
14
Heavy ion collisions

The only practical way of creating and studying hot and dense strongly
interacting matter in the laboratory is by colliding heavy nuclei at high
energies. Some of the pioneering studies have used nuclear emulsion
data of highly energetic cosmic ray events. However, a serious handi-
cap there is the lack of control over the physical beam characteristics.
For a few decades now, there has existed a vibrant experimental program
seeking to explore the physics of nuclear collisions in different energy
regimes and with different combinations of beam and target nuclei. The
pioneering experiments at the Lawrence Berkeley National Laboratory
(Berkeley, USA) have been followed by several other experimental ven-
tures. It is impossible to enumerate all the facilities, but some important
efforts at the high end of the energy spectrum have been pursued at
the GSI (Darmstadt, Germany), CERN (Geneva, Switzerland), and at
Brookhaven National Laboratory (Upton, USA). The Relativistic Heavy
Ion Collider (RHIC) is located at BNL, and the Large Hadron Collider
(LHC) has a heavy ion program expected to begin at CERN around 2007.
A healthy experimental program in high energy nuclear collisions requires
a basis in nucleon–nucleon and nucleon–nucleus collisions. These in fact
constitute a crucial category of control experiments for the more com-
plex nucleus–nucleus events. The study of strongly interacting matter at
high temperature and density enjoys an active and fruitful collaboration
between the experimental and theoretical communities.

In relativistic nuclear collisions, multiple scatterings involving both the
primary constituents (the original nucleons) and the secondary particles
(mostly created pions) can, in principle, drive the system towards a state
of local thermodynamic equilibrium. The reason for this originates in
the phenomenology of hadronic collisions. From those studies it is known
that, at energies relevant for the applications considered in this chapter,
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318 Heavy ion collisions

the large inelastic part of the nucleon–nucleon cross section will cause
considerable energy loss of the colliding constituents. This energy loss
ultimately translates into the creation of a large number of light mesons,
mostly appearing in the central rapidity region, which is midway between
the projectile and target fragmentation regions. The identity of the pri-
mordial fields first materializing at mid-rapidity (partons or composites)
is not completely clear but should depend on the initial energy density.
The key issue, however, is the following: because of the large particle
multiplicities involved, the relativistic collisions of heavy nuclei will cre-
ate zones of short mean free paths. This condition will pave the way to the
statistical treatment of heavy ion collisions that we shall discuss in this
chapter. We have seen that QCD predicts a transition from hot hadronic
matter to quark–gluon plasma, provided that the energy density is large
enough. We also will review some of the probes that have been proposed
to study hot and dense systems and to determine whether a new state of
matter has been created.

14.1 Bjorken model

Fermi was the first to apply statistical techniques to hadronic particle
production in p–p collisions [1]. Shortly thereafter, the first application
of relativistic hydrodynamics to a strongly–interacting system was made
by Landau [2]. The power, elegance, and simplicity of hydrodynamics
is essentially contained in the statement that the entire system can be
described by a few macroscopic thermodynamic fields. The conditions nec-
essary for this to be so are that any modification of the state of the system
is reflected instantaneously in the fields. Quantitatively, this statement
identifies any relaxation time as shorter than any other time scale in the
system under scrutiny. Local thermal equilibrium is therefore assumed.
We also assume that the net baryon number and electric charge are zero.
Not only does this simplify the analysis but it is a very good approxi-
mation in high energy collisions because of the large number of particles
produced.

We have already seen, in Chapter 6, that the energy–momentum tensor
may be written as

Tμν = −Pgμν + (ε + P )uμuν (14.1)

where P is the pressure, ε is the energy density, and uμ = (γ, γv) is the
local flow velocity relative to some fixed reference frame. In a frame in
which the fluid is locally at rest, uμ = (1, 0, 0, 0), T 00 = ε, T ij = Pδij , and
T i0 = 0. The conservation of energy and momentum is expressed as

∂μT
μν = 0 (14.2)
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This vector equation, (14.2), represents a set of four scalar equations.
However, there are five unknown quantities: the three independent com-
ponents of the flow velocity uμ (the normalization condition u2 = 1 defines
three independent and one dependent component), the energy density,
and the pressure. To close this system, another equation must be sup-
plied, and this is the equation of state. This set of equations can always
be solved numerically. However, their solution is a complicated task in
three spatial dimensions unless simplifying assumptions are placed on the
symmetry of the system. There is a wide body of literature devoted to
the techniques used in numerical simulations using relativistic hydrody-
namics.

Insight can be gained by considering some simple limits. Motivated by
empirical observations, Bjorken [3] was led to explore the consequences
of the existence of a central plateau structure in the inclusive particle
production as a function of the spacetime rapidity y, defined as

y =
1
2

ln
(
t + z

t− z

)
(14.3)

where the z-axis is oriented along the beam direction. Theoretically, the
existence of this plateau implies that the initial conditions, viewed at the
same proper time after the beginning of the nuclear collision, are invariant
with respect to Lorentz transformations along the longitudinal (or beam)
direction.

Another assumption of the Bjorken scenario is that essentially all the
baryon number is carried by the receding Lorentz-contracted nuclei that
have just collided. The produced particles then occupy the central rapidity
region and the high multiplicity will ensure rapid thermalization followed
by hydrodynamic evolution. At this point it is appropriate to note that
this approach is really a conceptual idealization. In actual practice, the
manifest success of the hydrodynamic model in relativistic nuclear colli-
sions at RHIC energies suggests a very early thermalization, even though
the microscopic mechanisms that would drive it currently remain unclear.

In keeping with Bjorken’s line of thought, we shall be interested in the
early stages of the hydrodynamic development of the central collision of
high-energy nuclei. There the flow can be assumed one dimensional, owing
largely to the initial symmetry of the colliding system. At slightly later
times, larger than those associated with the size of the nucleus (t >
1.2A1/3 fm/c), the rarefaction wave coming in from the nuclear surface will
be fully formed and a three-dimensional expansion will set in. Therefore,
the early solution will be independent of the rapidity, and nothing in the
time evolution will spoil this symmetry. One may write the general solu-
tions as ε(τ), P (τ), T (τ), uμ(τ), with proper time τ =

√
t2 − z2. Solving
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320 Heavy ion collisions

for t and z in terms of τ and y yields

t = τ cosh y z = τ sinh y (14.4)

Then

uμ =
dxμ

dτ
= (cosh y, 0, 0, sinh τ) (14.5)

and indeed, uμuμ = 1. One may then write

uμ
∂τ

∂xμ
= u0∂τ

∂t
+ u3∂τ

∂z
= cosh2 y − sinh2 y ≡ 1

and
∂τ

∂xμ
=

xμ
τ

(14.6)

The equation for the conservation of energy and momentum is

∂μT
μν =

∂Tμν

∂xμ
=

∂(ε + P )
∂τ

∂τ

∂xμ
uμuν + (ε + P )

∂uμ

∂xμ
uν

+(ε + P )uμ
∂uν

∂xμ
− gμν

∂P

∂τ

∂τ

∂xμ
= 0 (14.7)

With the help of (14.6), this reduces to

∂ε

∂τ
+

ε + P

τ
= 0 (14.8)

Defining an entropy density s = S/V = (ε + P )/T and using the facts that
uμ∂/∂xμ = d/dτ and that at constant volume dε = Tds, we may rewrite
the above equation as

ds

dτ
+

s

τ
= 0 (14.9)

the solution of which clearly satisfies

s(τ)
s(τ0)

=
τ0
τ

(14.10)

Also implied by (14.9) is

∂ (suμ)
∂xμ

= ∂μs
μ = 0 (14.11)

Entropy is therefore a conserved quantity. Furthermore, since a volume
element in this geometry is dV = d2x⊥τdy, (14.10) also means that the
entropy per unit rapidity, dS/dy, is a constant with respect to proper
time.

Let us now study the time evolution implicit in the formalism we have
just written down. We start by considering the case of a first-order phase
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14.1 Bjorken model 321

transition. Our pragmatic approach will be to describe the quark–gluon
plasma as a noninteracting gas of eight massless gluons and two flavors
(u, d) of massless quarks. Note that massive strange quarks could also
be included self-consistently. A bag constant B [4] is used to simulate
the effect of confinement in the hadron phase, which is described as a
noninteracting gas of massless pions. Thus the pressure, energy density,
and entropy density in each of the two phases are

Pq = 37aT 4 −B εq = 111aT 4 + B sq = 148aT 3

Ph = 3aT 4 εh = 9aT 4 sh = 12aT 3
(14.12)

where a = π2/90. The critical temperature is determined by pressure bal-
ance to be

Tc =
(

B

34a

)1/4

(14.13)

Thus B may be eliminated in favor of Tc. The latent heat necessary to
liberate the color degrees of freedom is 4B.

We may write
dε

dτ
=

dε

dP

dP

dT

dT

dτ
= −sT

τ
(14.14)

where (14.8) has been used. Note that dP = sdT at constant volume. The
sound velocity is

v2
s =

dP

dε
(14.15)

Putting all this together,

1
T

dT

dτ
= −v2

s

τ
(14.16)

which yields

T = T0

(τ0
τ

)v2
s

(14.17)

For the equations of state in (14.12), v2
s = 1/3 except at Tc. At Tc it is

necessary to specify in addition the volume fraction f of the quark–gluon
phase. The entropy density is

s(f, Tc) = sq(Tc)f + sh(Tc)(1 − f) (14.18)

and similarly for the energy density.
We assume now that the nucleus–nucleus collision produces a quark–

gluon plasma with initial entropy density s0 > sq(Tc). The temperature
evolves according to (14.17) until T drops to Tc. This occurs in the proper
time interval τ0 < τ ≤ τ1 = (T0/Tc)3τ0. Assuming that the nucleation of
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the hadron phase is fast, the system then enters the mixed phase. In the
mixed phase the entropy density decreases, not by decreasing T but by
converting quark–gluon plasma to hadron matter at lower entropy density
but still at Tc. The fraction f(τ) is easily derived to be

f(τ) =
1

r − 1

(
r
τ1
τ

− 1
)

(14.19)

where r = 37/3 is the ratio of number of degrees of freedom in the two
phases. Thus 1 > f > 0 for τ1 < τ < τ2 = rτ1. The mixed phase termi-
nates at τ2 whereupon the temperature begins to fall again according
to

T (τ) = Tc

(τ2
τ

)1/3
(14.20)

for τ > τ2. The expansion continues until the pions can no longer maintain
thermal contact. One can take this as a final breakup temperature Tf , also
called the freezeout temperature. In totally dynamical simulations of the
nuclear collision this sharp cutoff is avoided.

In the case sq(Tc) > s0 > sh(Tc) we assume that the matter is initially
formed in the mixed phase, with volume fraction f0 determined by

s = sq(Tc)f0 + sh(Tc)(1 − f0) (14.21)

It follows that

f(τ) =
1

r − 1

{
[1 + (r − 1)f0]

τ0
τ

− 1
}

(14.22)

The system evolves in the mixed phase until τ2 = [1 + (r − 1)f0]τ0. The
evolution then follows (14.17) in the hadron phase.

Let us now suppose that the equation of state leads to a second-order
phase transition. We parametrize the effective number of massless bosonic
degrees of freedom in each of the two phases as

Nh(T ) = 3 + be(T−Tc)/d Nq(T ) = 37 − ce(T−Tc)/d (14.23)

It is straightforward to verify that this leads to a second-order phase
transition (P and s continuous but ds/dT discontinuous) provided that
b + c = 34, b > 0, b = 17. Consistently with our discussion of the Wein-
berg sum rules in Chapter 12, let us require the ρ and a1 mesons to
become effectively massless at Tc. Then b = 18. Setting c = 16 produces
21 massless bosonic degrees of freedom at Tc, corresponding to the up and
down quarks. The missing 16 degrees of freedom correspond to the eight
massless gluons, which may not be readily available at Tc. The entropy
is 4aT 3N(T ), and the evolution can easily be charted using (14.10). The
parameter d controls the degree-of-freedom conversion rate. For the sake
of illustration we choose d = 0.034Tc.
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Fig. 14.1. The number of degrees of freedom as a function of the temperature
for equations of state producing phase transitions of the first order (solid line)
and of the second order (broken line). The effect of a rapid crossover (dotted
line) is also shown.

A rapid-crossover scenario is produced by the parametrization

N(T ) = 20 + 17 tanh
(
T − Tc

d

)
(14.24)

The transitions from one set of degrees of freedom to another are shown
in Figure 14.1, for the different schemes we have considered: a first-order
phase transition, a second-order transition, and a rapid crossover. Simi-
larly, the temperature evolution associated with each of these is shown in
Figure 14.2.

Another powerful feature of the Bjorken model is the particle produc-
tion. Since the entropy density of a gas of massless pions is proportional
to the pion number density, it follows that the entropy can be determined
by measuring the charged-particle multiplicity Nch. Considering a head-on
collision of equal-mass nuclei, one finds approximately

dNch

dy
=
(
f0 +

1 − f0

r

)
3πR2τ0T

3
0 (14.25)

where R is the nuclear radius, f0 = 0 if T0 < Tc, 0 ≤ f0 ≤ 1 if T0 = Tc, and
f0 = 1 if T0 > Tc. Those arguments are not significantly altered even if
the rather large latent heat is shrunk to zero so that the first-order phase
transition turns into a second-order one, or even if there is no proper
phase transition at all. The essential requirement is that the number of
degrees of freedom should increase by a factor r in a small temperature
interval ΔT ≈ d. The conservation of entropy density enables one to relate
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324 Heavy ion collisions

Fig. 14.2. The temperature evolution in the Bjorken model. Note that the
plateau in T starts and ends at τ = τ1 and τ2, respectively. See the text for
details.

measurements in the final state to parameters that determine the initial
conditions for thermal equilibrium and hydrodynamic flow.

In this section, we have used a simple dynamical model for ultrarel-
ativistic nucleus–nucleus collisions, and simple parametrizations of the
equation of state to give a flavor of this branch of high-energy nuclear
physics. For more sophisticated discussions, the reader is referred to the
literature cited at the end of the chapter.

14.2 The statistical model of particle production

As mentioned previously, Fermi’s seminal paper was instrumental to the
development of statistical techniques for particle production in strongly
interacting systems [1]. Fermi’s original application was to proton–proton
collisions. Our discussion will concentrate on nucleus–nucleus collisions,
where the applicability of the model is arguably maximal, but the statis-
tical model has even been applied in the case of e+e− collisions [5].

If we assume that the approach to equilibrium can be modeled by a
transport equation of the Boltzmann type for the phase-space density
f(x, p), we may write(

pμ

m

∂

∂xμ
+ Fμ ∂

∂pμ

)
f(x, p) = C[f ] (14.26)

where Fμ is a generalized force term and C[f ] is a collision term that
ensures entropy growth. At equilibrium, detailed balance makes the right-
hand side of this equation vanish, and thermal distributions functions are
recovered. In fact, in high-energy nuclear collisions a statistical approach
is natural, as the high multiplicity will provide a physical environment
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14.2 The statistical model of particle production 325

appropriate for realization of equipartition. Specifically, λ ∼ 1/σn, where
σ is a total cross-section, λ is a mean free path, and n ∼ ∫ d3p f(x, p).
Thus as the multiplicities increase, the mean free path will decrease. Fur-
thermore, the relevance of statistical arguments should improve in high-
temperature environments, owing to the same arguments.

The fundamental quantity that regulates the thermal composition of
particle species is the partition function. We will work in the grand canon-
ical ensemble. We have already encountered this quantity in Chapter 1; it
is given by Z = Tr ρ̂, where ρ̂, the statistical density matrix, is given by
(1.1). In a system that we are modeling as a gas of relativistic hadrons
(stable and unstable), the quantum numbers we choose to be conserved
are electric charge, baryon number, and strangeness. The grand canonical
partition function can then be written as a sum of partition functions for
individual hadrons and resonances:

lnZ(V, T, μQ, μB, μS) =
∑
i

lnZi(V, T, μQ, μB, μS) (14.27)

where

lnZi(V, T, μQ, μB, μS) = ±(2si + 1)
V

2π2

∫ ∞

0
dp p2 ln [1 ± λi exp(−βωi)]

(14.28)

The + or − sign is for fermions or bosons, 2si + 1 is the spin degeneracy

factor, ωi =
√
p2 + m2

i , β = 1/T , and the fugacity is

λi(T, μQ, μB, μS) = exp [β(μQQi + μBBi + μSSi)] (14.29)

The coordinate-space density of species i is then

ni(T, μQ, μB, μS) =
Ni

V
= (2si + 1)

T

2π2

∞∑
�=1

(±1)�+1

�
λ�
im

2
iK2(�βmi)

(14.30)

where K2(x) is a modified Bessel function. In actual comparisons with
experiment, it is especially important to account for resonances decaying
into lighter hadrons; then we get a net number

Nnet
i (T, μ) = Ni(T, μ) +

∑
k

Nk(T, μ)Bk→i+X (14.31)

where Bk→i+X is the branching ratio for the decay k → i + X. At high
temperatures (around and above the pion mass) the yield of the light
mesons is indeed dominated by feed-down from the higher-lying reso-
nances.

In practical applications to measured particle numbers and, especially,
ratios, the temperature T and the baryon chemical potential μB are the
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two main parameters of the model. Note that there is no quantum number
associated with the conservation of meson number, unlike baryons. Also,
overall strangeness conservation fixes μS . Note that this would actually
be rigorously true if measurements covered all the phase space, so that all
fragments were measured. For measurements performed at mid-rapidity,
however, the strangeness entering one region in rapidity is approximately
canceled by that leaving. Therefore, even in experiments with a limited
phase-space coverage, the strangeness chemical potential can be taken to
vanish. In addition, charge conservation requirements have a small influ-
ence at RHIC energies and above. Finally, the volume V drops out in
analyses of particle number ratios. It can actually be fixed by measuring
the total pion multiplicity and requiring agreement between the theoret-
ical expression and the empirical value.

Putting these ingredients together, one may further assume chemical
equilibrium and thus verify how far this assumption will hold. Chemical
equilibrium implies that if c � a + b then μc = μa + μb. Therefore, the
chemical potential of a given resonance is fixed by its decay systematics
and can be written in terms of μB. In the final analysis, decay cascades
(where several generations of particle decays contribute) are also included.
Also of practical concern is whether to use only data at mid-rapidity or
data that is integrated over the full phase space. A popular and pragmatic
choice is to restrict the analysis to a slice at mid-rapidity centered at zero
with a total width of 2 units of rapidity [6]. From CERN experiments,
the ratios of particle abundances were fitted at fixed-target bombarding
energies of 40 and 158 GeV per nucleon, for collisions of Pb on Pb. At
RHIC energies (

√
s = 130 and 200 GeV in the nucleon–nucleon center-of-

mass frame), Au + Au collisions were analyzed. At 40 GeV per nucleon,
11 particle ratios were included in the fit while that number was 24 at 158
GeV per nucleon. The lower RHIC energy included 13 species, while the
higher energy included five particle ratios; these numbers are continuously
updated as the experimental analyses continue. Weak-decay systematics
are extremely important: those species that are unstable against the weak
interaction will eventually decay and their products will be measured by
the experimental detectors. The goodness of fit was evaluated via the
minimization of

χ2 =
∑
i

(
Rexpt

i −Rmodel
i

)2

σ2
i

(14.32)

where Ri is the fraction of particles of species i in the total number of
particles of all species and σi is its experimental uncertainty. The set of
(T, μB) values that minimize the above relation is plotted in Figure 14.3.
The values of χ2 attained are about 1 per degree of freedom [6].
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Fig. 14.3. The chemical freezeout temperature against baryon chemical poten-
tial as extracted from several fits to measured particle ratios at different energies.
The solid line is a curve for which the average energy per hadron 〈E〉/〈N〉 = 1
GeV [7]. The data have been collected from experiments performed at the GSI
[8], the AGS at BNL [9], CERN [10, 6], and RHIC [11].

There have been efforts [12] to improve the fits to hadron-yield ratios
by invoking a departure from chemical equilibrium and looking for evi-
dence of this deviation in the data. For example, the density of pions is
parametrized by generalizing the thermal distribution function to

Nπ

V
= 3

∫
d3p

(2π)3
1

γ−1
π eωπ/T − 1

(14.33)

where γπ is a parameter that regulates the absolute chemical equilibrium
and is therefore unity in that limit. Values of γπ = 1 would constitute, in
this interpretation, a signature of nonequilibrium. We will not pursue this
further here, but it is a topic of current investigation.

The fitted values from Figure 14.3 can be reconciled with a global pic-
ture that emerged from years of heavy ion phenomenology at CERN’s
SPS, which we now very briefly summarize. The intuitive picture is as
follows. The nuclear system is first heated and compressed. This is fol-
lowed by a phase of decompression where both the temperature and the
density drop. Note here the use of the word temperature, which stems
again from years of phenomenological analysis. Two freezeout tempera-
tures may be identified. As the hot, interacting system cools, it eventually
breaks apart and its constituents begin free-streaming towards the detec-
tors to be measured individually. A criterion for this to happen is that the
mean free path, as defined earlier by the inverse of the product of density
and cross section, becomes comparable with the spatial dimensions of the
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system:

λ ∼ 1
nσ

∼ R (14.34)

The particle population will be dominated by pions, as they are the light-
est species. Some insight on the behavior of the system may then be had
by considering chiral perturbation theory. For temperatures below the
pion mass, the elastic cross section essentially saturates the total cross
section: the inelastic channels manifest themselves at higher powers of
the chiral expansion [13]. This means that number-changing interactions
will cease before purely elastic interactions do, as the system expands and
cools. Another way of thinking about this is related to the fact that inelas-
tic reactions have energy thresholds, whereas elastic interactions do not.
Therefore, there will exist a region where Tkin < T < Tchem. Here Tkin is
the kinetic freezeout temperature (where transverse-momentum spectra
cease to evolve) and Tchem is the temperature below which the particle
numbers do not change.

The fact that the curve corresponding to an average energy per par-
ticle of 1 GeV traces the path laid out by the thermal-model fit is very
suggestive of a critical phenomenon. However, numerical simulations of
relativistic nuclear collisions have correlated the energy per particle value
of 1 GeV with the onset of inelastic thresholds [14], at least at beam ener-
gies that correspond to those spanned in the experimental fits shown in
Figure 14.3. It is very suggestive that the low-μB chemical freezeout tem-
peratures found in the thermal analysis of experimental nucleus–nucleus
data are consistent with the critical temperature extracted from the lattice
simulation of QCD, as mentioned in Section 10.5. This would be the case
if the chemical composition of the hadrons being measured were estab-
lished during the hadronization of the quark–gluon plasma. Note also the
similarity between Figures 14.3 and 10.9. Although very suggestive, these
connections remain the source of much current research.

14.3 The emission of electromagnetic radiation

In theoretical studies of hot and dense strongly interacting systems, elec-
tromagnetic radiation constitutes a class of penetrating probes. This is
essentially a reflection of the near absence of final-state interactions for
photons (real and virtual) that are produced in relativistic nuclear colli-
sions. More quantitatively, at scales relevant for hadronic phenomenology,
α/αs ∼ 0.002 � 1. This means that electromagnetic radiation, once cre-
ated, will leave the system unscathed. In line with the rest of this chap-
ter, we assume that nuclear collisions at high energies form a thermal-
ized system. As mentioned previously, this assertion receives considerable
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empirical support. We will now proceed to derive the rate of emission of
electromagnetic radiation from a thermal, strongly interacting, medium.
As in any hadronic collision, there will always be emission of electro-
magnetic radiation from the very first interactions, those involving cold
matter. In nucleon–nucleus and in nucleus–nucleus events, this primordial
photon and lepton pair emission is usually treated (up to aspects like the
Cronin effect, which we do not discuss here) as an additive superposi-
tion of nucleon–nucleon contributions, calculated using the techniques of
perturbative QCD. The details of this are outside the scope of this book.

Consider generic hadronic states |i〉 and |f〉 and a transition between
them that involves the absorption or emission of a photon with four-
momentum kμ = (ω,k) and polarization εμ. To make things more definite
we shall concentrate on the case of real photons here, and extend our
analysis to lepton pair production later. The transition rate between the
two states is

Rfi =
|Sfi|2
tV

(14.35)

tV being the proper four-volume. To leading order in the interaction
Hamiltonian (or equivalently, in the one-photon approximation), the S-
matrix element is

Sfi = 〈f |∫ d4xĴμ(x)Aμ(x)|i〉 (14.36)

Ĵμ(x) being the hadronic electromagnetic current operator. Considering
a free vector field

Aμ(x) =
εμ√
2ωV

(
eik·x + e−ik·x

)
(14.37)

and, invoking translation invariance for the matrix element

〈f |Ĵμ(x)|i〉 = ei(pf−pi)·x〈f |Ĵμ(0)|i〉

one may write

Rfi = − gμν

2ωV
(2π)4 [δ(pi + k − pf ) + δ(pi − k − pf )]

×〈f |Ĵμ(0)|i〉〈i|Ĵν(0)|f〉 (14.38)

One delta function corresponds to the absorption process and the other to
emission. The differential thermal emission rate is obtained by keeping the
appropriate delta function, summing over final states, and averaging over
initial states with a Boltzmann weight e−βK̂i/Z, where Z =

∑
i e

−βK̂i ,
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and K̂ = Ĥ − μN̂ :

d3R

d3k
= − gμν

2ωV
V

(2π)3
1
Z

∑
i

e−βK̂i

∑
f

(2π)4δ(pi − pf − k)

×〈j|Ĵμ(0)|i〉〈i|Ĵν(0)|f〉 (14.39)

Defining, as in Section 6.2, spectral functions associated respectively
with absorption and emission,

f±
μν(k) = ± 1

Z

∑
i,f

e−βK̂i(2π)3δ(pi − pf ± k)

×〈f |Ĵμ(0)|i〉〈i|Ĵν(0)|f〉 (14.40)

one may use the identity relating them, f+
μν(k) = −eβωf−

μν(k), to write

ω
d3R

d3k
=

gμν

(2π)3
πf−

μν (14.41)

Note that the symbol used here (f) is different from that used in Chapter
6 (ρ), to make clear the fact that here the correlation functions involve
the current operator. One relates the current–current correlators to those
involving the fields through the equation of motion ∂μ∂μAν(x) = Jν(x),
written here in the Feynman gauge. Doing this, and using the fact that
the spectral density ρn

μν(k) is proportional to the imaginary part of the
retarded propagator, (6.33), one obtains

ω
d3R

d3k
= − gμν

(2π)3
Im Π′R

μν(ω,k) (14.42)

Here the finite-temperature retarded improper self-energy, Π′R
μν , is defined

through the appropriate Schwinger–Dyson equation, D = D0 −D0Π′D0.
Therefore, to leading order in the electromagnetic interaction but to all
orders in the strong interaction,

ω
d3R

d3k
= − gμν

(2π)3
Im ΠR

μν(ω,k) (14.43)

where ΠR
μν is the finite-temperature retarded photon self-energy.

Repeating this derivation, but for a virtual photon that converts to a
lepton pair, we are led to

E+E−
d6R

d3p+d3p−
=

2e2

(2π)6
1
k4

[
pμ+p

ν
− + pν+p

μ
− − gμν

(
p+ · p− + m2

�

)]
×ΠR

μν(ω,k)
1

eβω − 1
(14.44)
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where the invariant mass of the virtual photon is M2 = k2 = (p+ + p−)2,
p+ and p− are the momenta of the lepton pair components, and m� is the
lepton mass.

14.4 Photon production in high-energy heavy ion collisions

The formation and observation of quark–gluon plasma in ultrarelativistic
collisions between heavy nuclei is an important goal of modern nuclear
physics. Among the proposed probes of the plasma are the directly
produced real photons [15–21]. Microscopically, these could come from
the annihilation process qq̄ → gγ and from the QCD Compton pro-
cess qg → qγ, q̄g → q̄γ. These photons interact only electromagnetically,
unlike pions, and so their mean free paths are typically much larger than
the transverse size of the region of hot matter created in any nuclear col-
lision. As a result, high-energy photons produced in the interior of the
plasma usually pass through the surrounding matter without interact-
ing, carrying information directly from wherever they were formed to the
detector. This makes them an interesting object of study to both theorists
and experimenters.

Here we concern ourselves with the following questions. What is the
spectral emissivity of quark–gluon plasma? What is the spectral emissiv-
ity of hot hadronic matter? How do they compare at the same tempera-
ture? These are important questions. Suppose we put hadron gas in one
box and quark–gluon plasma in another and maintain them at the same
temperature T . Can we tell which box contains the quark–gluon plasma
by looking through a small window and measuring the photon spectrum?
If we wait long enough the answer is clearly no: even if we do not put
any photons into the boxes at the beginning, the matter will eventually
come to equilibrium under the electromagnetic interactions; to a good
approximation the final photon distribution will be just the Planck distri-
bution at temperature T . Fortunately, in conditions more appropriate to
a nuclear collision the answer is yes. A closer analog to a nuclear collision
is to make the boxes smaller than the photon mean free path and to make
the walls transparent to photons, so that the photons always escape and
the photon distribution stays far from equilibrium. The spectral emissiv-
ity then directly reflects the dynamics of real photon-producing reactions
in the matter, which may be different for the two phases. The thermal
production rates in the two phases are important in another sense. Sup-
pose that quark–gluon plasma is formed in a collision. It will expand and
eventually hadronize in a first- or second-order phase transition or rapid
crossover. The hadrons themselves may maintain local thermal equilib-
rium for a while, also producing photons. The total yield is a sum of
the yields from both phases. To make the method clear, we shall mainly
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+

Fig. 14.4. One- and two-loop contributions to the photon self-energy in QCD.

concentrate here on the radiation from the partonic phase of QCD, and
follow the treatment in [21].

In an expansion in diagram topologies, the one- and two-loop contri-
butions to Πμν are shown in Figure 14.4. The imaginary part is obtained
by cutting the diagrams. Cutting the one-loop diagram gives zero when
the photon is on the mass shell since qq̄ → γ has no phase space. Certain
cuts of the two-loop diagrams give order-g2 corrections to the nonexistent
reaction qq̄ → γ, while other cuts correspond to the reactions qq̄ → gγ,
qg → qγ and q̄g → q̄γ. Let Mi represent the amplitude for one of these.
The contribution to the rate in relativistic kinetic theory for a photon-
producing reaction 1 + 2 → 3 + γ is

Ri = N
∫

d3p1

2E1(2π)3
d3p2

2E2(2π)3
f1(E1)f2(E2)(2π)4δ(pμ1 + pμ2 − pμ3 − pμ)

× |Mi|2 d3p3

2E3(2π)3
d3p

2E(2π)3
[1 ± f3(E3)] (14.45)

where N is a degeneracy factor, the f ’s are the Fermi–Dirac or Bose–
Einstein distribution functions as appropriate, and there is either a Bose-
enhancement or a Pauli-suppression of the strongly interacting particle in
the final state. (Another example of the connection between the imaginary
part of the finite-temperature retarded self-energy and relativistic kinetic
theory can be found in Section 16.6.)

This rate can be simplified. Define s = (p1 + p2)2 and t = (p1 − p)2.
Insert integrations over s and t with a delta function for each of these
identities. This is a natural thing to do because the invariant amplitude
depends only on these two variables. Converting the total rate to a differ-
ential one, all but four of the integrations can be done without approxi-
mation:

E
d3Ri

d3p
=

N
(2π)7

1
16E

∫
ds dt |Mi(s, t) |2

∫
dE1 dE2 f1(E1)f2(E2)

× [1 ± f3(E1 + E2 − E)]θ(E1 + E2 − E)(aE2
1 + bE1 + c)−1/2

(14.46)
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where

a = −(s + t)2

b = 2(s + t)(Es− E2t)

c = st(s + t) − (Es + E2t)2
(14.47)

At present we are interested in the case where the photon energy is large,
E1 + E2 > E � T . In this limit it is a good approximation to make the
replacement

f1(E1)f2(E2) → e−(E1+E2)/T (14.48)

Even though E1 or E2 separately need not be large, phase space is unfavor-
able for it. This approximation can be checked numerically (see Exercise
14.4). Then the integrals over E1 and E2 can be done, with the relatively
simple result

E
d3Ri

d3p
=

N
(2π)6

T

32E
e−E/T

∫
ds

s
ln(1 ± e−s/4ET )±1

∫
dt |Mi(s, t) |2

(14.49)
The upper sign is to be taken when particle 3 is a fermion, the lower sign
when it is a boson.

For massless particles the amplitude is related to the differential cross
section by

dσ

dt
=

|M|2
16πs2

(14.50)

For the annihilation diagram,

dσ

dt
=

8πααs

9s2

u2 + t2

ut
(14.51)

where u and t are Mandelstam variables, and N = 20 when summing over
the up and down quarks. For the Compton reaction,

dσ

dt
=

−πααs

3s2

u2 + s2

us
(14.52)

and N = 320/3. The integral over t just gives the total cross section.
But the total cross section involving the exchange of a massless particle
is infinite: the differential cross sections have a pole at t and/or u = 0.
Many-body effects are necessary to screen this divergence. We will show
how this works. For now we delete the region of phase space causing the
divergence. We integrate over

−s + k2
c ≤ t ≤ −k2

c

2k2
c ≤ s < ∞ (14.53)
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where kc is an infrared cutoff and T 2 � k2
c > 0. This way of regulating

the divergence treats u and t symmetrically and maintains the identity
s + t + u = 0 that is appropriate for all massless particles.

In the limit k2
c → 0 we find

E
d3R

d3p

Compton

=
5
9
ααs

6π2
T 2e−E/T

[
ln
(

4ET

k2
c

)
+ CF

]
(14.54)

E
d3R

d3p

annihilation

=
5
9
ααs

3π2
T 2e−E/T

[
ln
(

4ET

k2
c

)
+ CB

]
(14.55)

where

CF =
1
2
− γE +

12
π2

∞∑
n=2

(−1)n

n2
ln n

= 0.0460 . . . (14.56)

CB = −1 − γE − 6
π2

∞∑
n=2

1
n2

ln n

= −2.1472 . . . (14.57)

and γE is Euler’s constant. These expressions use the full Fermi–Dirac or
Bose–Einstein distribution functions in the final state. Although E � T ,
it is not necessarily the case that E3 � T . Taking this into account, one
gets slightly different results if one uses the Boltzmann distribution in the
final state instead:

E
d3R

d3p

Compton

=
5
9

2ααs

π4
T 2e−E/T

[
ln
(

4ET

kc2

)
+

1
2
− γE

]
(14.58)

E
d3R

d3p

annihilation

=
5
9

2ααs

π4
T 2e−E/T

[
ln
(

4ET

k2
c

)
− 1 − γE

]
(14.59)

Corrections to these formulae vanish in the limit kc → 0.
The essential factors in these rates are easy to understand. There is a

factor 5/9 from the sum of the squares of the electric charges of the u
and d quarks, a factor ααs coming from the topological structure of the
diagrams, a factor T 2 from phase space, which gives the overall dimension
to the rate, the ubiquitous Boltzmann factor e−E/T for photons of energy
E, and a logarithm due to the infrared behavior.

The infrared divergence in the photon production rate discussed above
is caused by a diverging differential cross section when the momen-
tum transfer goes to zero. Often, long-range forces can be screened by
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Fig. 14.5. HTL-corrected photon self-energy, in QCD.

many-body effects at finite temperature. In fact, we have already seen
concrete examples of this mechanism in Chapter 9. From the hard ther-
mal loops (HTL) analysis, we know that a propagator must be dressed
if the momentum flowing through it is soft, on a scale set by the tem-
perature T . For the present application we would begin by replacing the
bare propagators and vertices in the one-loop diagram of Figure 14.4 by
effective propagators and vertices. The reason is that the propagation
of soft momenta is connected with infrared divergences in loops; if we
do not dress these propagators we get infinite answers, so the correc-
tions due to the dressing of the propagators are also infinite and therefore
necessary. Thus, the results with soft propagators dressed are really the
lowest-order finite results. In our case it is necessary to dress one of the
quark propagators because our results diverge otherwise. It is not nec-
essary to dress both, nor is it necessary to dress either of the vertices,
because these produce only finite corrections that are of higher order in
g. We are thus led to evaluate the diagram shown in Figure 14.5. Some
insight can be gained by expanding the diagram as a power series in g2.
The zeroth-order term reproduces the one-loop diagram of Figure 14.4.
The order-g2 term reproduces one of the two-loop diagrams of Figure
14.4, with the recognition that the quark self-energy is not the exact
one-loop self-energy but is approximated by its high-temperature limit.
Clearly this is a summation of an infinite set of diagrams that is pur-
posely designed to regulate infrared problems of the type encountered
here.

Starting with Figure 14.5, and summing over u and d quarks, we
find

Πμν(p) = −6 × 5
9
e2T

∑
k0

∫
d3k

(2π)3
Tr [G∗(k)γμG(p− k)γν ] (14.60)

where

G∗(k) = G∗
+(k)

γ0 − k · γ
2

+ G∗
−(k)

γ0 + k · γ
2

(14.61)

is the dressed propagator for a quark with four-momentum k, already
encountered in Section 9.4, and

G(q) = g+(q)
γ0 − q · γ

2
+ g−(q)

γ0 + q · γ
2

(14.62)
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is the bare propagator for a quark with four-momentum q = p− k. The
propagator G∗(k) was defined in (9.37), and

g±(q) = (−q0 ± q)−1 (14.63)

Using these expressions for the quark propagators, and evaluating the
traces, we obtain

ΠR,μ
μ (p) =

20
3
e2T

∑
k0

∫
d3k

(2π)3
{G∗

+(k) [g+(q) (1− k · q)+ g−(q) (1+k · q)]

+ G∗
−(k) [g+(q) (1 + k · q) + g−(q) (1 − k · q)]

}
(14.64)

That the self-energy is retarded means that p0 has a small positive imag-
inary part, as is appropriate in linear response analysis.

We then follow Braaten, Pisarski, and Yuan [22] in computing the imag-
inary part in the following elegant way:

ImT
∑
k0

F1(k0)F2(p0 − k0)

=
1
2i

Disc T
∑
k0

F1(k0)F2(p0 − k0)

= π(1 − eE/T )
∫ +∞

−∞
dω

∫ +∞

−∞
dω′NF(ω)NF(ω′)

×δ(E − ω − ω′) ρ1(ω) ρ2(ω′)
(14.65)

Here NF is the Fermi–Dirac occupation number and ρ1 and ρ2 are the
spectral densities for the two chosen functions F1 and F2. Specifically,
these are related by

F (k0) =
∫ +∞

−∞
dω

ω − k0 − iε
ρ(ω) (14.66)

We need the spectral density functions ρ∗± and r± for the dressed and bare
propagators, respectively. The latter can be obtained in a straightforward
fashion, and the former were given in Chapter 9. Putting this information
together we obtain

ImΠR,μ
μ = −20π

3
e2(eE/T − 1)

∫
d3k

(2π)3

∫ +∞

−∞
dω

∫ +∞

−∞
dω′ δ(E − ω − ω′)

× NF(ω)NF(ω′)
[
(1 + q · k)(ρ∗+r− + ρ∗−r+)

+ (1 − q · k)(ρ∗+r+ + ρ∗−r−)
]

(14.67)

with r±(ω′,q) = δ(ω′ ∓ |q|). In these expressions ρ∗+ and ρ∗− (9.39) are
evaluated at (ω,k).
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In the kinetic theory calculation we were forced to put a cutoff k2
c on the

four-momentum transfer t (and on u) to avoid an infrared divergence. This
cutoff removes only the small region of phase space left out by (14.53).
Anything else must necessarily be higher order in g. Inspection of Figure
14.4 shows that the exchanged quark must be dressed and must satisfy

− k2
c ≤ ω2 − k2 ≤ 0. (14.68)

This means that the delta functions (representing poles) in the spectral
densities do not contribute to this order, but only the functions β± (rep-
resenting branch cuts); see (9.40).

The energy-conserving delta function, together with the mass-shell
delta functions of r±, can be used to evaluate the integral over ω′ and
the integral over the angle between k and q in (14.67). Then, making use
of the inequalities E � T and 0 ≤ k2 − ω2 ≤ k2

c � T 2, we get

ImΠR,μ
μ = −5e2

6π

(
eE/T − 1

)
e−E/T

×
∫ kc

0
d |k |

∫ |k|

−|k|
dω [(|k | −ω)β+(ω,k) + (|k | +ω)β−(ω,k)]

(14.69)

The integral involving β− is the same as the integral involving β+, so
we only need to determine the latter and multiply by 2. Furthermore
it is convenient to make the change of variables |k |= τ cosh η and ω =
τ sinh η. Then we have for the above double integral

2
∫ +∞

−∞
dη

∫ kc

0
τ dτ (|k | −ω)β+(ω,k)

=
m2

q

4

∫ +∞

−∞
dη

cosh2η

{
ln
(

(Θ + yc cosh2η)2 + 1
Θ2 + 1

)
−2Θ

[
tan−1(Θ + yc cosh2η) − tan−1(Θ)

]}
(14.70)

where

Θ =
2
π

Q0(sinh η) −Q1(sinh η)
1 − tanh η

(14.71)

and

yc =
2
π

k2
c

m2
q

(14.72)

The quantities Q0(z) and Q1(z) are Legendre functions.
We still have some freedom in choosing the cutoff kc. Since g is supposed

to be perturbatively small for this whole analysis to make sense let us
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choose kc to lie somewhere in the interval

mq � kc � T (14.73)

Then we are allowed to take the limit yc � 1 in (14.70). Doing so, and
dropping terms that vanish in the limit yc → ∞, we find that the right-
hand side becomes

m2
q ln
(

k2
c

m2
q

)
+

m2
q

4

∫ ∞

−∞
dη

cosh2η

[
ln
(

4
π2

cosh4η

Θ2 + 1

)
− 2Θ

(π
2
− tan−1 Θ

)]
(14.74)

This remaining integral is a pure number and is evaluated as −4 ln 2.
Now we have all the items we need in order to write down the contri-

bution to the rate coming from the infrared-sensitive (IR) part of phase
space:

E
d3RIR

d3p
=

5
9
ααs

2π2
T 2e−E/T ln

(
k2

c

2m2
q

)
(14.75)

where

2m2
q =

g2T 2

3
(14.76)

Adding the contributions from both the hard momentum transfers,
(14.54) and (14.55), and the soft momentum transfers, (14.75), we get
the net rate

E
d3R

d3p
=

5
9
ααs

2π2
T 2e−E/T ln

(
2.912
g2

E

T

)
(14.77)

This is independent of the cutoff kc! The HTL resummation method works
beautifully to screen the infrared divergence. (Inclusion of the exact Bose–
Einstein and Fermi–Dirac distributions in the initial state instead of the
Boltzmann limit (14.48) leads to a replacement of the numerical factor
2.912 in the logarithm by 3.739. See Exercise 14.4.)

It is apparent that our asymptotic formula breaks down when E ≤
g2T/2.9 because the logarithm goes negative. For photon energies that
are small on a scale set by the the temperature, a complete calculation
should include bremsstrahlung processes. Also, the effective cutoff was
determined under the assumption that the photon energy was large. If it
is not, then all propagators and vertices in Figure 14.5 must be dressed.

The rate for photon emission described above was computed by taking
the imaginary part of Figure 14.5. In a Feynman diagram representation,
the HTL correction induces a thermal mass which screens the singular-
ity that would appear when the intermediate-quark propagator goes on-
shell. Moving on to a higher topology in the number of loops and taking
the imaginary part gives contributions like those of Figure 14.6. These
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Fig. 14.6. Two photon-producing processes that appear to be of higher order
in αs than the Compton and annihilation contributions.

+

Fig. 14.7. The two Feynman diagrams that contribute to the ρ self-energy. The
wavy lines are a neutral ρ, whereas the broken lines represent charged pions.

bremsstrahlung and pair-annihilation plus scattering contributions to the
photon emission are superficially of higher order in αs (they appear to be
O(α2

s )) than the ones we have discussed previously [23]. If the virtuality of
the off-shell quark going into the vertex where the photon is being emitted
is very small, there is an enhancement in the net thermal emission rate.
This can be seen in the prefactor: α2

sT
2/m2

q ∼ αs. Those diagrams, naively
of higher order in the strong coupling, contribute parametrically at the
same order as the previous ones for low energy photons! The resolution of
this apparent paradox was provided by a systematic identification of all
processes contributing, to the leading order in αs, to photon and lepton
pair production [24].

For the evaluation of the emissivity of hot matter in the confined,
hadronic sector, calculations have mainly followed the techniques out-
lined in this section. In particular, most practitioners have used relativistic
kinetic theory and considered the contributing processes, such as πρ → πγ
and ππ → ργ, channel by channel. This closely parallels the first part of
this section, where the annihilation and Compton contributions to the
photon spectrum in hot QCD were considered. Many authors have con-
tributed to this line of study. An early analysis was that given in reference
[21]. A recent assessment of this issue can be found in [25].

14.5 Dilepton production

The calculation of dilepton radiation from a medium of strongly inter-
acting partons follows steps very similar to those used for the calculation
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of real-photon emission. The first calculation using the HTL resumma-
tion technique was performed by Braaten, Pisarski, and Yuan [22]. The
dilepton sector has also profited from a reappraisal of the electromagnetic
emissivities, complete to leading order in αs [26]. Instead of concentrating
on the techniques that are appropriate for QCD again, we choose to con-
sider radiation from a hot gas of mesons. This is more representative of
conditions existing at temperatures below that of the phase transition, or
just before the strongly interacting system freezes out. In a similar way,
this discussion will illustrate the use of effective interactions to calcu-
late the in-medium vector spectral density, as alluded to in Section 12.2.
Conversely, we shall see that the methods in that chapter for inferring
the spectral density from experimental data can be used to evaluate the
emission of electromagnetic radiation.

This discussion closely follows that of Gale and Kapusta [27]. We start
with the interaction between a vector meson and a conserved current.
This is known to be renormalizable even if the vector meson is massive.
For the case at hand, charged pions interact with a neutral ρ meson via
the Lagrangian

L = |DμΦ|2 −m2
π|Φ|2 − 1

4ρμνρ
μν + 1

2m
2
ρρμρ

μ (14.78)

where Φ is the complex charged pion field, ρμν = ∂μρν − ∂νρμ is the ρ field
strength, and Dμ = ∂μ + igρρμ is the covariant derivative. The one-loop ρ
self-energy in a gas of pions is represented by the two diagrams of Figure
14.7. In Euclidean space,

Πμν(k) = −g2
ρT
∑
n

∫
d3p

(2π)3
(2p + k)μ(2p + k)ν

(p2 + m2
π) [(p + k)2 + m2

π]

+ 2δμνg2
ρT
∑
n

∫
d3p

(2π)3
1

p2 + m2
π

(14.79)

Here, p4 or k4 = 2πT × an integer. The zero-temperature part of the self-
energy may be evaluated using dimensional regularization. The vacuum
part is then

Πμν
vac(k) = (kμkν − k2δμν)

1
3

( gρ
4π

)2

×
[(

1 +
4m2

π

k2

)3/2

ln

(√
1 + 4m2

π/k
2 + 1√

1 + 4m2
π/k

2 − 1

)
− 8m2

π

k2
+ C

]
(14.80)

https://doi.org/10.1017/9781009401968.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.015


14.5 Dilepton production 341

where C is a renormalization constant. The contribution from T > 0 is

Π44
mat(k) = −

(
g2
ρ

2π

)∫ ∞

0

dp p2

ω

1
eβω − 1

(
4ω2 − k2

4

2p|k| ln a− 4 +
2ik4ω

p|k| ln b

)
(14.81)

Π4i
mat(k) = −kik4

k2
Π44

mat(k) (14.82)

Πij
mat(k) = Aδij + B

kikj

k2
(14.83)

The scalar functions A and B are given by

A = −1
2

( gρ
2π

)2
∫ ∞

0

dp p2

ω

1
eβω − 1

(
4(k2

4 − k2)
k2

− 2ik4ω(k2
4 + k2)

p|k|3 ln b

+
k2

4(k
2
4 − 4ω2) + k2(k2 + 2k2

4 − 4p2)
2p|k|3 ln a

)
(14.84)

B = −1
2

( gρ
2π

)2
∫ ∞

0

dp p2

ω

1
eβω − 1

(
4(k2 − 3k2

4)
k2

+
2ik4ω(3k2

4 + k2)
p|k|3 ln b

+
3k2

4(4ω
2 − k2

4) + k2(4p2 − 2k2
4 − k2)

2p|k|3 ln a

)
(14.85)

with

a =

(
k2

4 + k2 − 2p|k|)2 + 4ω2k2
4(

k2
4 + k2 + 2p|k|)2 + 4ω2k2

4

b =

(
k2

4 + k2
)2 − 4 (p|k| + ik4ω)2(

k2
4 + k2

)2 − 4 (p|k| − ik4ω)2
(14.86)

and ω =
√
p2 + m2

π. Switching back to Minkowski space, we may write as
in (5.46)

Πμν = FPμν
L + GPμν

T (14.87)

where Pμν
T/L are the transverse and longitudinal projection operators.

Using the relation between the self-energy and the full and bare
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propagators,

Πμν =
(D−1

)μν − (D−1
0

)μν (14.88)

and (14.87), we obtain

Dμν = − Pμν
L

k2 −m2
ρ − F

− Pμν
T

k2 −m2
ρ −G

− kμkν

m2
ρk

2
(14.89)

For any linear response analysis and for lepton pair production rates
we need the retarded ρ propagator. Therefore we will analytically con-
tinue the Matsubara frequency, k4 = 2πnT , to ik4 = k0 = E + iε, where
ε → 0+. The scalar functions F and G acquire an imaginary part when a
or b are negative. This happens when the variable of integration, p, lies
in the interval∣∣∣E√1 − 4m2

π/M
2 − |k|

∣∣∣ ≤ 2p ≤ E
√

1 − 4m2
π/M

2 + |k| (14.90)

Here M =
√
k2 is the invariant mass of the ρ and E =

√
M2 + k2 is the

total energy in the rest frame of the pion gas.
At zero temperature, dimensional regularization and renormalization

yield equal longitudinal and transverse self-energies, which are finite:

Fvac = Gvac

=
g2
ρ

48π2
M2

{
(1 − 4m2

π/M
2)3/2

×
(

ln

∣∣∣∣∣
√

1 − 4m2
π/M

2 + 1√
1 − 4m2

π/M
2
1

∣∣∣∣∣− iπθ(M2 − 4m2
π)

)
8m2

π

M2
+ C

}
(14.91)

The bare and renormalized fields and masses are related by

ρ(0)
μ = Z1/2ρμ Z0 =

(
mρ/m

(0)
ρ

)2
(14.92)

and the coupling constants are related by

Z0g
(0)
ρ = Z1/2gρ (14.93)

We may choose Z0 = Z for convenience. Finally, for the physical mass to
be mρ, we choose C in such a way that ReFvac(k2 = m2

ρ) = 0.
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Finally, at T > 0, F = Fvac + Fmat and G = Gvac + Gmat, where

Fmat =
g2
ρ

4π2

M2

k2

∫ ∞

0

dp p2

ω

1
eβω − 1

×
[
4ω2 + E2

2p|k| (ln |a| − iπΔ) − 4 +
2ωE
p|k| (ln |b| + iπΔ)

]
(14.94)

Gmat =
g2
ρ

4π2

∫ ∞

0

dp p2

ω

1
eβω − 1

[
2(E2 + k2)

k2
− EωM2

p|k|3 (ln |b| + iπΔ)

+
k2(4p2 − k2 + 2E2) − E2(E2 + 4ω2)

4p|k|3 (ln |a| − iπΔ)
]

(14.95)

where a and b are given in (14.86) and

Δ =

{
1 if

∣∣∣E√1 − 4m2
π/M

2 − |k|
∣∣∣ ≤ 2p ≤ E

√
1 − 4m2

π/M
2 + |k|

0 otherwise
(14.96)

We have shown (14.44) that the dilepton emission rate is related to
the imaginary part of the retarded photon self-energy, at finite tempera-
ture. The vector meson dominance model (VMD) states that the hadronic
electromagnetic current operator is given by the current–field identity

Jμ = − e

gρ
m2

ρρμ − e

gω
m2

ωωμ − e

gφ
m2

φφμ (14.97)

The VMD is nonperturbative in the strong interaction and has had an
impressive phenomenological success [29]. See also Exercise 14.7. We have
encountered VMD before, in Section 12.2. The current–field identity turns
the current–current correlation function into a field–field correlation func-
tion. Therefore to order e2 but to all orders in the strong coupling, the
dilepton emission rate can be written in terms of the in-medium vec-
tor spectral density, which is itself calculated with the effective hadronic
Lagrangian:

E+E−
d6R

d3p+d3p−

=
2

(2π)6
e4

g2
ρ

m4
ρ

M4

(
pμ+p

ν
− + pν+p

μ
− − gμνp+ · p−

)
Im DR

μν(ω,k)
1

eβω − 1
(14.98)

To make the longitudinal and transverse contributions manifest, we may
use kμ = pμ+ + pμ− and qμ = pμ+ − pμ− to write the expression in terms of
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Fig. 14.8. The dispersion relations for a ρ meson in its longitudinal and trans-
verse polarization states. The curves are for T = 0 (lower) and 150 MeV (upper).

the real and imaginary parts of F = FR + iFI, and G = GR + iGI:

E+E−
d6R

d3p+d3p−

=
1

(2π)6
e4

g2
ρ

m4
ρ

M4

{[
q2 −

(
q · k̂

)2
] −FI(

M2 −m2
ρ − FR

)2 + F 2
I

+
[
2M2 − q2 +

(
q · k̂

)2
] −GI(

M2 −m2
ρ −GR

)2 + G2
I

}
1

eβω − 1
(14.99)

This treatment may be generalized and extended to other mesons [30, 31].
This is necessary for a realistic treatment including chiral symmetry.

Finally, the effects of the interactions on the ρ meson may be quantified
further by considering the longitudinal and transverse dispersion relations,
which are found by locating the poles in the ρ propagator. They are
generated by obtaining the self-consistent solutions of

(ω2)L = k2 + m2
ρ + FR(ωL, |k|, T )

(14.100)
(ω2)T = k2 + m2

ρ + GR(ωT, |k|, T )

The longitudinal and transverse dispersion relations are plotted in Fig-
ure 14.8. Observe that the in-medium energy asymptotically goes over to
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the free energy, with increasing momentum. This behavior is characteris-
tic of a many-body effect.

14.6 J/ψ suppression

In the search for the quark–gluon plasma, the experimental signature of
this new state of matter that enjoys the most popularity is that associ-
ated with the suppression of the J/ψ vector meson. The main ingredients
of this simple and elegant idea [32] can briefly be summarized as follows.
As the temperature increases, so will the effect of color Debye screening,
which will ultimately cause the dissociation of the charmonium bound
states. Suppression of the J/ψ was predicted before its experimental
observation!

In nonrelativistic charmonium models, the interaction potential is most
simply modeled as

V (r) = σr − αeff

r
(14.101)

where σ is the string tension and αeff is an effective Coulombic interaction
coupling. The energy of the lowest bound state can be roughly estimated
in a semiclassical approximation [32]. We start by writing

E(r) = 2m +
1

mr2
+ V (r) (14.102)

where m is the c quark rest mass. The second term is obtained by invoking
the uncertainty relation to write the kinetic term involving the reduced
mass in coordinate space. The lowest bound state is found by minimizing
the energy with respect to r. Taking αeff � 1/2, m � 1.5 GeV, and σ =
0.19 GeV2 one obtains rJ/ψ � 0.3 fm. This value is in qualitative agree-
ment with that obtained through more sophisticated approaches and also
confirms that, at T = 0, the size of the J/ψ is largely set by the confining
part of the potential.

Now consider the high-temperature plasma phase. If the transition
is first order, this is tantamount to choosing T > Tc. Since the quark–
antiquark pair is heavy, it makes sense to use a static potential for their
mutual interaction. We have discussed this already in Chapters 8 and 10.
At leading order in the coupling, the interaction is modeled by one-gluon
exchange, and at small momenta the gluon propagator develops an elec-
tric mass related to Π00(k). In pure SU(N) gauge theory, one calculates
the real part of the finite-temperature one-loop gluon self-energy.

The Debye-screened color Coulomb potential is

V (r) = −N2 − 1
2N

g2

4πr
exp(−melr) = −αeff

s

r
exp(−melr) (14.103)
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with m2
el = Ng2T 2/3. The coupling αeff

s obtained above Tc is generally
different from that used in the zero-temperature potential (14.101). Using
[33]

g2(T ) =
24π2

11N ln
(
19.2T/ΛMS

) (14.104)

one may get an estimate for T ∼ ΛMS, which implies that αeff
s � 0.3.

An interesting phenomenon, revealed by keeping the first powers in the
momentum expansion of Π00, is that of Friedel oscillations in QCD [33].
To see this, it is useful to recall that F = −Π00 = Fvac + Fmat. A low-
momentum expansion for Fmat(0,k) has been performed in the temporal
axial gauge and is [34]

Fmat(0,k) =
1
3
g2NT 2 − 1

4
g2NT |k|

− 11
48π2

g2Nk2

[
ln
(

k2

T 2

)
+

2
33

+ 2(γE − ln 4π)
]
(14.105)

The first term in this expansion is the electric mass, which is gauge invari-
ant. The second term, linear in k, is also gauge invariant. It is the same in
the temporal-axial, Coulomb, and all covariant gauges. The reason is that
this term modifies the plasmon effect in the thermodynamic potential; see
Section 8.3. The next term has the same coefficient as that of the vacuum
term, as it must in order to produce a temperature-dependent coupling
constant. Keeping the terms that are subleading in the low-momentum
expansion produces

V (r) = −N2 − 1
2N

g2(T )
2π2r

∫ ∞

0
dz

z sin zx

z2 − 2tz + 1
(14.106)

where x = melr and t = 3mel/8T . A contour integration puts the integral
into the form

V (r) = −N2 − 1
2N

g2(T )
4πr

S(x, t) (14.107)

The dimensionless screening function is

S(x, t) = 2
(

cos tx +
t√

1 − t2
sin tx

)
exp

(
−x2

√
1 − t2

)
−4t

π

∫ ∞

0
dy

y2 exp(−xy)
(1 − y2)2 + 4t2y2

(14.108)
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Fig. 14.9. The screening function S(x, t) for different values of t = 3mel/8T .

S(x, t) has the following asymptotic expansion. For fixed x and small t (the
high-temperature limit), S → e−x, the Debye-screening result. For fixed t
and x → ∞ (the long-distance limit), S → 8t/πx3. At very large distances
the potential is repulsive and falls as a power, not as an exponential:

V (r) → 9
4π3

[
N2 − 1
N2

]
1

T 3r4

The screening function is derived under the assumption that x > 1; that is,
the low-momentum expansion of F (0,k) has been used. This expression
cannot be written in terms of elementary functions. The integration in
(14.108) must be done numerically, and the results are plotted in Figure
14.9. We see that in general the inclusion of the momentum dependence of
the gluon self-energy increases the screening for 1 < x < 3 (or between one
and three Debye lengths) but decreases the screening at greater distances.
In fact, for large distances there is a slight antiscreening: the potential is
repulsive instead of attractive.

Going back to the low-momentum expansion, we keep only the lead-
ing term. Inserting (14.103) into (14.102) and minimizing produces a
value for rJ/ψ. All the temperature dependence is now contained in the
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value of mel. After minimization, the algebraic equation to be solved is

2mel

mαeff
= x(x + 1)e−x (14.109)

where x = rmel. Notice that the left-hand side increases linearly with tem-
perature (the variation of αeff with T is only logarithmic). The right-hand
side has a maximum at 1.62. At that point we have (mel)max = 0.81mαeff

s .
Extracting the logarithmic dependence, and using the definition of the
electric mass, yields the equation

T =
0.81
3π

mg(T ) (14.110)

Using ΛMS = 220 MeV, the above turns into a nonlinear equation for the
maximum temperature at which the J/ψ exists. Solving it, one obtains
Tmax � 200 MeV. Should the J/ψ disappear because of the mechanism
discussed here, the higher-lying excitations of the charmonium bound
states will already have dissolved. Remember that the J/ψ is an n = 1,
� = 0 state, whereas the lesser-bound states are ψ′(n = 2, � = 0) and
χc(n = 2, � = 1).

The whole analysis in terms of potential models can only give a gen-
eral idea of the dissociation pheomenon. First, the heavy quark potential
should be determined directly using lattice QCD simulations at finite
temperature. The nonperturbative studies could allow the study of the
evolution of the gap between the charmonium bound-state mass and the
open charm threshold, among other things. It has recently become possi-
ble to study directly the finite-temperature charmonium spectral density
on the lattice [35]. All such studies are currently based on quenched lat-
tices: they do not include quark loops, thermal or otherwise. This obvious
shortcoming will have to be addressed in order to extract any quantita-
tive result. Furthermore, one needs to reconstruct the thermal spectral
densities from the thermal correlators: recent progress on this has been
made possible by the use of Bayesian techniques in lattice analysis [36].
This topic is one for specialists. See Chapter 10 for the basic notions of
QCD lattice gauge theory.

Any analysis of the charmonium spectrum in nuclear collisions will be
incomplete unless supplemented by knowledge of what happens to those
states in cold nuclear matter and in hot hadronic systems. These are all
environments that are liable of influencing the measured J/ψ yields as
well as those of the higher-lying states. There is at present considerable
uncertainty, because the J/ψ sits at an energy scale that is not high
enough for perturbative QCD to be totally reliable and because there
is no direct experimental data on J/ψ–hadron cross sections. However,
the yields of charmonium bound states as a function of the muon pair
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Fig. 14.10. The average of two data sets showing the J/ψ to Drell–Yan ratio
(multiplied by the branching ratio into a dimuon pair) as a function of the
transverse energy, in the invariant mass region 2.9 GeV/c2 < M < 4.5 GeV/c2.
The solid line shows the effect of nuclear absorption with an absorption cross
section that is extracted from proton–nucleus data. This plot is from [37], with
kind permission of Springer Science and Business Media.

transverse energy (and hence of event-centrality) in proton–nucleus col-
lisions can reveal the features that are germane to absorption in cold
nuclear matter. In fact, proton–nucleus analyses provide an important
class of control experiments, as plasma formation is not expected to occur
there. Drell–Yan muon pairs serve as a background estimator, as they
constitute the dominant source of continuum dileptons at the invariant
masses of interest here. The ratios of cross sections for proton–nucleus col-
lisions are then fitted to a Glauber prescription of normal nuclear matter
absorption; this procedure leads to a value σabs = 4.18 ± 0.35 mb [37]. The
extra absorption in nucleus–nucleus events, shown in Figure 14.10, is then
deemed anomalous. Owing to the large multiplicities that are common in
heavy ion collision environments, the interaction of the newly formed J/ψ
with this hot hadronic matter also has to be considered. At the present
time, many hadronic approaches claim to reproduce the anomalous SPS
J/ψ absorption data with various degrees of success, thereby making the
arguments claiming a a new state of matter considerably less compelling.
This topic is still under investigation and will continue to be so in exper-
imental measurements at RHIC and at the LHC.
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+ +

Fig. 14.11. Tree-level diagrams for the processes gg → ss̄, and qq̄ → ss̄.

14.7 Strangeness production

Another signature of the presence of a nascent quark–gluon plasma cre-
ated in high-energy nuclear collisions is that of strangeness production
[38]. Strange quarks and antiquarks are absent in cold nuclear matter.
They are found only in the parton distribution functions of the sea quarks,
probed by deep inelastic scattering experiments. As a consequence their
abundances are typical of those of quantum fluctuations. In a hot par-
tonic system, however, the situation is different. High initial temperatures,
greater than the strange quark mass, imply an abundance comparable
with that of the lighter up and down quarks. The loss of confinement
suggests comparable rates of production of up, down, and strange quarks.

Starting with no strange quarks (or antiquarks), estimates for the pro-
duction of ss̄ pairs can be obtained from lowest-order perturbative QCD.
The contributing channels are those of gluon fusion and light qq̄ annihi-
lation. The relevant Feynman diagrams are shown in Figure 14.11. The
invariant matrix elements have been calculated by several groups of work-
ers to leading order in the strong coupling constant [39]. Labeling the
processes in Figure 14.11 by a, b, c and d, respectively (going from left to
right, starting from the top), the squared matrix elements summed over
initial color, spin, and flavor states are

∑ |Ma|2 = 16 × 6(παs)2
(m2 − t)(m2 − u)

3s2∑ |Mb|2 = 16 × 6(παs)2
2
27

(m2 − t)(m2 − u) − 2m2(m2 + t)
(m2 − t)2∑ |Mc|2 = 16 × 6(παs)2

2
27

(m2 − t)(m2 − u) − 2m2(m2 + u)
(m2 − u2)2∑ |Md|2 = Nf 62(παs)2

16
81

(m2 − t)2 + (m2 − u)2 + 2m2s

s2

(14.111)
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the interference terms being∑MaM∗
b = 16 × 6 (παs)2

(m2 − t)(m2 − u) + m2(u− t)
12s(m2 − t)∑MaM∗

c = 16 × 6 (παs)2
(m2 − t)(m2 − u) + m2(u− t)

12s(m2 − u)∑MbM∗
c = 16 × 6 (παs)2

m2(s− 4m2)
108(m2 − u)(m2 − t)

(14.112)

Here s, t, and u are the usual Mandelstam variables, Nf is the number of
fermion flavors, and m is the strange quark mass. In the equations above,
the numerical prefactors correspond to products of the degeneracy factors
(spin × color) for the gluons (2 × 8) and quarks (2 × 3). For the processes
under consideration a scale appropriate for the evaluation of the strong
coupling yields αs(s).

Given the above, the cross sections averaged over initial states are eval-
uated to be

σ̄gg→ss̄ =
2πα2

s

3s

[(
1 +

4m2

s
+

m4

s2

)
tanh−1 w(s) −

(
7
8

+
31
8
m2

s

)
w(s)

]
σ̄qq̄→ss̄ =

8πα2
s

27s

(
1 +

2m2

s

)
w(s) (14.113)

where w(s) =
√

1 − 4m2/s. The rate for pair production can then be cal-
culated using the usual formalism of relativistic kinetic theory. Quite
generally, one may write a rate for the reaction a1 + a2 → X, in the
independent-particle limit, as

R(a1+a2 → X) =
1

1 + δa1,a2

∫
d3k1

(2π)3
f(k1)

d3k2

(2π)3
f(k2)σ(a1+a2 → X) vrel

(14.114)

with

vrel =
(k1 · k2)2 −m4

a

E1E2
(14.115)

In the case where the initial-state fields are massless, vrel = s/(2E1E2)
with s = (k1 + k2)2.

The invariant rate (the number of reactions per unit time per unit
volume) is then

R =
d4N

dtd3x
=

1
2

∫ ∞

4m2

ds s δ(s− (k1 + k2)2)
∫

d3k1

(2π)3E1

∫
d3k2

(2π)3E2

×
(

1
2
fg(k1)fg(k2)σ̄gg→ss̄(s) + Nf fq(k1)fq̄(k2)σ̄qq̄→ss̄(s)

)
(14.116)
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Note that the distribution functions here contain the appropriate degen-
eracy factor,

fg(k) = 16
1

eβ|k| − 1

so that the gluon density is

ng =
Ng

V
=
∫

d3k

(2π)3
fg

and similarly for the quarks and antiquarks.
Inserting the appropriate Bose–Einstein or Fermi–Dirac distribution

functions, the net rate may be computed numerically. Doing this with the
quark chemical potential set to zero, one finds that the gluon contribution
dominates the contribution with the qq̄ initial state. For the gluon fusion
rate, expanding the Bose–Einstein distribution functions for T � m
yields

Rg =
4T
π4

∫ ∞

4m2

ds s3/2σ̄gg→ss̄

∑
k,�=1

1√
k�

K1

(√
k�s

T

)

� 7
6π2

α2
smT 3e−2m/T

(
1 +

51
14

T

m
+ · · ·

)
(14.117)

One may divide out the temperature dependence and plot a dimen-
sionless rate, R/αsT

4, against m/T , where m is the strange quark
mass. A parametrization of these results over the temperature range
considered here is perhaps useful for modeling purposes. An excellent
parametrization for the range of m/T plotted is provided by R/α2

sT
4 =

(a + bx2) exp(−cx), with x = m/T , a = 0.937, b = 0.958, and c = 2.715.
The fit is shown, together with the result of the numerical rate calculation,
in Figure 14.12.

When the density of ss̄ pairs increases, their annihilation will start
to deplete the population of strange quarks. This depletion rate will be
proportional to the square of the strange quark density. Then the rate
equation for a static (nonexpanding) system is

dns(t)
dt

= R

[
1 −

(
ns(t)
neq

s

)2
]

(14.118)

For small departures from equilibrium, such that n(t) = neq + δn(t) where
|δn(t)| � neq, we may linearize (14.118):

d δns(t)
dt

= −δns(t)
τeq

τeq =
neq

s

2R
(14.119)

Therefore, a large rate means a short equilibration time.
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Fig. 14.12. The dimensionless rate for emission of ss̄ pairs from a sum of all
tree-level partonic processes with u and d quarks, as a function of the ratio of the
strange quark mass to the temperature (solid line). Here αs = 0.6 and m = 150
MeV. The parametrization discussed in the text corresponds to the dotted line.

We now consider the fate of the strange hadrons in the portion of the
system’s spacetime trajectory that is in the confined sector. Let us assume
that the system has zero net baryon number and that the species present
are light pseudoscalars only. Anticipating the effect of high temperatures,
we approximate the distribution functions to be of the Boltzmann type
with vanishing chemical potentials. Then all integrals but one can be
performed in (14.114), to yield

R(a1 + a2 → X) =
T 6

16π4

∫ ∞

z0

σ(E)z2(z2 − 4z2
a)K1(z) dz (14.120)

where z = E/T , E is the center-of-mass energy, and za = ma/T . For
the annihilation process, z0 = 2za. If a1 + a2 → b + c and 2ma < mb + mc

then z0 = (mb + mc)/T . The reader is invited to verify that this expres-
sion agrees with the leading term (k = � = 1) in (14.117).

There is not much data on strangeness production in mesonic annihi-
lation. Some estimates exist of the cross section for the process π+π− →
K+K− from measurements of π−p → K+K−n [40]. These estimates find
that the cross section is roughly constant as a function of energy, with a
mean value of σ0 = 5/3 mb. With a total of three isospin channels, the
total cross section is thus 3σ0 = 5 mb. Then

R(ππ → KK̄)

=
3σ0T

6

16π4

[
z2
0(z

2
0 − 4z2

a + 8)K0(z0) + 4z0(z2
0 − 2z2

a + 4)K1(z0)
]

(14.121)

In this case, z0 = 2mK/T and za = mπ/T .
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Fig. 14.13. The time constant τeq for chemical equilibration as a function of
temperature for different processes: solid curve, τeq for the partonic reactions
gg → ss̄ and qq̄ → ss̄ (with q = u, d); broken curve, τeq for ππ → KK̄; bro-
ken and dotted curve, the equilibration time for the KK̄ annihilation pro-
cesses. The parameters used here are αs = 0.6 and m (strange quark mass) =
150 MeV.

Another useful reaction for evaluating the population of strangeness-
carrying hadrons is K+K− → nonstrange hadrons. Its magnitude may be
estimated from that of pp̄ → charged hadrons [41]:

σ(pp̄ → charged hadrons) = A′ +
B′√

(E/mp)2 − 4
(14.122)

with A′ = 38.25 mb and B′ = 36 mb. Since K+K− has four valence quarks
whereas pp̄ has six, a simple estimate may then be obtained by multiplying
A′ and B′ by (2/3)2 and replacing mp by mK . Finally, bear in mind that
a K− can equally annihilate on a K0 or a K+. Putting all this together
we arrive at

R(KK̄ annihilation) = 2(RA + RB)
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where

RA =
AT 6

8π4
z3
0K3(z0)

(14.123)

RB =
BT 6

64π3
z0(3 + 3z0 + z2

0)e
−z0

with z0 = 2mK/T , A = 17 mb, and B = 16 mb. It is revealing to plot
the relevant strangeness-equilibration time constants, as evaluated from
(14.119). The rates were integrated numerically in the Boltzmann limit
for the distribution functions and were used to obtain the various relax-
ation times. These are shown in Figure 14.13. Of course, not all processes
operate over the complete temperature range shown there.

This figure is revealing in many aspects. First, note the strong
temperature-dependence. Second, this plot shows why strangeness-
enhancement is considered a promising probe for the formation of the
quark–gluon plasma. The smallness of τeq for the partonic contributions
indicates that gluons and light quarks will reach equilibrium during the
early stages of the plasma phase. However, note that the time constant
for ss̄ in the plasma phase is within a factor 2 of that for KK̄ anni-
hilation in the hadron phase for the interesting temperature interval of
150 < T < 250 MeV. This suggests that strangeness production and anni-
hilation in the hadronic phase will be comparable in magnitude with that
in the plasma phase. This also means that the actual usefulness of this
observable will depend on the details of the evolution scenario. Finally,
the relationship between the rates for ππ → KK̄ and for KK̄ annihilation
is as it should be. If the latter pairs could only annihilate into a pair of
pions, the two rates would be equal by detailed balance. However, two
kaons may annihilate into a many-pion (more than two) final state, and
this will increase the net rate and decrease the related time constant.

In order to calculate how the strangeness density evolves in time, the
spacetime evolution is needed. An increase in volume will cause a pro-
portionate decrease in density even in the absence of interactions. This
means that (14.118) needs to be supplemented by a dilution term:

dns(t)
dt

= R

[
1 −

(
ns(t)
neq

s

)2
]
− ns(t)

V (t)
dV (t)
dt

(14.124)

In the Bjorken model, the volume grows linearly with time because the
entropy density drops inversely with time, (14.10). Therefore in this case

dns(t)
dt

= R(T (t))

[
1 −

(
ns(t)
neq

s

)2
]
− ns(t)

t
(14.125)
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The initial condition, ns(t0), needs to be chosen. Three possibilities
include: (i) no strange quarks; (ii) strange quarks in chemical equilibrium;
(iii) a strange quark abundance determined by proton–proton collisions at
the same energy. If the equilibration rate is high enough compared with
the expansion rate, strange quarks will come to equilibrium no matter
what the initial condition.

The equation above is valid in the plasma phase. Once the plasma
begins to convert into hadrons, the rate equation for kaons is

dnK−(t)
dt

= Rh(Tc)

(
1 −

(
nK−(t)
neq
K−(Tc)

)2
)

− nK−(t)

f̂(t) t

d

dt

[
f̂(t) t

]
+

1
2
ns(t)

f̂(t)

df̂(t)
dt

(14.126)

where f̂(t) = 1 − f(t) is the volume fraction in the plasma phase and Rh is
the rate in the hadron phase. The dilution term is slightly different from its
previous version. The last term given the gain from strangeness conversion
into the hadron phase from the plasma phase. The factor 1/2 accounts
for the fact that a given s quark is equally likely to end up in a K̄0.

The strangeness content as a function of time is given by integration of
the differential equations presented in this section. It is clear how to adapt
this rate equation to the evolution in the purely hadronic phase. When
comparing with actual measurements, perhaps a more realistic estimate
will need to include multistrange baryons and strange antibaryons, as
well as to consider the effect of different and more sophisticated spacetime
evolution scenarios. The interested reader is invited to consult the research
literature for the current status of strangeness as a probe of heavy ion
collisions.

14.8 Exercises

14.1 Construct the pressure and energy density as functions of temper-
ature for the three equations of state presented in Section 14.1.

14.2 A simple way to model the effect of the transition from
one-dimensional to three-dimensional expansion is to replace
the formula s(τ) = s(τ0)τ0/τ in the Bjorken model by s(τ) =
[s(τ0)τ0R2]/[τ(τ2 + R2)], where R is the nuclear radius. This takes
into account the time delay for the rarefaction wave from the
surface to reach the center of the hot matter. Calculate the
temperature as a function of proper time for the three equations
of state of Section 14.1, and plot the result similarly to Figure
14.2.
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14.3 Derive the expression for the photon production rate in relativistic
kinetic theory (14.46).

14.4 Consider the rates for photon emission through the Comp-
ton and annihilation processes, (14.54) and (14.55). These were
evaluated assuming that the initial-state distribution functions
could be approximated by their Maxwell–Boltzmann form. Show
that, keeping the quantum distribution functions in the initial
state, the rates from the Compton and annihilation processes
become [42]

E
d3R

d3p

Compton

=
5
9
ααs

4π2

1
eE/T + 1

T 2

[
ln
(

4ET

k2
c

)
+ C ′

F

]
where

C ′
F = −γE +

1
2
− 8

π2

∞∑
n=0

ln
(2n + 1)
(2n + 1)2

and

E
d3R

d3p

annihilation

=
5
9
ααs

4π2

1
eE/T + 1

T 2

[
ln
(

4ET

k2
c

)
+ C ′

B

]
where

C ′
B = −γE − 1 − 8

π2

∞∑
n=0

ln
(2n + 1)
(2n + 1)2

14.5 Prove (14.65).
14.6 Derive the expressions (14.94) and (14.95) for the scalar functions

F and G at finite temperature.
14.7 Show that the pion electromagnetic form factor in the vector

meson dominance model (VMD) is predicted to be

Fπ(M) =
m2

ρ + Fvac(0)
m2

ρ + Fvac(M) −M2

and show that this reproduces the Gounaris–Sakurai formula [28].

14.8 Construct the grand canonical partition function for a gas of
hadrons containing all light mesons, baryons, and resonances, up
to a mass of 2 GeV. Use the Particle Data Table [43]. For several
combinations of temperature and chemical potential (say T = 100,
150, and 200 MeV; μB = 250 and 550 MeV), evaluate the density
of positively charged pions (including the resonance-decay contri-
bution) divided by that of the thermal pions.
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14.9 Calculate numerically the rate in (14.116), and show that the
contribution from quark–antiquark annihilation is negligible with
respect to the gluon fusion rate. You should plot the two rates for
100 < T < 300 MeV.

14.10 Assuming a first-order phase transition, obtain the behavior of the
strangeness density as a function of time in the Bjorken model.
Do the calculation for two initial temperatures, T0 = 250 and 500
MeV. Plot ns(t)/n

eq
s as a function of time, and compare with the

results shown in [44].
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