POWER-ASSOCIATIVE ALGEBRAS IN WHICH EVERY SUBALGEBRA IS A LEFT IDEAL

BY
D. J. RODABAUGH ${ }^{1}$)

1. Introduction. By an L-algebra we mean a power-associative nonassociative algebra (not necessarily finite-dimensional) over a field F in which every subalgebra generated by a single element is a left ideal. An H-algebra is a power-associative algebra in which every subalgebra is an ideal. The H-algebras were characterized by D. L. Outcalt in [2]. Let S_{α} be the semigroup with cardinality α such that if $x, y \in S_{\alpha}$ then $x y=y$. Consider the algebra over a field F with basis S_{α}. Such an algebra is an L-algebra that is not an H-algebra unless S_{α} contains only one element. In this paper we will prove that an algebra A over a field F with char. $\neq 2$ is an L-algebra if and only if it is either an H-algebra or has a basis S_{α} where α is the dimension of A. Also, we will show that an algebra A has basis S_{α} for $\alpha>1$ if and only if A is the vector space sum $\{e\}+B$ where $e^{2}=e \neq 0$ and B is a zero algebra such that $b e=e b-b=0$ for b in B.
2. Preliminaries. It is convenient to denote the algebra generated by x as $\{x\}$. If every $\{x\}$ is an ideal then for x in B a subalgebra of A and y in A, we have $x y, y x$ in $\{x\} \subseteq B$. Hence, A is an H-algebra and we have proved

Lemma 2.1. If A is a power-associative algebra then A is an H-algebra if and only if every subalgebra generated by a single element is an ideal.
Some of our results can be derived in a more general setting than that of L-algebras. Thus, we define a T-algebra as a power-associative algebra in which every subalgebra generated by a single element is either a right or a left ideal.

Lemma 2.2. If A is a T-algebra with identity element 1 then $A=\{1\}$.
Proof. For y in A, we have $y=y 1=1 y$ so y is in $\{1\}$.
Lemma 2.3. If A is a T-algebra then $\{a\}$ is finite-dimensional.
Proof. Suppose a, a^{2}, \ldots, a^{n} are linearly independent for any n. Now $a^{3}=a^{2} a$ $=a a^{2}$ is in $\left\{a^{2}\right\}$. But then a^{3} is a linear combination of a finite number of elements of the form $a^{2 m}$.

Lemma 2.4. If a is a nilpotent element in a T-algebra then $a^{3}=0$.
Proof. Suppose $a^{n}=0, a^{n-1} \neq 0$ with $n \geq 4$. Let $m=n / 2$ if n is even and $m=(n+1) / 2$

Received by the editors December 5, 1969.
${ }^{(1)}$ This research was supported in part by National Science Foundation Grant GP-7115.
if n is odd. Then $m+1 \leq n-1$ and $2 m \geq n$. Hence, $\left(a^{m}\right)^{2}=0$ so $\left\{a^{m}\right\}$ is one-dimensional. Now $a^{m+1}=a a^{m}=a^{m} a$ is in $\left\{a^{m}\right\}$ so $a^{m+1}=\alpha a^{m}$ with $\alpha \neq 0, \alpha$ in F (the base field). Thus, $a^{m+i}=\alpha^{i} a^{m}$ and $0=a^{2 m}=\alpha^{m} a^{m}$ a contradiction.

If A is power-associative with char. $\neq 2$, and if e is an idempotent in A, then $A=A_{e}(1)+A_{e}\left(\frac{1}{2}\right)+A_{e}(0)$ where $A_{e}(\lambda)=\{x: x e+e x=2 \lambda x\}$ (see [1]). Also, from [1] we have for x in $A_{e}(\lambda), \lambda \neq \frac{1}{2}$ then $x e=e x=\lambda x$.

Define $x \cdot y=(x y+y x) / 2,(x, y)=x y-y x$ and $(x, y, z)=(x y) z-x(y z)$. From [1], we know that:

$$
\begin{aligned}
A_{e}(1) A_{e}(0) & =A_{e}(0) A_{e}(1)=0 \\
A_{e}(\lambda) \cdot A_{e}(\lambda) & \subseteq A_{e}(\lambda), \quad \lambda \neq \frac{1}{2} . \\
A_{e}\left(\frac{1}{2}\right) \cdot A_{e}\left(\frac{1}{2}\right) & \subseteq A_{e}(1)+A_{e}(0) \\
A_{e}(\lambda) \cdot A_{e}\left(\frac{1}{2}\right) & \subseteq A_{e}\left(\frac{1}{2}\right)+A_{e}(1-\lambda), \quad \lambda \neq \frac{1}{2} .
\end{aligned}
$$

In any ring,

$$
\begin{equation*}
(x y, z)+(y z, x)+(z x, y)=(x, y, z)+(y, z, x)+(z, x, y) \tag{1}
\end{equation*}
$$

Furthermore, if char. $\neq 2$ in a power-associative ring then

$$
\begin{equation*}
(x, x, y)+(x, y, x)+(y, x, x)=0 \tag{2}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
(x y, x)+(y x, x)+\left(x^{2}, y\right)=0 . \tag{3}
\end{equation*}
$$

If $\{x\}$ is a left ideal, we then have $\{y x\}$ is in $\{x\}$ so

$$
\begin{equation*}
(x y, x)+\left(x^{2}, y\right)=0 \tag{4}
\end{equation*}
$$

We shall now establish the following result.
Theorem 2.1. If A is a non-nil L-algebra over a field F of char. $\neq 2$ then either $A=\{e\} \oplus B$ for e an idempotent and B a nil L-algebra or A has a basis which under multiplication forms a semigroup S_{α}.

Proof. Suppose A is non-nil and let a be not nilpotent. Then $\{a\}$ is finite-dimensional so there is an idempotent e in $\{a\}$. Now,

$$
A=A_{e}(1)+A_{e}\left(\frac{1}{2}\right)+A_{e}(0)
$$

Also, for x in $A_{e}(1), x e=e x=x$ so x is in $\{e\}$. Therefore $A_{e}(1)=\{e\}$.
We will now prove that $A_{e}(0)$ is a nil L-algebra. Since $A_{e}(0) \cdot A_{e}(0) \subseteq A_{e}(0)$ then $\{x\} \subseteq A_{e}(0)$ for any x in $A_{e}(0)$. Hence, y in $A_{e}(0)$ implies $y x$ is in $\{x\} \subseteq A_{e}(0)$ so $A_{e}(0)$ is a subalgebra. It is clearly an L-algebra. If x is not nilpotent then there is an idempotent f in $\{x\} \subseteq A_{e}(0)$. Hence $f^{2}=f, e f=f e=0$. Obviously $g=e+f$ is an idempotent so $\{e+f\}$ is one-dimensional. But, $e(e+f)=e, f=f(e+f)$ are both in $\{e+f\}$. This contradiction establishes the fact that there can be no idempotent in $A_{e}(0)$ so $A_{e}(0)$ is nil.

Now, let x be in $A_{e}\left(\frac{1}{2}\right)$. We have $x e=\alpha e$ for $x e$ is in $\{e\}$. Hence $e x=x e+e x-x e$ $=x-\alpha e$ is in $\{x\}$. From this $0=(e x, x)=(x-\alpha e, x)=-\alpha(e, x)$ so either $\alpha=0$ or
$e x=x e=\left(\frac{1}{2}\right) x$ which is impossible since $x e=\alpha e$. We have shown that $e x=x$ and $x e=0$. Now x^{2} is in $A_{e}\left(\frac{1}{2}\right) \cdot A_{e}\left(\frac{1}{2}\right) \subseteq A_{e}(1)+A_{e}(0)$ so $x^{2}=\beta e+z$ with z in $A_{e}(0)$. Since $A_{e}(0)$ is nil, $z^{3}=0$ and $\left(x^{2}\right)^{2}=(\beta e+z)^{2}=\beta^{2} e+z^{2},\left(x^{2}\right)^{3}=\beta^{3} e$. But A is power-associative so $\beta^{3} x=\left(x^{2}\right)^{3} x=x\left(x^{2}\right)^{3}=0$ and $\beta=0$. Therefore $x^{2}=z$ and x is nilpotent. But this implies $x^{3}=0$. If $x^{2} \neq 0$ then $\left(e+x+x^{2}\right)^{2}=e+x+x^{2}$ for x^{2} in $A_{e}(0)$. Also, e, x, x^{2} are linearly independent. Now $\left\{e+x+x^{2}\right\}$ is one-dimensional but $e+x$ $=e\left(e+x+x^{2}\right)$ and $x^{2}=x\left(e+x+x^{2}\right)$ are in $\left\{e+x+x^{2}\right\}$. Hence, $x^{2}=0$. If y is in $A_{e}(0)$ then $x y$ is in $\{y\}$ in $A_{e}(0)$ and $y x=\alpha x$ is in $A_{e}\left(\frac{1}{2}\right)$. But $x y+y x=2 x \cdot y$ is in $A_{e}\left(\frac{1}{2}\right)+A_{e}(1)$ so $x y=0$.
If $y^{2}=0$ then (4) implies $\alpha(x, y)=(y x, y)=0$. Thus, $y x=0$. Now, $(x+y)^{2}=0$ so $\{x+y\}$ is one-dimensional. Since $x=e(x+y)$ and $x+y$ are in $\{x+y\}$ we conclude that either $x=0$ or $y=0$.
If $y^{2} \neq 0$ then $y^{3}=0$. Now, interchanging x and y in (3) gives

$$
(y x, y)+\left(y^{2}, x\right)=0
$$

so $\left(y^{2}, x\right)=\alpha^{2} x$. But, $x y^{2}=0$ so $y^{2} x=\alpha^{2} x$. Now, letting $z=y^{2}$ we have $z^{2}=0$ so we have shown $z x=x z=0$. Hence, $\alpha^{2}=0$ and $y x=x y=0$. Now, $(x+y)^{3}=y^{2}(x+y)=0$ so $\{x+y\}$ has dimension two. However, $x=e(x+y), x+y, y^{2}=y(x+y)$ are in $\{x+y\}$. This contradiction shows that $x=0$ or $y=0$.

We conclude that $A_{e}\left(\frac{1}{2}\right) \neq 0$ implies $A_{e}(0)=0$. If $A_{e}\left(\frac{1}{2}\right)=0$ then either $A=\{e\}$ which has basis S_{α} for $\alpha=1$ or $A=\{e\} \oplus A_{e}(0)$ where $A_{e}(0)$ is a nil L-algebra.

If $A_{e}\left(\frac{1}{2}\right) \neq 0$, let $\left\{x_{\beta}\right\}$ be a basis for $A_{e}\left(\frac{1}{2}\right)$. Clearly, $e,\left\{y_{\beta}\right\}$ form a basis for A where $y_{\beta}=e+x_{\beta}$. Now $y_{\beta} y_{\gamma}=\left(e+x_{\beta}\right)\left(e+x_{\gamma}\right)=e+x_{\gamma}+x_{\beta} x_{\gamma}$. We have $x_{\beta} x_{\gamma}=a x_{\gamma}$ and $x_{\gamma} x_{\beta}=b x_{\beta}$ with $x_{\beta} x_{\gamma}+x_{\gamma} x_{\beta}$ in $A_{e}(1)+A_{e}(0)$. Hence $a=b=0$ and $y_{\beta} y_{\gamma}=y_{\gamma}$. Also, $y_{\beta} e=e, e y_{\beta}=y_{\beta}$ so $e,\left\{y_{\beta}\right\}$ forms a semigroup S_{α} under multiplication. The proof of the theorem is now complete.
3. Nil L-algebras. Throughout this section, we will assume that A is a nil algebra over a field F of char. $\neq 2$.

Lemma 3.1. If $x^{2}=0$ then $x A=A x=0$.
Proof. We will first prove that $x y=y x=0$ when $y^{2}=0$. Indeed, (4) implies $(x y, x)=0=(y x, y)$. If $x y=k y$ then $k=0$ or $x y=y x$. Also, $y x=m x$ implies $m=0$ or $x y=y x$. Now, if $x y=y x$ then $m x=k y$. Hence, in any case $x y=y x=0$.

Now, let $y^{2} \neq 0, y^{3}=0$. From above, $x y^{2}=y^{2} x=0$ so (4) implies $(y x, y)=0$ $=(x y, x)$. Let $y x=k x$ and $x y=m y+n y^{2}$. Hence, $(x y, x)=0$ implies $m k x=(x y) x$ $=x(x y)=x\left(m y+n y^{2}\right)=m x y=m^{2} y+m n y^{2}$. If $m \neq 0$, we have $k x=m y+n y^{2}$ so $0=k x^{2}$ $=x\left(m y+n y^{2}\right)=m^{2} y+m n y^{2}$. Since y, y^{2} are linearly independent this is impossible so $m=0$. Also, $0=(y x, y)=k(x, y)=k n y^{2}-k^{2} x$. Hence, $0=y\left(k n y^{2}-k^{2} x\right)=-k^{3} x$. Therefore, $k=0$ and $y x=0$. Consider $\{x-n y\}$. We have $(x-n y)^{2}=x^{2}-n x y-n y x$ $+n^{2} y^{2}=0$. Therefore $\{x-n y\}$ is one-dimensional. If $n \neq 0$ then $y(x-n y)=-n y^{2}$ so $y^{2}=\alpha(x-n y)$ since $y^{2} \neq 0$. We then have $0=y^{3}=\alpha\left(y x-n y^{2}\right)=-\alpha n y^{2}$. This is impossible so $n=0$ and $x y=y x=0$.

Lemma 3.2. If $x^{2} \neq 0 \neq y^{2}$ then for $\alpha \neq 0, \alpha, \beta, \gamma$ in F we have $x^{2}=\alpha y^{2}, x y=\beta y^{2}$ and $y x=\gamma x^{2}$.

Proof. From Lemma 3.1, $x^{2} y=y x^{2}=y^{2} x=x y^{2}=0$. Now, (4) implies $(x y, x)=0$ $=(y x, y)$. Write $x y=c y+d y^{2}$ and $y x=m x+n x^{2}$. Now $0=(y x, y)=m(x, y)+n\left(x^{2}, y\right)$ $=m(x, y)$ and $0=(x y, x)=c(y, x)+d\left(y^{2}, x\right)=c(y, x)$. Hence, either $x y=y x$ or $m=c=0$. If $x y=y x$ then $x y=\left(\frac{1}{2}\right)\left[(x+y)^{2}-x^{2}-y^{2}\right]$ so $(x y)^{2}=0$. If $c \neq 0$ then $x=\left(x y-d y^{2}\right) / c$ so $x^{2}=0$ which contradicts our assumption that $x^{2} \neq 0$. Therefore $c=0$. Similarly $m=0$. We have $x y=d y^{2}$ and $y x=n x^{2}$ as desired.

If $(x+y)^{2}=0$ then $x^{2}(1+n)+y^{2}(1+d)=(x+y)^{2}=0$ so $x^{2}=\alpha y^{2}$ with $\alpha \neq 0$ unless $n=-1, d=-1$. In this case, $d n=1$.

If $(x+y)^{2} \neq 0$ then, since $(x+y)^{3}=0,\{x+y\}$ is two-dimensional. Now, $x^{2}+d y^{2}$ $=x(x+y)$ and $y^{2}+n x^{2}=y(x+y)$ are in $\{x+y\}$ so there exist r, s, and t not all zero with $r\left(x^{2}+d y^{2}\right)+s\left(y^{2}+n x^{2}\right)+t(x+y)=0$. If $t \neq 0$ then $(x+y)^{2}=0$. Hence, $t=0$. If x^{2} and y^{2} are linearly dependent, we are done; so assume that x^{2} and y^{2} are linearly independent. Then $r+s n=d r+s=0$ and $r=-s n=-d r n$. If $r=0$ then $s=0$. Hence $r \neq 0$ and $d n=1$ in this case as well.

Now, $(x-d y)^{2}=x^{2}-d x y-d y x+d^{2} y^{2}=0$ so $\{x-d y\}$ is one-dimensional. Therefore $x(x-d y)=x^{2}-d^{2} y^{2}=a(x-d y)$ for a in F. Hence $0=x\left(x^{2}-d^{2} y^{2}\right)=a\left(x^{2}-d^{2} y^{2}\right)$. If $a=0$, we have $x^{2}=d^{2} y^{2}$ with $d \neq 0$. If $a \neq 0$ then $x^{2}=d^{2} y^{2}$ with $d \neq 0$ and the proof of the lemma is complete.

Theorem 3.1. If A is a nil algebra over a field of char. $\neq 2$ then A is an L-algebra if and only if A is an H-algebra.

Proof. Clearly, if A is an H-algebra then A is an L-algebra. Now let A be a nil L-algebra. If $x^{2}=0$ then $\{x\}$ is an ideal by Lemma 3.1. If $x^{2} \neq 0$ then $x^{3}=0$ and $y x=\gamma x^{2}$. Also, $x y=\beta y^{2}=(\beta / \alpha) x^{2}$ and $\{x\}$ is an ideal. Hence, every subalgebra of the form $\{x\}$ is an ideal and we are done by Lemma 2.1.

4. Proof of the main theorem.

Theorem 4.1. If A is an algebra over a field F of char. $\neq 2$ then A is an L-algebra if and only if A is an H-algebra or has a basis S_{α} where α is the dimension of A.

Proof. Let A be an L-algebra. If A is nil then A is an H-algebra by Theorem 3.1. If A is non-nil, then by Theorem 2.1 either $A=\{e\} \oplus B$ with B a nil L-algebra or A has a basis S_{α}. We claim that $\{e\} \oplus B$ is an H-algebra. If $x \in B$ then $\{x\}$ is an ideal in B. Since $e y=y e=0$ for y in B then $\{x\}$ is an ideal in A. Now, $\{e\}$ is an ideal in A. Finally, let $x=\alpha e+y$ with y in B and α in $F, \alpha \neq 0$. Now, $x^{2}=\alpha^{2} e+y^{2}$ and $x^{3}=\alpha^{3} e$. If $y^{2}=0,\{x\}$ is spanned by e and y while if $y^{2} \neq 0$ then $\{x\}$ is spanned by e, y and y^{2}. Now $z x=\alpha z e+z y$ is in $\{e\}+\{y\}=\{x\}$ and $x z=\alpha e z+y z$ is in $\{e\}+\{y\}=\{x\}$ and A is an H-algebra.

Conversely, an H-algebra is an L-algebra. Suppose A is an algebra with basis S_{α}. If x and y are in A then x and y are linear combinations of a finite number of
elements of S_{α}. Call this set $\left\{z_{i}\right\}_{i=1}^{n}$. Hence,

$$
\begin{aligned}
& x=\sum_{i=1}^{n} \alpha_{i} z_{i} \\
& y=\sum_{i=1}^{n} \beta_{i} z_{i}
\end{aligned}
$$

Now,

$$
\begin{aligned}
y x & =\left(\sum_{i=1}^{n} \beta_{i} z_{i}\right)\left(\sum_{i=1}^{n} \alpha_{i} z_{i}\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{i} \beta_{j} z_{j} z_{i} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{i} \beta_{j} z_{i} \\
& =\left(\sum_{j=1}^{n} \beta_{j}\right)\left(\sum_{i=1}^{n} \alpha_{i} z_{i}\right) \\
& =\left(\sum_{j=1}^{n} \beta_{j}\right) x .
\end{aligned}
$$

Hence, A is an L-algebra. Now, if $\alpha=1$ then A is also an H-algebra. Suppose $\alpha>1$. Then $z_{1} z_{2}=z_{2}$ which is not in $\left\{z_{1}\right\}$. We also have proved

Theorem 4.2. If an algebra A has a basis S_{α} then A is an H-algebra if and only if $\alpha=1$.

Finally, we prove
Theorem 4.3. An algebra A over a field F has basis S_{α} with $\alpha>1$ if and only if A is a vector space sum $\{e\}+B$ where $e^{2}=e \neq 0$ and B is a zero algebra such that $b e=e b-b=0$ for b in B.

Proof. Let e be a fixed element in S_{α} and let $\left\{x_{\beta}\right\}_{\beta \in C}$ be the complement of e in S_{α}. Define $y_{\beta}=x_{\beta}-e$ for β in C. Now let B be the algebra over F with basis $\left\{y_{\beta}\right\}_{\beta \in C}$. We have $y_{\beta} y_{\gamma}=\left(x_{\beta}-e\right)\left(x_{\gamma}-e\right)=0$ so B is a zero algebra. Also $e y_{\beta}=e x_{\beta}-e e=y_{\beta}$ and $y_{\beta} e=x_{\beta} e-e=0$. Conversely, if $A=\{e\}+B$ where B is a zero algebra and $b e=e b$ $-b=0$, let $\left\{y_{\beta}\right\}_{\beta \in C}$ be a basis of B. Then $e,\left\{x_{\beta}\right\}_{\beta \operatorname{In} C}$ is a basis for A where $x_{\beta}=e+y_{\beta}$ and this set is a semigroup of the form S_{α}.

Bibliography

1. A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.
2. D. L. Outcalt, Power-associative algebras in which every subalgebra is an ideal, Pacif. J. Math. 20 (1967), 481-485.
3. Lin Shao-Xue (Lin Shao-Haueh), On algebras in which every subalgebra is an ideal, Acta Math. Sinica 14 (1694), 532-537 (Chinese); translated as Chinese Math.-Acta 5 (1964), 571-577.
