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Abstract. We prove that the classical universal Taylor series in the complex plane
are never frequently universal. On the other hand, we prove the 1-upper frequent
universality of all these universal Taylor series.
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1. Introduction and definitions. The theory of universal series is a very active
branch of mathematical analysis, which has received an increasing interest since the
work of Nestoridis in 1996 [12]. The first notion of universal Taylor series in the
complex plane was obtained in 1951 by Seleznev [15], who showed that there exists a
formal power series

∑
n≥1 anzn with coefficients in � such that for every compact set

K ⊂ � \ {0}, with connected complement, and for every function h continuous on K
and holomorphic on the interior K◦ (if nonempty) of K , there is a sequence of positive
integers (λn) such that

sup
z∈K

∣∣∣∣∣∣
λn∑

j=0

ajzj − h(z)

∣∣∣∣∣∣ → 0 as n → +∞. (1)

Clearly, Seleznev universal series must have radius of convergence equal to 0. In the
sequel, we denote by A(K) the family of functions continuous on K and holomorphic on
the interior K◦ of K. Later, Luh [14] and Chui and Parnes [7] independently constructed
in the early 1970’s universal power series with a nonzero radius of convergence. More
precisely, they proved that there exists a series

∑
n≥0 anzn, which is convergent on

the open unit disc � = {z ∈ � ; |z| < 1}, such that, for every compact set K ⊂ {z ∈
� ; |z| > 1} with connected complement, and for every function h ∈ A(K), there exists
an increasing sequence (λn) of non-negative integers such that the approximation
property (1) holds. Clearly, the radius of convergence of such series is exactly 1. Then,
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in 1996 Nestoridis refined this result by observing that the compact set is allowed to
contain pieces of the boundary ∂�; thus, the approximations also holds on the points
of the boundary [12]. Moreover, the idea of the use of Baire’s theorem (as in [8, 9])
yields a simplification of the proofs of the existence of universal series together with a
Gδ-dense set of such elements. This leads to the following general statement.

THEOREM 1.1. There exists a power series
∑

n≥1 anzn with radius of convergence 1
(resp. 0) such that for every compact set K ⊂ {z ∈ � ; |z| ≥ 1} (resp. K ⊂ � \ {0}), with
connected complement, and for every function h ∈ A(K), there is an increasing sequence
(λn) of non-negative integers such that

sup
z∈K

∣∣∣∣∣∣
λn∑

j=0

ajzj − h(z)

∣∣∣∣∣∣ → 0 as n → +∞.

Moreover, the set U(�) (resp. U) of such universal Taylor series is a Gδ-dense subset
of H(�) (resp. ��) endowed with the topology of uniform convergence on compact sets
(resp. with the Cartesian topology).

Since then, many results on universal series have appeared. We refer the reader to
[3] and the references therein. Kyrezi, Nestoridis and Papachristodoulos have recently
been interested in the densities of the sub-sequences (λn) (see Definition 2.1) which
realize the approximations (1). In fact, they studied this property in the context of
the abstract theory of universal series. Here, let us define the classes of frequently and
1-upper frequently universal Taylor series in the complex plane.

DEFINITION 1.2. A power series
∑

j≥0 ajzj of radius of convergence 1 (resp. 0) is
said to be frequently universal if for every ε > 0, for every compact set K ⊂ � \ �

(resp. � \ {0}) with connected complement, and any function h ∈ A(K), we have

dens

{
n ∈ �; sup

z∈K

∣∣∣∣∣
n∑

k=0

akzk − h(z)

∣∣∣∣∣ < ε

}
> 0.

We denote by FU(�) (resp. FU) the set of such power series.

Clearly, we have FU(�) ⊂ U(�) or FU ⊂ U .

DEFINITION 1.3. A power series
∑

j≥0 ajzj of radius of convergence 1 (resp. 0) is said
to be 1-upper frequently universal if for every compact set K ⊂ � \ � (resp. � \ {0})
with connected complement, and any function h ∈ A(K), there exists an increasing
sequence λ = (λn) ⊂ �, with dens(λ) = 1, such that

sup
z∈K

∣∣∣∣∣
λn∑

k=0

akzk − h(z)

∣∣∣∣∣ → 0, as n → +∞.

We denote by Ũ(�) (resp. Ũ) the set of such power series.

We have Ũ(�) ⊂ U(�) and Ũ ⊂ U again. Notice that if we replace dens(λ) = 1 by
dens(λ) > 0 in Definition 1.3, the corresponding set of universal series is empty [13].

These classes of frequently universal series are related to the notion of frequently
hypercyclic (or universal) operators introduced by Bayart and Grivaux ([1, 2], see also
[6]).
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DEFINITION 1.4. Let Y (resp. Y, Z) be topological vector space(s). An operator
T : Y → Y (resp. a sequence of operators Tn : Y → Z) is called frequently hypercyclic
(resp. frequently universal) if there exists a vector y ∈ Y such that for every non empty
open set U ⊂ Y (resp. U ⊂ Z),

dens({k ∈ �; Tky ∈ U (resp. Tky ∈ U)} > 0.

Roughly speaking this notion quantifies how often the orbit of a hypercyclic (or
universal) vector visits a non-empty open set. For example the translation operator
[5] or the differentiation operator [11] in the space H(�) of entire functions, endowed
with the topology of uniform convergence on compact sets, are hypercyclic operators
[11] which are frequently hypercyclic [2].

Concerning the theory of universal series, we know that the sets of frequently
universal series are of first category [10, 13]. But in [13, Question 3.6] the author
wonders about the existence of frequently universal Taylor series. In this short paper,
we show that frequently universal Taylor series in the sense of Seleznev do not exist. The
proof comes in a natural way. Using an additional argument, we will obtain the same
result concerning universal Taylor series in the sense of Nestoridis, i.e. FU(�) = ∅.

Moreover, in [13] the author proves that the set of Taylor series in H(�) which are
1-upper frequently universal with respect to a single compact set K ⊂ � \ �, with
connected complement, is a Gδ-dense subset of H(�) endowed with the topology of
uniform convergence on compact sets. Combining this result with a diagonal argument
(as in [3, Theorem 3]), it is easy to check that Ũ(�) is a Gδ-dense subset of H(�). In our
paper, we show that in fact all the elements of U(�) are 1-upper frequently universal.
Hence Ũ(�) = U(�). The same property holds for the set U .

The paper is organized as follows: in Section 2 we recall some definitions and some
useful lemmas. Next, Section 3 is devoted to the statements and proofs of the main
results.

2. Notations and preliminary lemmas. First, we recall the notions of the densities
of subsets of �.

DEFINITION 2.1. The lower density of a strictly increasing sequence (nk) of positive
integers is defined as the lower density of the corresponding subset of �, that is,

dens(nk) = lim inf
N→+∞

#{k ∈ � : nk ≤ N}
N

,

where as usual # denotes the cardinality of the corresponding set.
Similarly the upper density of a strictly increasing sequence (nk) of positive integers

is defined as

dens(nk) = lim sup
N→+∞

#{k ∈ � : nk ≤ N}
N

.

We have also the following useful simple facts [6].
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LEMMA 2.2. Let (nk) be a strictly increasing sequence of positive integers.

(i) We have

dens(nk) = lim inf
k→+∞

(
k
nk

)
,

(ii) the sequence (nk) is of positive lower density if and only if sup
k≥1

(nk

k

)
< +∞.

Now, we state the nice Turán inequality [16] (see also [4]), which forms the starting
point of our proofs.

LEMMA 2.3. Let Q be a polynomial of arbitrary degree which possesses only n non
zero coefficients. Then for any r > 0 and any δ (0 < δ < 2π)

sup
|z|=r

|Q(z)| ≤
(

4πe
δ

)n

sup
|t|≤δ/2

|Q(reit)|.

Throughout the paper, for r > 0 and 0 < δ < 2π, �r,δ will be the set

�r,δ =
{

z ∈ �; |z| = r and − δ

2
≤ arg(z) ≤ δ

2

}
,

and Cδ = 4πe
δ

the constant of the above Turán inequality.
Finally for a power series f = ∑

j≥0 ajzj we will denote its n-th partial sum as Sn(f ).

3. Main results. First, we address the question [13, Question 3.6], by showing
that the class of frequently universal Taylor series in the sense of Seleznev is empty.

THEOREM 3.1. No Taylor series is frequently universal in the sense of Seleznev, i.e.
FU = ∅.

Proof. The proof is based on the use of Turán’s inequality. Let f = ∑
n≥1 anzn be

a Seleznev universal series and assume that f is frequently universal. Let r > 0 and
0 < δ < 2π. Denote by A the following set of positive integers

A = {n ∈ �; sup
z∈�r,δ

|Sn(f )(z)| < 1},

and let us write A as a strictly increasing sequence (nl). Since f is frequently universal,
the sequence (nl) is of positive lower density. According to Lemma 2.2, we have
supl≥1

( nl
l

)
< +∞. Let us consider

M := sup
l≥1

(nl

l

)
< +∞. (2)

Now, we have Snl+1 (f )(z) − Snl (f )(z) = ∑nl+1

k=1+nl
akzk. By construction, we easily deduce

sup
z∈�r,δ

∣∣∣∣∣∣
nl+1∑

k=1+nl

akzk

∣∣∣∣∣∣ < 2. (3)
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Hence, Lemma 2.3 ensures that

sup
|z|≤r

∣∣∣∣∣∣
nl+1∑

k=1+nl

akzk

∣∣∣∣∣∣ ≤ 2Cnl+1−nl
δ , (4)

where Cδ does not depend on r. By Cauchy estimates, we get for every j = 1 +
nl, . . . , nl+1,

|aj| ≤ 2
rj

Cnl+1−nl
δ . (5)

Thus, combining (2) and (5) with the inequality nl ≥ l, we obtain, for every l ≥ 1 and
for j = 1 + nl, . . . nl+1,

|aj|1/j ≤ 21/j

r
CM−1

δ . (6)

We conclude that the power series f = ∑
n≥0 anzn = ∑n1

n=0 anzn + ∑+∞
l=1

∑nl+1
j=1+nl

ajzj has
a strictly positive radius of convergence. This contradicts the fact that f ∈ U . �

Notice that this previous proof does not adapt to the case of Nestoridis universal
series along the same lines. Indeed we obtain that the radius R of convergence of the
universal series satisfies the inequality R ≥ r/CM−1

δ , for some r ≥ 1, and the quantity M
depends on r. So we do not know if we can have r/CM−1

δ > 1 to obtain a contradiction.
Nevertheless, a careful examination of the proof leads to the case of 1-upper frequently
universal Taylor series (see Definition 1.3). First, we prove the following key result.

PROPOSITION 3.2. Let f ∈ U(�) (resp. U). Let also K ⊂ {z ∈ �; |z| ≥ 1} (resp.
K ⊂ � \ {0}) be a compact set with connected complement, h ∈ A(K) and ε > 0. For
every α > 1, there exists a sub-sequence of positive integers μ = (μk) such that

∀k ∈ �, sup
z∈K

|Sμk (f )(z) − h(z)| < ε and dens(μ) ≥ 1 − 1
α

.

Proof. Set 0 < δ < 2π. Let us choose R > 0 so that

R
Cα

δ

> sup
z∈K

|z|. (7)

Clearly the set KR,δ := �R,δ ∪ K is a compact set with connected complement. We then
consider the function h̃ defined by h̃(z) = h(z) for z ∈ K and h̃(z) = 0 for z ∈ �R,δ. Since
f ∈ U we get

#{n ∈ �; sup
z∈KR,δ

|Sn(f )(z) − h̃(z)| < ε/2} = +∞.

Let us write (λk) = {n ∈ �; supz∈KR,δ
|Sn(f )(z) − h̃(z)| < ε/2} where (λk) is a strictly

increasing sub sequence of positive integers. We set f (z) = ∑
k≥0 akzk. Now, by the
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triangle inequality we have

sup
z∈�R,δ

∣∣∣∣∣∣
λk+1∑

j=1+λk

ajzj

∣∣∣∣∣∣ < ε.

Using Lemma 2.3 and Cauchy estimates, we get for every k ≥ 1 and j = 1 +
λk, . . . , λk+1,

|aj|1/j ≤ ε1/j

R
C(λk+1−λk)/j

δ . (8)

Let us also consider the following subsets of �

A = {k ∈ �; λk+1 − λk ≤ α(1 + λk)} and B = {k ∈ �; λk+1 − λk > α(1 + λk)}. (9)

We have f (z) = ∑λ1
j=0 ajzj + fA(z) + fB(z), with

fA(z) :=
∑
k∈A

λk+1∑
j=1+λk

ajzj and fB(z) :=
∑
k∈B

λk+1∑
j=1+λk

ajzj.

By (8) and (7), the power series fA converges on the compact set K. On the other hand,
notice that, for k ∈ B, if we have

⌊ 1
α

(λk+1 − λk)
⌋ + 1 ≤ j ≤ λk+1, then |aj|1/j ≤ ε1/jCα

δ /R
and the power series

fB1 (z) :=
∑
k∈B

λk+1∑
j=� 1

α
(λk+1−λk)�+1

ajzj,

converges on the compact set K again. Let us also consider the subset of �

C = {k ∈ �; sup
z∈K

|Sk(f )(z) − h(z)| < ε}.

Clearly, we have (λk) ⊂ C. Further, since the power series fA and fB1 converge on the
compact set K, one can find k0 ∈ �, such that, for every k ≥ k0, we have

sup
z∈K

|Sλk+1 (f )(z) − Sj(f )(z)| <
ε

2
,

for 1 + λk ≤ j ≤ λk+1 if k ∈ A or for � 1
α

(λk+1 − λk)� + 1 ≤ j ≤ λk+1 if k ∈ B. Thus by
the triangle inequality, we have⎛

⎜⎝⋃
k∈A;
k≥k0

{j ∈ �; 1 + λk ≤ j ≤ 8λk+1}

⎞
⎟⎠

× ∪

⎛
⎜⎝⋃

k∈B;
k≥k0

{
j ∈ �; � 1

α
(λk+1 − λk)� + 1 ≤ j ≤ λk+1

}⎞
⎟⎠ ⊂ C. (10)
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Let us write

(μi) =

⎛
⎜⎝⋃

k∈A;
k≥k0

{j ∈ �; 1 + λk ≤ j ≤ λk+1}

⎞
⎟⎠

× ∪

⎛
⎜⎝⋃

k∈B;
k≥k0

{
j ∈ �; � 1

α
(λk+1 − λk)� + 1 ≤ j ≤ λk+1

}⎞
⎟⎠ . (11)

From (11), we deduce, for N large enough,

# {k ∈ �; μk ≤ λN+1} =
N∑

k∈A;k=k0

(λk+1 − λk) +
N∑

k∈B;k=k0

(
λk+1 −

⌊
1
α

(λk+1 − λk)
⌋)

≥
N∑

k∈A;k=k0

(λk+1 − λk) +
N∑

k∈B;k=k0

(
λk+1 − 1

α
(λk+1 − λk)

)

≥
N∑

k∈A;k=k0

(λk+1 − λk) +
(

1 − 1
α

) N∑
k∈B;k=k0

(λk+1 − λk)

≥
(

1 − 1
α

)
(λN+1 − λk0 ) .

Thus, we have lim sup
N→+∞

# {k ∈ �; μk ≤ N}
N

≥ 1 − 1
α

, which gives the desired

conclusion. �
Now, we are ready to show that all the Seleznev or Nestoridis universal Taylor

series are 1-upper frequently universal.

THEOREM 3.3. We have Ũ(�) = U(�) (resp. Ũ = U).

Proof. The inclusion Ũ(�) ⊂ U(�) (resp. Ũ ⊂ U) is clear. Conversely, let f ∈ U(�)
(resp. f ∈ U). Let also K ⊂ � \ � (resp. � \ {0}) be a compact set, with connected
complement and h ∈ A(K). Set N0 = 0 and μ

(0)
0 = 0. For i = 1, 2, . . . , by Proposition

3.2 it follows that there exist positive integers μ
(i)
1 < μ

(i)
2 < · · · < μ

(i)
Ni

, such that

μ
(i−1)
Ni−1

< μ
(i)
1 , (12)

sup
z∈K

∣∣∣Sμ
(i)
k

(f )(z) − h(z)
∣∣∣ <

1
i + 1

, k = 1, . . . , Ni, (13)

and

Ni

μ
(i)
Ni

≥ 1 − 1
i + 1

. (14)

We set Ei = {μ(i)
1 , . . . , μ

(i)
Ni

} and λ = ⋃+∞
i=1 Ei = {λ1, λ2, . . . }. Then, by (14), we get that

dens(λ) = 1 and by (13) that supz∈K

∣∣Sλn (f )(z) − h(z)
∣∣ → 0, as n → +∞. Therefore,

f ∈ Ũ(�) (resp. Ũ). This finishes the proof. �
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Finally, we deduce the following result.

THEOREM 3.4. No Taylor series is frequently universal in the sense of Nestoridis, i.e.
FU(�) = ∅.

Proof. Combining the inclusion FU(�) ⊂ U(�) with Theorem 3.3 it suffices to
prove FU(�) ∩ Ũ(�) = ∅. To do this, we use the main ideas of the proof of [13,
Proposition 3.5]. For the sake of completeness and clarity, we report them here. Let
f ∈ FU(�) ∩ Ũ(�). Let also K ⊂ {z ∈ �; |z| ≥ 1} be a compact set, with connected
complement, and h ∈ A(K) a non-zero element. Since f ∈ Ũ(�), one can find an
increasing sub-sequence λ = (λn) of positive integers so that

dens(λ) = 1 and sup
z∈K

|Sλn (f )(z) − h(z)| → 0, as n → +∞.

Let us consider the subset A of � defined by

A = {n ∈ �; sup
z∈K

|Sn(f )(z)| < d/2},

where d = supz∈K |h(z)|. Thus, there exists an integer N large enough, such that, for
every n ≥ N, λn /∈ A. Set the sequence λ̃ = (λN, λN+1, . . . ). Clearly dens(λ̃) = 1. So the
inclusion A ⊂ � \ λ̃ implies

dens(A) ≤ dens(� \ λ̃).

But it is easy to check that dens(� \ λ̃) = 1 − dens(λ̃) = 0. This gives the con-
clusion.

�
REMARK 3.5. It is easy to check that Theorems 3.3 and 3.4 remain true for universal

Taylor series, where we replace � by a simply connected domain 	 ⊂ � (see [3] and
the references therein for the definitions) provided that the complement of 	 contains
a family of circle arcs which goes to infinity.

Finally the proof of Theorem 3.4 gives implicitly a more general result. Let X, Y
be Hausdorff topological vector spaces and Tn : X → Y continuous linear operators.
Then, we call (Tn) universal (resp. 1-upper frequently universal) if there is some x ∈ X
such that for any y ∈ Y there is an increasing sequence (nk) (resp. of upper density
1) such that Tnk x → y, as k → +∞. Such an element x is said to be universal (resp.
1-upper frequently universal) for (Tn). Then, we have:

PROPOSITION 3.6. Let (Tn) be a 1-upper frequently sequence of operators such that all
the universal elements are 1-upper frequently universal. Then, (Tn) cannot be frequently
universal.

Proof. Let x ∈ X be an universal element. By hypothesis x is 1-upper frequently
universal for (Tn) too. Let U, V be disjoint non-empty open sets in Y. Choose y ∈ V.

Let (nk) be a corresponding sequence as above. Then, there is some K ≥ 1 such that
Tnk x ∈ V fo all k ≥ K. Since dens{nk : k ≥ K} = 1 we necessarily have that

dens{n : Tnx ∈ U} = 0,

which implies the fact that (Tn) cannot be frequently universal. �
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