BULLETIN 13 (2), 1970

POWER-ASSOCIATIVE ALGEBRAS IN WHICH EVERY SUBALGEBRA IS A LEFT IDEAL

BY

D. J. RODABAUGH(¹)

1. Introduction. By an L-algebra we mean a power-associative nonassociative algebra (not necessarily finite-dimensional) over a field F in which every subalgebra generated by a single element is a left ideal. An H-algebra is a power-associative algebra in which every subalgebra is an ideal. The H-algebras were characterized by D. L. Outcalt in [2]. Let S_{α} be the semigroup with cardinality α such that if $x, y \in S_{\alpha}$ then xy=y. Consider the algebra over a field F with basis S_{α} . Such an algebra is an L-algebra that is not an H-algebra unless S_{α} contains only one element. In this paper we will prove that an algebra A over a field F with char. $\neq 2$ is an L-algebra if and only if it is either an H-algebra or has a basis S_{α} for $\alpha > 1$ if and only if A is the vector space sum $\{e\}+B$ where $e^2=e\neq 0$ and B is a zero algebra such that be=eb-b=0 for b in B.

2. **Preliminaries.** It is convenient to denote the algebra generated by x as $\{x\}$. If every $\{x\}$ is an ideal then for x in B a subalgebra of A and y in A, we have xy, yx in $\{x\}\subseteq B$. Hence, A is an H-algebra and we have proved

LEMMA 2.1. If A is a power-associative algebra then A is an H-algebra if and only if every subalgebra generated by a single element is an ideal.

Some of our results can be derived in a more general setting than that of L-algebras. Thus, we define a T-algebra as a power-associative algebra in which every subalgebra generated by a single element is either a right or a left ideal.

LEMMA 2.2. If A is a T-algebra with identity element 1 then $A = \{1\}$.

Proof. For y in A, we have y=y1=1y so y is in $\{1\}$.

LEMMA 2.3. If A is a T-algebra then $\{a\}$ is finite-dimensional.

Proof. Suppose a, a^2, \ldots, a^n are linearly independent for any n. Now $a^3 = a^2 a = aa^2$ is in $\{a^2\}$. But then a^3 is a linear combination of a finite number of elements of the form a^{2m} .

LEMMA 2.4. If a is a nilpotent element in a T-algebra then $a^3 = 0$.

Proof. Suppose $a^n = 0$, $a^{n-1} \neq 0$ with $n \ge 4$. Let m = n/2 if n is even and m = (n+1)/2

Received by the editors December 5, 1969.

⁽¹⁾ This research was supported in part by National Science Foundation Grant GP-7115.

if *n* is odd. Then $m+1 \le n-1$ and $2m \ge n$. Hence, $(a^m)^2 = 0$ so $\{a^m\}$ is one-dimensional. Now $a^{m+1} = aa^m = a^m a$ is in $\{a^m\}$ so $a^{m+1} = \alpha a^m$ with $\alpha \ne 0$, α in *F* (the base field). Thus, $a^{m+i} = \alpha^i a^m$ and $0 = a^{2m} = \alpha^m a^m$ a contradiction.

If A is power-associative with char. $\neq 2$, and if e is an idempotent in A, then $A = A_e(1) + A_e(\frac{1}{2}) + A_e(0)$ where $A_e(\lambda) = \{x: xe + ex = 2\lambda x\}$ (see [1]). Also, from [1] we have for x in $A_e(\lambda)$, $\lambda \neq \frac{1}{2}$ then $xe = ex = \lambda x$.

Define $x \cdot y = (xy + yx)/2$, (x, y) = xy - yx and (x, y, z) = (xy)z - x(yz). From [1], we know that:

$$A_e(1)A_e(0) = A_e(0)A_e(1) = 0.$$

$$A_e(\lambda) \cdot A_e(\lambda) \subseteq A_e(\lambda), \quad \lambda \neq \frac{1}{2}.$$

$$A_e(\frac{1}{2}) \cdot A_e(\frac{1}{2}) \subseteq A_e(1) + A_e(0).$$

$$A_e(\lambda) \cdot A_e(\frac{1}{2}) \subseteq A_e(\frac{1}{2}) + A_e(1-\lambda), \quad \lambda \neq \frac{1}{2}.$$

In any ring,

(1)
$$(xy, z)+(yz, x)+(zx, y) = (x, y, z)+(y, z, x)+(z, x, y).$$

Furthermore, if char. $\neq 2$ in a power-associative ring then

(2) (x, x, y) + (x, y, x) + (y, x, x) = 0.

Consequently,

(3) $(xy, x) + (yx, x) + (x^2, y) = 0.$

If $\{x\}$ is a left ideal, we then have $\{yx\}$ is in $\{x\}$ so

(4)
$$(xy, x) + (x^2, y) = 0.$$

We shall now establish the following result.

THEOREM 2.1. If A is a non-nil L-algebra over a field F of char. $\neq 2$ then either $A = \{e\} \oplus B$ for e an idempotent and B a nil L-algebra or A has a basis which under multiplication forms a semigroup S_{α} .

Proof. Suppose A is non-nil and let a be not nilpotent. Then $\{a\}$ is finite-dimensional so there is an idempotent e in $\{a\}$. Now,

$$A = A_e(1) + A_e(\frac{1}{2}) + A_e(0).$$

Also, for x in $A_e(1)$, xe = ex = x so x is in $\{e\}$. Therefore $A_e(1) = \{e\}$.

We will now prove that $A_e(0)$ is a nil *L*-algebra. Since $A_e(0) \cdot A_e(0) \subseteq A_e(0)$ then $\{x\} \subseteq A_e(0)$ for any x in $A_e(0)$. Hence, y in $A_e(0)$ implies yx is in $\{x\} \subseteq A_e(0)$ so $A_e(0)$ is a subalgebra. It is clearly an *L*-algebra. If x is not nilpotent then there is an idempotent f in $\{x\} \subseteq A_e(0)$. Hence $f^2 = f$, ef = fe = 0. Obviously g = e + f is an idempotent so $\{e+f\}$ is one-dimensional. But, e(e+f) = e, f = f(e+f) are both in $\{e+f\}$. This contradiction establishes the fact that there can be no idempotent in $A_e(0)$ so $A_e(0)$ is nil.

Now, let x be in $A_e(\frac{1}{2})$. We have $xe = \alpha e$ for xe is in $\{e\}$. Hence $ex = xe + ex - xe = x - \alpha e$ is in $\{x\}$. From this $0 = (ex, x) = (x - \alpha e, x) = -\alpha(e, x)$ so either $\alpha = 0$ or

240

[June

1970]

 $ex = xe = (\frac{1}{2})x$ which is impossible since $xe = \alpha e$. We have shown that ex = x and xe = 0. Now x^2 is in $A_e(\frac{1}{2}) \cdot A_e(\frac{1}{2}) \subseteq A_e(1) + A_e(0)$ so $x^2 = \beta e + z$ with z in $A_e(0)$. Since $A_e(0)$ is nil, $z^3 = 0$ and $(x^2)^2 = (\beta e + z)^2 = \beta^2 e + z^2$, $(x^2)^3 = \beta^3 e$. But A is power-associative so $\beta^3 x = (x^2)^3 x = x(x^2)^3 = 0$ and $\beta = 0$. Therefore $x^2 = z$ and x is nilpotent. But this implies $x^3 = 0$. If $x^2 \neq 0$ then $(e + x + x^2)^2 = e + x + x^2$ for x^2 in $A_e(0)$. Also, e, x, x^2 are linearly independent. Now $\{e + x + x^2\}$ is one-dimensional but $e + x = e(e + x + x^2)$ and $x^2 = x(e + x + x^2)$ are in $\{e + x + x^2\}$. Hence, $x^2 = 0$. If y is in $A_e(0)$ then xy is in $\{y\}$ in $A_e(0)$ and $yx = \alpha x$ is in $A_e(\frac{1}{2})$. But $xy + yx = 2x \cdot y$ is in $A_e(\frac{1}{2}) + A_e(1)$ so xy = 0.

If $y^2=0$ then (4) implies $\alpha(x, y) = (yx, y) = 0$. Thus, yx=0. Now, $(x+y)^2=0$ so $\{x+y\}$ is one-dimensional. Since x=e(x+y) and x+y are in $\{x+y\}$ we conclude that either x=0 or y=0.

If $y^2 \neq 0$ then $y^3 = 0$. Now, interchanging x and y in (3) gives

$$(yx, y) + (y^2, x) = 0$$

so $(y^2, x) = \alpha^2 x$. But, $xy^2 = 0$ so $y^2 x = \alpha^2 x$. Now, letting $z = y^2$ we have $z^2 = 0$ so we have shown zx = xz = 0. Hence, $\alpha^2 = 0$ and yx = xy = 0. Now, $(x+y)^3 = y^2(x+y) = 0$ so $\{x+y\}$ has dimension two. However, x = e(x+y), x+y, $y^2 = y(x+y)$ are in $\{x+y\}$. This contradiction shows that x=0 or y=0.

We conclude that $A_e(\frac{1}{2}) \neq 0$ implies $A_e(0) = 0$. If $A_e(\frac{1}{2}) = 0$ then either $A = \{e\}$ which has basis S_{α} for $\alpha = 1$ or $A = \{e\} \oplus A_e(0)$ where $A_e(0)$ is a nil *L*-algebra.

If $A_e(\frac{1}{2}) \neq 0$, let $\{x_\beta\}$ be a basis for $A_e(\frac{1}{2})$. Clearly, $e, \{y_\beta\}$ form a basis for A where $y_\beta = e + x_\beta$. Now $y_\beta y_\gamma = (e + x_\beta)(e + x_\gamma) = e + x_\gamma + x_\beta x_\gamma$. We have $x_\beta x_\gamma = ax_\gamma$ and $x_\gamma x_\beta = bx_\beta$ with $x_\beta x_\gamma + x_\gamma x_\beta$ in $A_e(1) + A_e(0)$. Hence a = b = 0 and $y_\beta y_\gamma = y_\gamma$. Also, $y_\beta e = e, ey_\beta = y_\beta$ so $e, \{y_\beta\}$ forms a semigroup S_α under multiplication. The proof of the theorem is now complete.

3. Nil L-algebras. Throughout this section, we will assume that A is a nil algebra over a field F of char. $\neq 2$.

LEMMA 3.1. If $x^2 = 0$ then xA = Ax = 0.

Proof. We will first prove that xy=yx=0 when $y^2=0$. Indeed, (4) implies (xy, x)=0=(yx, y). If xy=ky then k=0 or xy=yx. Also, yx=mx implies m=0 or xy=yx. Now, if xy=yx then mx=ky. Hence, in any case xy=yx=0.

Now, let $y^2 \neq 0$, $y^3 = 0$. From above, $xy^2 = y^2x = 0$ so (4) implies (yx, y) = 0= (xy, x). Let yx = kx and $xy = my + ny^2$. Hence, (xy, x) = 0 implies mkx = (xy)x= $x(xy) = x(my + ny^2) = mxy = m^2y + mny^2$. If $m \neq 0$, we have $kx = my + ny^2$ so $0 = kx^2$ = $x(my + ny^2) = m^2y + mny^2$. Since y, y^2 are linearly independent this is impossible so m = 0. Also, $0 = (yx, y) = k(x, y) = kny^2 - k^2x$. Hence, $0 = y(kny^2 - k^2x) = -k^3x$. Therefore, k = 0 and yx = 0. Consider $\{x - ny\}$. We have $(x - ny)^2 = x^2 - nxy - nyx$ $+ n^2y^2 = 0$. Therefore $\{x - ny\}$ is one-dimensional. If $n \neq 0$ then $y(x - ny) = -ny^2$ so $y^2 = \alpha(x - ny)$ since $y^2 \neq 0$. We then have $0 = y^3 = \alpha(yx - ny^2) = -\alpha ny^2$. This is impossible so n = 0 and xy = yx = 0.

D. J. RODABAUGH

LEMMA 3.2. If $x^2 \neq 0 \neq y^2$ then for $\alpha \neq 0$, α , β , γ in F we have $x^2 = \alpha y^2$, $xy = \beta y^2$ and $yx = \gamma x^2$.

Proof. From Lemma 3.1, $x^2y = yx^2 = y^2x = xy^2 = 0$. Now, (4) implies (xy, x) = 0= (yx, y). Write $xy = cy + dy^2$ and $yx = mx + nx^2$. Now $0 = (yx, y) = m(x, y) + n(x^2, y)$ = m(x, y) and $0 = (xy, x) = c(y, x) + d(y^2, x) = c(y, x)$. Hence, either xy = yx or m = c = 0. If xy = yx then $xy = (\frac{1}{2}) [(x+y)^2 - x^2 - y^2]$ so $(xy)^2 = 0$. If $c \neq 0$ then $x = (xy - dy^2)/c$ so $x^2 = 0$ which contradicts our assumption that $x^2 \neq 0$. Therefore c = 0. Similarly m = 0. We have $xy = dy^2$ and $yx = nx^2$ as desired.

If $(x+y)^2 = 0$ then $x^2(1+n) + y^2(1+d) = (x+y)^2 = 0$ so $x^2 = \alpha y^2$ with $\alpha \neq 0$ unless n = -1, d = -1. In this case, dn = 1.

If $(x+y)^2 \neq 0$ then, since $(x+y)^3 = 0$, $\{x+y\}$ is two-dimensional. Now, $x^2 + dy^2 = x(x+y)$ and $y^2 + nx^2 = y(x+y)$ are in $\{x+y\}$ so there exist r, s, and t not all zero with $r(x^2+dy^2)+s(y^2+nx^2)+t(x+y)=0$. If $t\neq 0$ then $(x+y)^2=0$. Hence, t=0. If x^2 and y^2 are linearly dependent, we are done; so assume that x^2 and y^2 are linearly independent. Then r+sn=dr+s=0 and r=-sn=-drn. If r=0 then s=0. Hence $r\neq 0$ and dn=1 in this case as well.

Now, $(x-dy)^2 = x^2 - dxy - dyx + d^2y^2 = 0$ so $\{x-dy\}$ is one-dimensional. Therefore $x(x-dy) = x^2 - d^2y^2 = a(x-dy)$ for a in F. Hence $0 = x(x^2 - d^2y^2) = a(x^2 - d^2y^2)$. If a=0, we have $x^2 = d^2y^2$ with $d \neq 0$. If $a \neq 0$ then $x^2 = d^2y^2$ with $d \neq 0$ and the proof of the lemma is complete.

THEOREM 3.1. If A is a nil algebra over a field of char. $\neq 2$ then A is an L-algebra if and only if A is an H-algebra.

Proof. Clearly, if A is an H-algebra then A is an L-algebra. Now let A be a nil L-algebra. If $x^2=0$ then $\{x\}$ is an ideal by Lemma 3.1. If $x^2 \neq 0$ then $x^3=0$ and $yx=\gamma x^2$. Also, $xy=\beta y^2=(\beta/\alpha)x^2$ and $\{x\}$ is an ideal. Hence, every subalgebra of the form $\{x\}$ is an ideal and we are done by Lemma 2.1.

4. Proof of the main theorem.

THEOREM 4.1. If A is an algebra over a field F of char. $\neq 2$ then A is an L-algebra if and only if A is an H-algebra or has a basis S_{α} where α is the dimension of A.

Proof. Let A be an L-algebra. If A is nil then A is an H-algebra by Theorem 3.1. If A is non-nil, then by Theorem 2.1 either $A = \{e\} \oplus B$ with B a nil L-algebra or A has a basis S_{α} . We claim that $\{e\} \oplus B$ is an H-algebra. If $x \in B$ then $\{x\}$ is an ideal in B. Since ey = ye = 0 for y in B then $\{x\}$ is an ideal in A. Now, $\{e\}$ is an ideal in A. Finally, let $x = \alpha e + y$ with y in B and α in F, $\alpha \neq 0$. Now, $x^2 = \alpha^2 e + y^2$ and $x^3 = \alpha^3 e$. If $y^2 = 0$, $\{x\}$ is spanned by e and y while if $y^2 \neq 0$ then $\{x\}$ is spanned by e, y and y^2 . Now $zx = \alpha ze + zy$ is in $\{e\} + \{y\} = \{x\}$ and $xz = \alpha ez + yz$ is in $\{e\} + \{y\} = \{x\}$ and A is an H-algebra.

Conversely, an *H*-algebra is an *L*-algebra. Suppose *A* is an algebra with basis S_{α} . If x and y are in *A* then x and y are linear combinations of a finite number of

June

elements of S_{α} . Call this set $\{z_i\}_{i=1}^n$. Hence,

$$x = \sum_{i=1}^{n} \alpha_i z_i$$
$$y = \sum_{i=1}^{n} \beta_i z_i.$$
$$= \left(\sum_{i=1}^{n} \beta_i z_i\right) \left(\sum_{i=1}^{n} \alpha_i z_i\right)$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_i \beta_j z_j z_i$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_i \beta_j z_i$$

Now,

1970]

$$yx = \left(\sum_{i=1}^{n} \beta_{i} z_{i}\right) \left(\sum_{i=1}^{n} \alpha_{i} z_{i}\right)$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{i} \beta_{j} z_{j} z_{i}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{i} \beta_{j} z_{i}$$
$$= \left(\sum_{j=1}^{n} \beta_{j}\right) \left(\sum_{i=1}^{n} \alpha_{i} z_{i}\right)$$
$$= \left(\sum_{j=1}^{n} \beta_{j}\right) x.$$

Hence, A is an L-algebra. Now, if $\alpha = 1$ then A is also an H-algebra. Suppose $\alpha > 1$. Then $z_1 z_2 = z_2$ which is not in $\{z_1\}$. We also have proved

THEOREM 4.2. If an algebra A has a basis S_{α} then A is an H-algebra if and only if $\alpha = 1$.

Finally, we prove

THEOREM 4.3. An algebra A over a field F has basis S_{α} with $\alpha > 1$ if and only if A is a vector space sum $\{e\}+B$ where $e^2=e\neq 0$ and B is a zero algebra such that be=eb-b=0 for b in B.

Proof. Let e be a fixed element in S_{α} and let $\{x_{\beta}\}_{\beta \in C}$ be the complement of e in S_{α} . Define $y_{\beta} = x_{\beta} - e$ for β in C. Now let B be the algebra over F with basis $\{y_{\beta}\}_{\beta \in C}$. We have $y_{\beta}y_{\gamma} = (x_{\beta} - e)(x_{\gamma} - e) = 0$ so B is a zero algebra. Also $ey_{\beta} = ex_{\beta} - ee = y_{\beta}$ and $y_{\beta}e = x_{\beta}e - e = 0$. Conversely, if $A = \{e\} + B$ where B is a zero algebra and be = eb-b=0, let $\{y_{\beta}\}_{\beta\in C}$ be a basis of B. Then $e, \{x_{\beta}\}_{\beta \in C}$ is a basis for A where $x_{\beta}=e+y_{\beta}$ and this set is a semigroup of the form S_{α} .

BIBLIOGRAPHY

1. A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.

2. D. L. Outcalt, Power-associative algebras in which every subalgebra is an ideal, Pacif. J. Math. 20 (1967), 481-485.

3. Lin Shao-Xue (Lin Shao-Haueh), On algebras in which every subalgebra is an ideal, Acta Math. Sinica 14 (1694), 532-537 (Chinese); translated as Chinese Math.-Acta 5 (1964), 571-577.

UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI