MINIMALITY AND STABILITY OF MINIMAL HYPERSURFACES IN \mathbb{R}^{N}

Fang Hua Lin

In this paper we show that the hypercone over $S^{2} \times S^{4}$ is strictly area-minimizing in \mathbb{R}^{8}. We also show the existence of smooth embedded stable hypersurfaces in \mathbb{R}^{8} which are not area-minimizing.

1. Introduction

Given a regular minimal hypercone C in ${I R^{n+2}}$ (that is $C=0 \times \Sigma$

Received 4 th September 1986. Supported by Alfred P. Sloan Doctoral Dissertation Fellowship (1984-1985). I wish to thank Professor R. Hardt and Professor R. Gulliver for bringing the work of Simoes to my attention.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 $\$ 2.00+0.00$.
for some smoothly embedded minimal hypersurface Σ of S^{n+1}, we say that C is strictly area-minimizing if there exists a constant $\theta>0$ such that

$$
\text { (*) } M\left(C_{1}\right) \leq M(T)-\theta \varepsilon^{n+1}
$$

for $T \in I_{n+1}\left(\mathbb{R}^{n+2}\right)$, where $C_{1}=C L B_{1}(0)$, whenever $E \in(0,1)$, $\partial T=\partial C_{1}$ and $\operatorname{spt}(T) \cap B_{\varepsilon}(O)=\emptyset$.

Let E_{+}, E_{-}be the two connected components of $\not R^{n+2} \sim \mathcal{C}$. Then we say that C is one-sided strictly area minimizing in \bar{E}_{+} (respectively, in \bar{E}_{-}) if (*) holds for all such T above satisfying, in addition, the condition $\operatorname{spt}(T) \subseteq \bar{E}_{+}$(spt $(T) \subseteq \vec{E}_{-}$, respectively).

The aim of this note is to prove the following:
THEOREM. Let $\Sigma=S^{m}\left(\sqrt{\frac{m}{n}}\right) \times S^{n-m}\left(\sqrt{\frac{n-m}{n}}\right)$ where $n \geq 2 m$ and either $n \geq 6, m \geq 2$ or $n \geq 7, m \geq 1$. Then $C=0 \times \Sigma$ is strictly area minimizing in \mathbb{R}^{n+2}. If $\Sigma=S^{1}\left(\sqrt{\frac{1}{6}}\right) \times S^{5}\left(\sqrt{\frac{5}{6}}\right)$, then $C=0 \times \Sigma$ is one-sided strictly area minimizing in $\bar{E}=\left\{(x, y) \in \mathbb{R}^{2} \times \mathbb{R}^{6}:|y|\right.$ $\left.\leq 5^{\frac{3}{2}}|x|\right\}$.

The strictly area minimality of $\mathcal{C}(1,5)=0 \times \Sigma$, $\Sigma=S^{1}\left(\sqrt{\frac{1}{6}}\right) \times S^{5}\left(\sqrt{\frac{5}{6}}\right)$, in \bar{E} implies that $C(1,5)$ is stable (see [5]). In fact, it is strictly stable by [2] and [6] . Moreover, we have the following:

COROLLARY. $E=\left\{(x, y) \in I R^{2} \times I R^{6}:|y|<5^{\frac{7}{2}}|x|\right\}$ is foliated by smoothly embedded minimal hypersurfaces. Each of these hypersurfaces is one-sided area minimizing (hence stable) but not globally area minimizing.

The above corollary solves the open problem [1.6] of [1].

2. Proofs

First we recall some results and notation from the recent work of Hardt and Simon [3]. They show that, if C is area-minimizing, then there exist minimal hypersurfaces $S_{ \pm} \subset E_{ \pm}$which coincide near infinity with

$$
\left\{x \pm V_{ \pm}(x) v c(x): x \in \mathcal{C}\right\}
$$

where $V_{ \pm}$are functions on C and v_{c} is an orienting unit normal vector field for C. Let $r_{ \pm}$denote the characteristic exponents of the O.D.E. obtained by separating variables in the Jacobi field equation for C. By [3], we have the following alternative characterizations of strict minimality:
(i) $\quad V_{ \pm}$both have the slower decay at infinity. That is

$$
\begin{aligned}
& \text { Lim inf }|x|^{\gamma-} V_{ \pm}(x)>0 \text { in the case that } \Gamma_{+}>\gamma_{-} \\
& |x|^{\gamma \infty} \\
& \text { Lim inf }\left(\log |x|^{-1}\right)|x|^{(n-1) / 2} V_{ \pm}(x)>0 \text { in the case that }
\end{aligned}
$$

$$
\gamma_{+}=\gamma_{-}=(n-1) / 2 .
$$

(ii) There are a closed, homothetically invariant $K \subset \mathbb{R}^{n+2}$ with H^{n+1}-measure zero and a C^{1}-vector field X on $\mathbb{R}^{n+2} \sim K$ such that $X=v_{C}$ on $C \sim K$ and $|X| \leq 1, \pm \operatorname{div} X \geq 0$ on $E_{ \pm}$, and at least one of these inequalities is strict in at least one point $x_{+} \epsilon E_{+} \sim K$ and at least one point $x_{-} \in E_{-} \sim K$.

By (ii) and the construction of Lawson [4], we see that all known examples of minimizing hypercones, except the case $\Sigma=S^{2}\left(\sqrt{\frac{1}{3}}\right) \times S^{4}\left(\sqrt{\frac{2}{3}}\right)$, are strictly area minimizing.

Our theorem is, actually, a directly consequence of the characterization (i) and the O.D.E. results due to Simoes [7].

Proof of Theorem. For $\Sigma=S^{m}\left(\sqrt{\frac{m}{n}}\right) \times S^{n-m}\left(\sqrt{\frac{n-m}{n}}\right),\left|A_{\Sigma}\right|^{2}=$ the square of the length of the second fundamental form of $\Sigma=n$, see [6]. Since $\gamma_{+} \geq \gamma_{-}$are the roots of the characteristic equation: $\gamma^{2}-(n-1) \gamma+n=0$, we have that

$$
\gamma_{ \pm}=\frac{1}{2}\left(n-1 \pm\left[(n-1)^{2}-4 n\right]^{\frac{1}{2}}\right)=\frac{1}{2}\left(n-1 \pm\left(n^{2}-6 n+1\right)^{\frac{1}{2}}\right)
$$

Now for $n \geq 6, n \geq 2 m$ and $m \geq 1$, we have, by [7, Theorem 2.9.3], on S_{+}the following:
(a) $\quad \operatorname{Lim}\left[\operatorname{arc} \tan (d v / d u)-\frac{\pi}{4}\right] /\left[\operatorname{arc} \tan (V / U)=\frac{\pi}{4}\right]=-\gamma_{-}$, where $v=|y|, u=5^{1 / 2}|x|$ and $U>V$; and S_{+}denotes the leaf of the global foliation (see [3], [7]) in $U>V$, which passes through the point $U=1$ and $V=0$.

Then (a) is equivalent to
(a')

$$
\lim _{u \rightarrow+\infty}(d Y / d u) /(Y / u)=-\gamma_{-}
$$

where $y=u-v>0$.

The latter implies that

$$
u-v=u^{-\gamma_{-}}+o\left(u^{-\gamma_{-}}\right) \text {as } u \rightarrow+\infty
$$

Similarly, for $n \geq 6, n \geq 2 m \geq 4$; or $n \geq 7, n \geq 2 m \geq 2$; by [7, Theorem 2.9.4], we have on $S_{\text {_ }}$ the following:
(b) $\quad \lim [\arctan (d v / d u)-\pi / 4] /[\operatorname{arc} \tan v / u-\pi / 4]=-_{-}$
where $v>u$ and $S_{\text {_ }}$ denotes the leaf of the global foliation in $v>u$ (see [2], [6]), which passes through the point $u=0, v=1$.

Hence

$$
v-u=u^{-\gamma_{-}}+O\left(u^{-\gamma_{-}}\right)
$$

as before.

Thus $S_{ \pm}$both decay to the cone $\mathcal{C}: u=v$ at the slower rate,
because $V_{ \pm}(X) \simeq|X|^{-\gamma_{-}}$follows from the fact that $|u-v| \simeq|X|^{-\gamma_{-}}$. where $X=(x, y)$. Thus we conclude, by (ii) that for $n \geq 2 m$ and either $n \geq 6, m \geq 2$ or $n \geq 7, m \geq 1$ the corresponding minimal hypercones \mathcal{C} are strictly minimizing. We also obtain that, when $n=6$, $m=1, C$ is one-sided strictly area minimizing in \bar{E}.

Proof of Corollary. Using the same technique as [2], one concludes that $\bar{E}=\left\{(x, y) \in I R^{2} \times \mathbb{R}^{6}:|y| \leq \sqrt{5}|X|\right\}$ is foliated by $S_{\lambda}=\mu_{\lambda} \times S_{+}, 0 \leq \lambda<\infty$. Each S_{λ} will be a smoothly embedded onesided area minimizing hypersurface, for $0<\lambda<\infty$, hence stable (see [3]). But S_{λ} cannot be area minimizing in \mathbb{R}^{8}, since $C(1,5)$ is not area minimizing in \mathbb{R}^{8}, and $C(1,5)$ is the tangent cone of S_{λ} at infinity.

3. An open problem

The following problem, which was raised by Simon, remains open.
(P) Is there an example (other than $I R^{2}$ in $I R^{3}$) of a minimal hypercone C in \mathbb{R}^{n} which is minimizing but not strictly minimizing? The candidate $S^{2} \times S^{4}$ is now ruled out by our result.

References

[1] Geometric measure theory and the calculus of variations. (Proc. Sympos. Pure Math. 44, W.K. Allard and F.J. Almgren, Jr., Eds. American Mathematical Society, Providence, Rhode Island, 1986.)
[2] L. Caffarelli, R. Hardt, L. Simon, "Minimal surfaces with isolated singularities", Manuscript Math. 48 (1984), 1-18.
[3] R. Hardt, L. Simon, "Minimizing hypersurfaces with isolated singularities", (preprint).
[4] B. Lawson, "The equivalent Plateau problem and interior regularity", Trans. Amer. Math. Soc. 173 (1972), 231-246.
[5] F.H. Lin, "Approximation by smoothly embedded hypersurfaces with positive mean curvature", (preprint).
[6] R. Osserman, "Minimal varieties", BuZl. Amer. Math. Soc. 75 (1969), 1092-1120.
[7] P. Simoes, "On a class of minimal cones in \mathbb{R}^{n} ", Bull. Amer. Math. Soc. 80 (1974), 488-489.

Courant Institute of Mathematical Sciences, New York University,
New York,
New York 10012
United States of America.

