summarizes our knowledge about strong cluster points. 

PROPOSITION 3.3. Let P be Hausdorff and let a be closed with respect to the 
formation of set differences. If ô ÇL <? is a semihereditary system which contains a 
non-empty compact set, then 5s is non-empty. If, in addition, ô is stable and Tx is 
an open local base for every x G P, then 8s has no isolated points and is, therefore, 
infinite. 

4Notice that if the space P is locally metrizable, we need not employ the axiom of choice. 
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The first part of the proposition follows from (5, §§ 4.1 and 4.3). The proof 
of the second part is similar to the proof of Proposition 2.7. 

4. Set functions. Here we shall apply the results from previous sections 
to superadditive functions of sets. 

Definition 4.1. An extended real-valued function F defined on a is said to 
be superadditive if and only if 

( n \ n 

for every disjoint collection of sets Ai, . . . , An from a for which Ul=i^4 t 

belongs to a and Y?i=*iF(A t) has meaning. 

The family of all superadditive functions on a is denoted by ©. For F G @, 
o-(F) = {A G a: F (A) < 0}. The following proposition corresponds to that in 
(5, §3.3). 

PROPOSITION 4.2. If F G ©, ^ ^ o-(70 w a semihereditary system. On the 
other hand, if ô C <r is a semihereditary system, there is an F G © swc/z £fea£ 
a(F) = Ô. 

Proof. Let o-0 = {^4^=i be a disjoint collection of sets from a for which 
U W 4 * G <T(F). Since 

0 > F ( L M , ) ^iF(At) 

whenever the sum on the right side has meaning, it follows that ao H\ a(F) ^ 0. 
In order to prove the second part of the proposition, it suffices to let F(A) = 
— 1 for A G ô and F (A) = 0 otherwise. 

For x G P~ and U £ Txwe let 

<Tv>(x, V) = (Tu, <TC(X, U) = {A G o-tf'. x G ^4 -}, o-,(x, Z7) = {A G o>: x Ç i } . 

When no confusion is possible, <r*(x, U) stands for (jw{x, U) or ac(x, U) or 
cs(x, U). 

A set 4̂ C P is called small whenever A C U lor some U Ç. \J\TX\ x £ P} 
or A (Z P — V lor some F G Tœ. Let G G © be a non-negative function such 
that G (A) < +oo for every small set A G a". Intuitively, G is some kind of a 
locally finite ''measure" on a. 

Definition 4.3. Let F be an extended real-valued function on a. For every 
A G a- put: (F/G)(A) = F (A)/G (A) if the ratio F(4)/G(i4) has meaning, 
and (F/G)(A) = + oo otherwise.5 Given x G P~, we call the number 

L*(F,x) = sup inf 7?(i4) 

5We let a /0 = + a> for a > 0 and a/0 = — » for a < 0; the symbols a/(=b » ) and 0/0 are 
undefined. 
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the lower limit of F at x, and the number 

D*(F, x) = L*(F/G, x) 

the lower derivate of F dit x. 

Notice that we actually have three definitions of the lower limit and the 
lower derivate according to whether * stands for w or c or s. For every 
x G P~ we have the obvious relations: 

(4.1) LW(F, x) è Le(F, x) ^ LS(F, x), 
(4.2) Da(F, x) £ DC(F, x) S D,(F, x). 

If x G P , then also the following hold: 
(4.3) D*(F, x) > -oo implies that L*(P, x) > - c o , 
(4.4) P>*(P, *) ^ 0 implies that L*(P, *) ^ 0, 
(4.5) P>*(P, x) > -co and L * ( - G , x) ^ 0 imply that L*(P, x) ^ 0. 

Furthermore, LS(F, oo ) = Z}s(p, oo ) = -j-oo ; for, cs(oo, £/) = 0 for every 

From now on we shall assume that, in addition to conditions (i) and (ii) of 
§ 1, the system a also satisfies the following condition: 

(iii) There is a fixed integer p ^ 1 such that for every U 6 r œ , U C\ P can 
be written as a disjoint union of p sets from a. 

Notice that if F is an n-dimensional Euclidean space, then the system <r 
consisting of the empty set and all non-degenerate one-side-open intervals 
(bounded or unbounded) satisfies conditions (i)-(iii). 

PROPOSITION 4.4. Let F 6 ©, F(0) è 0, and let LC(F, x) è Ofor all x £ P~. 
Then <r(F) is a semihereditary, stable system. 

Proof. According to Proposition 4.2, it suffices to show that a(F) is stable. 
Obviously, 0 g a (F). Let A G o-(P) and x G P~. Since LC(P, a) ^ 0, there 
is U £ Tx such that F(B) > F(A)/p for every B 6 o-c(x, Z7). According to 
(iii), there are disjoint sets Ci, . . . , Cp from a whose union is U C\ P. Letting 
Ai = A C\ Ci, i = 1, 2, . . . , p, we can find disjoint sets J3i, . . . , Bn from a 
such that Ul-i-B* = A - U ^ i - 4 , = 4̂ — Z7 (see (1.2)). Since 

P(^4) ^ÈF(Ai)+jrF(Bi) 

whenever the right side has meaning and since F (Ai) > F(A)/p whenever 
x G A~, it follows that among the sets A\, . . . , Ap, B±, . . . , Bn there is at 
least one, say C, for which x (? C~ and F(C) < 0. Hence, [a(F)]A-V is not 
empty for all sufficiently small V £ IV 

Notice that if x £ P~ and LW(P, x) ^ 0, then also LC(F, x) ^ 0 and P(0) ^ 
0. On the other hand, Example 4.5 shows that even for a compact Hausdorfï 
space P the condition LC(F, x) ^ 0 cannot be replaced by LS(F, x) ^ 0 in 
Proposition 4.4. Example 4.6 shows that Proposition 4.4 is incorrect without 
assumption (iii). 
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Example 4.5. Le t P = [ — 1, 1] and let a be the system of all subintervals of 
P . For A G o- we let P ( 4 ) = 1 if 0 G 4 - A°, F(A) = - 1 if 0 6 4 - - 4 , 
and P ( 4 ) = 0 otherwise. Then 6 F G ©, L , ( P , x) = 0 for all x G P ~ , and 
o-(P) is no t stable. 

Example 4.6. Let P be the interval [0, 1] with the discrete topology and let 
a be the system of all, possibly degenerate, subintervals of P . Obviously, a 
satisfies conditions (i) and (ii) and does no t satisfy condition (iii). For A G o-, 
let F (A) = —JJL(A), where fi is the Lebesgue measure in P . I t is easy to see 
tha t 6 P C © and LW(F, x) = 0 for all x G P~. However, since P G a (F) and 
[o-(P)]P_ l7 = 0 for every £/ G r œ , o-(P) is not stable. 

I t is an open question whether for every non-empty semihereditary stable 
system 8 C o" there is a function P G © with <r(F) = ô and such t h a t 
P* (P , x) ^ 0 for all x G P " 

T H E O R E M 4.7. Le£ P G © awd let Z (Z P be a countable set. If LW(F, x) ^ 0 

for allx £ Z U ( œ ) and P W ( P , x) ^ 0 /o r all x € P - Z, then F{A) ^ 0 / o r 
every set A G <r. 

Proof. Suppose t h a t F (A) < 0 for some A G o\ Since er(P) is stable (see 
(4.4) and the remark following Proposition 4.4), there is a small set B G o-
such t h a t P ( P ) < 0. Therefore, e = - P ( P ) / [ G ( P ) + 1] is a well-defined 
positive number . For C G <r, we let H^C) = P(C) + eG(C) whenever P(C) + 
eG(C) has meaning and H(C) = — °° otherwise. I t is ra ther easy to see 
t h a t H G ©, # ( P ) = - e < 0, and Lw(jfff x) è - M P , *) for all x G P ~ . 
F rom (4.4), the remark following Proposition 4.4, and Corollary 2.5, it follows 
t h a t there is x0 G (P - Z) C\ [a(H)]w. Hence DW(H, x0) g 0. On the other 
hand, DW(H, x0) ^ DW(F, Xo) + e > 0, which is a contradiction. 

If the space P is locally compact and Hausdorff, then according to Corollary 
2.8, Theorem 4.7 holds for any set Z C P , which has cardinali ty less than the 
cont inuum. 

T H E O R E M 4.8. Assume that P is locally pseudo-metrizable. Let F G © and let 
Z C P be a set with cardinality less than the continuum. If LC(F, x) ^ 0 for all 
x G Z U (oo) awd P C ( P , x) ^ 0 /o r all x £ P - Z, then F(A) ^ 0 /or guery 
non-empty set A G c. 

T h e theorem follows from Theorem 3.2 and Proposition 4.4 and its proof is a 
verbat im repetition of the proof of Theorem 4.7. 

T H E O R E M 4.9. Assume that P is Hausdorff and that a is closed with respect to 
the formation of set differences. Let F G © and let Z C P be a countable set. If 
LS(F, x) H and Ls( — G, x) ^ 0 for all x G Z and if DS(F, x) ^ 0 for all 
x G P — Z, then F (A) ^ 0 / o r every non-empty compact set A G c. 

6In fact, the function F is additive. 
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Proof. Let Z = {xh x2, . . .} and choose e > 0. For A Ç a we let 

H (A) = F(A) + eZn2-nXA(xn), 

where XA is the characteristic function of A in P . Obviously, H £ ©, 
£>*(#, *0 ^ #*(^, *) for all x G P , and P>s(#, x) = +«> for all x f Z . Accord
ing to (5, § 5.2), H (A) ^ 0 for every non-empty compact set A £ a. Since 
F ^ H — e, the theorem follows from the arbitrariness of e. 

Notice that condition (iii) was not needed for the proof of Theorem 4.3. 
Theorems 4.7 and 4.8 are of essential importance in the general theory of the 

Perron integration which will be given in (6). Theorem 4.8 is particularly 
important for the geometric applications of the Perron integral. 
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