53A10, 53C42

BULL. AUSTRAL. MATH. SOC. VOL. 36 (1987) 209-214.

MINIMALITY AND STABILITY OF MINIMAL HYPERSURFACES IN IR^N

FANG HUA LIN

In this paper we show that the hypercone over $S^2 \times S^4$ is strictly area-minimizing in \mathbb{R}^8 . We also show the existence of smooth embedded stable hypersurfaces in \mathbb{R}^8 which are not area-minimizing.

1. Introduction

Given a regular minimal hypercone C in \mathbb{R}^{n+2} (that is $C = 0 \times \Sigma$

Received 4th September 1986. Supported by Alfred P. Sloan Doctoral Dissertation Fellowship (1984-1985). I wish to thank Professor R. Hardt and Professor R. Gulliver for bringing the work of Simoes to my attention.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 \$2.00 + 0.00.

for some smoothly embedded minimal hypersurface Σ of S^{n+1} , we say that C is strictly area-minimizing if there exists a constant $\theta > 0$ such that

(*)
$$M(C_1) \leq M(T) - \theta \epsilon^{n+1}$$

for $T \in I_{n+1}(\mathbb{R}^{n+2})$, where $C_1 = C L B_1(0)$, whenever $\varepsilon \in (0,1)$, $\partial T = \partial C_1$ and Spt $(T) \cap B_{\varepsilon}(0) = \emptyset$.

Let E_{+}, E_{-} be the two connected components of $\mathbb{R}^{n+2} \sim C$. Then we say that C is <u>one-sided strictly area minimizing</u> in \overline{E}_{+} (respectively, in \overline{E}_{-}) if (*) holds for all such T above satisfying, in addition, the condition $\operatorname{spt}(T) \subseteq \overline{E}_{+}$ (spt $(T) \subseteq \overline{E}_{-}$, respectively).

The aim of this note is to prove the following:

THEOREM. Let $\Sigma = S^m \left(\sqrt{\frac{m}{n}} \right) \times S^{n-m} \left(\sqrt{\frac{n-m}{n}} \right)$ where $n \ge 2m$ and either $n \ge 6$, $m \ge 2$ or $n \ge 7$, $m \ge 1$. Then $C = 0 \times \Sigma$ is strictly area minimizing in \mathbb{R}^{n+2} . If $\Sigma = S^1 \left(\sqrt{\frac{1}{6}} \right) \times S^5 \left(\sqrt{\frac{5}{6}} \right)$, then $C = 0 \times \Sigma$ is one-sided strictly area minimizing in $\overline{E} = \{(x,y) \in \mathbb{R}^2 \times \mathbb{R}^6 : |y| \le 5^{\frac{1}{2}} |x|\}$.

The strictly area minimality of $C(1,5) = 0 \times \Sigma$,

 $\Sigma = S^{I}\left(\sqrt{\frac{1}{6}}\right) \times S^{S}\left(\sqrt{\frac{5}{6}}\right)$, in \overline{E} implies that C(1,5) is stable (see [5]). In fact, it is strictly stable by [2] and [6]. Moreover, we have the following:

COROLLARY. $E = \{(x,y) \in \mathbb{R}^2 \times \mathbb{R}^6 : |y| < 5^{\frac{1}{2}} |x|\}$ is foliated by smoothly embedded minimal hypersurfaces. Each of these hypersurfaces is one-sided area minimizing (hence stable) but not globally area minimizing.

The above corollary solves the open problem [1.6] of [1].

2. Proofs

First we recall some results and notation from the recent work of Hardt and Simon [3]. They show that, if C is area-minimizing, then there exist minimal hypersurfaces $S_{\underline{t}} \subset E_{\underline{t}}$ which coincide near infinity with

$$\{x \pm V_{\perp}(x) \ vc(x) : x \in \mathbb{C}\}$$

where V_{\pm} are functions on C and v_c is an orienting unit normal vector field for C. Let γ_{\pm} denote the characteristic exponents of the O.D.E. obtained by separating variables in the Jacobi field equation for C. By [3], we have the following alternative characterizations of strict minimality:

(i)
$$V_{\pm}$$
 both have the slower decay at infinity. That is

$$\lim_{|x| \to \infty} \inf_{x} |Y^{-} V_{\pm}(x) > 0 \quad \text{in the case that} \quad \Gamma_{\pm} > \gamma_{-} \\ \lim_{|x| \to \infty} \inf_{x} (\log |x|^{-1}) |x|^{(n-1)/2} V_{\pm}(x) > 0 \quad \text{in the case that} \\ \gamma_{\pm} = \gamma_{-} = (n-1)/2 \; .$$

(ii) There are a closed, homothetically invariant $K \in \mathbb{R}^{n+2}$ with H^{n+1} -measure zero and a C^1 -vector field X on $\mathbb{R}^{n+2} \sim K$ such that $X = v_{\mathbb{C}}$ on $\mathbb{C} \sim K$ and $|X| \leq 1$, $\pm \operatorname{div} X \geq 0$ on E_{\pm} , and at least one of these inequalities is strict in at least one point $x_{\pm} \in E_{\pm} \sim K$ and at least one point $x_{\pm} \in E_{\pm} \sim K$.

By (ii) and the construction of Lawson [4], we see that all known examples of minimizing hypercones, except the case

$$\Sigma = S^2 \left(\sqrt{\frac{1}{3}} \right) \times S^4 \left(\sqrt{\frac{2}{3}} \right)$$
, are strictly area minimizing.

Our theorem is, actually, a directly consequence of the characterization (i) and the O.D.E. results due to Simoes [7].

Proof of Theorem. For $\Sigma = S^m \left(\sqrt{\frac{n}{n}} \right) \times S^{n-m} \left(\sqrt{\frac{n-m}{n}} \right)$, $|A_{\Sigma}|^2 =$ the square of the length of the second fundamental form of $\Sigma = n$, see [6]. Since $\gamma_+ \ge \gamma_-$ are the roots of the characteristic equation: $\gamma^2 - (n-1)\gamma + n = 0$, we have that

$$Y_{\pm} = \frac{1}{2}(n-1) \pm [(n-1)^2 - 4n]^{\frac{1}{2}} = \frac{1}{2}(n-1) \pm (n^2 - 6n + 1)^{\frac{1}{2}})$$

Now for $n \ge 6$, $n \ge 2m$ and $m \ge 1$, we have, by [7, Theorem 2.9.3], on S_{\perp} the following:

(a) Lim [arc tan $(dv/du) - \frac{\pi}{4}$]/[arc tan $(V/U) = \frac{\pi}{4}$] = $-\gamma_{-}$, where v = |y|, $u = 5^{1/2} |x|$ and U > V; and S_{+} denotes the leaf of the global foliation (see [3], [7]) in U > V, which passes through the point U = 1 and V = 0.

Then (a) is equivalent to

(a')
$$\frac{\lim (dY/du)/(Y/u) = -\gamma_{-}}{u \to +\infty}$$

where Y = u - v > 0.

The latter implies that

$$u - v = u \xrightarrow{-Y_- -Y_-} as \quad u \to +\infty$$

Similarly, for $n \ge 6$, $n \ge 2m \ge 4$; or $n \ge 7$, $n \ge 2m \ge 2$; by [7, Theorem 2.9.4], we have on S the following:

(b)
$$\lim \left[\arctan \left(\frac{dv}{du} \right) - \frac{\pi}{4} \right] / \left[\arctan \frac{v}{u} - \frac{\pi}{4} \right] = -\gamma$$

where v > u and S denotes the leaf of the global foliation in v > u (see [2], [6]), which passes through the point u = 0, v = 1.

Hence

$$v - u = u^{-\gamma} + o(u^{-\gamma})$$

as before.

Thus S_{+} both decay to the cone C: u = v at the slower rate,

because $V_{\pm}(X) \approx |X|^{-\gamma}$ follows from the fact that $|u - v| \approx |X|^{-\gamma}$, where X = (x,y). Thus we conclude, by (ii) that for $n \ge 2m$ and either $n \ge 6$, $m \ge 2$ or $n \ge 7$, $m \ge 1$ the corresponding minimal hypercones C are strictly minimizing. We also obtain that, when n = 6, m = 1, C is one-sided strictly area minimizing in \overline{E} .

Proof of Corollary. Using the same technique as [2], one concludes that $\overline{E} = \{(x,y) \in \mathbb{R}^2 \times \mathbb{R}^6 : |y| \le \sqrt{5} |X|\}$ is foliated by $S_{\lambda} = \mu_{\lambda} \times S_{+}, 0 \le \lambda < \infty$. Each S_{λ} will be a smoothly embedded onesided area minimizing hypersurface, for $0 < \lambda < \infty$, hence stable (see [3]). But S_{λ} cannot be area minimizing in \mathbb{R}^8 , since C(1,5) is not area minimizing in \mathbb{R}^8 , and C(1,5) is the tangent cone of S_{λ} at infinity.

3. An open problem

The following problem, which was raised by Simon, remains open. (P) Is there an example (other than \mathbb{R}^2 in \mathbb{R}^3) of a minimal hypercone C in \mathbb{R}^n which is minimizing but not strictly minimizing? The candidate $S^2 \times S^4$ is now ruled out by our result.

References

- [1] Geometric measure theory and the calculus of variations. (Proc. Sympos. Pure Math. 44, W.K. Allard and F.J. Almgren, Jr., Eds. American Mathematical Society, Providence, Rhode Island, 1986.)
- [2] L. Caffarelli, R. Hardt, L. Simon, "Minimal surfaces with isolated singularities", Manuscript Math. 48 (1984), 1-18.
- [3] R. Hardt, L. Simon, "Minimizing hypersurfaces with isolated singularities", (preprint).
- [4] B. Lawson, "The equivalent Plateau problem and interior regularity", Trans. Amer. Math. Soc. 173 (1972), 231-246.
- [5] F.H. Lin, "Approximation by smoothly embedded hypersurfaces with positive mean curvature", (preprint).

- [6] R. Osserman, "Minimal varieties", Bull. Amer. Math. Soc. 75 (1969), 1092-1120.
- [7] P. Simoes, "On a class of minimal cones in Rⁿ", Bull. Amer. Math. Soc. 80 (1974), 488-489.

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 United States of America.

214