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Projective Plane Bundles Over an Elliptic
Curve

Tomokuni Takahashi

Abstract. 'We calculate the dimension of cohomology groups for the holomorphic tangent bundles
of each isomorphism class of the projective plane bundle over an elliptic curve. As an application,
we construct the families of projective plane bundles, and prove that the families are effectively
parametrized and complete.

1 Introduction

Let B be an elliptic curve defined over the field C of complex numbers, and let £
be a ruled surface over B. In [4], the dimension of the cohomology group H' (@5 ) is
calculated for i = 0,1, 2, where @y is the holomorphic tangent sheaf of X. In particular,
it is obtained that H*(®y) = 0 holds for any isomorphism class of a ruled surface.
Consequently, by using the result of [2|[3], we have that there exists a family & X — M
with the following properties:

(i) dimM =dim H'(®y);

(ii)) &7(0) = = for some point 0 € M;

(iii) the Kodaira-Spencer map at 0 is bijective.

From (iii) this family is effectively parametrized and complete at 0.

In [[4], the family as above is concretely constructed for every isomorphism class
> of a ruled surface. It is constructed by parametrizing the transition function of the
ruled surface as a P!-bundle.

In this paper, we expand the arguments of [4] to projective plane bundles over an
elliptic curve, namely, P?-bundles over an elliptic curve.

If W is a P>-bundle over an elliptic curve B, then W = P(E) holds for some vector
bundle E of rank 3. In Section 2] we summarize the results obtained in [1,4].

In Section [3| we classify the isomorphism classes of P2-bundles over B. We have
to consider it by dividing the argument into the following 3 cases:

(a) E isisomorphic to a direct sum of 3 line bundles;

(b) E is isomorphic to a direct sum of a line bundle and an indecomposable vector
bundle of rank 2;

(¢) E isindecomposable.
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In case (c), there exist only three types of isomorphism classes. In case (b), an isomor-
phism class depends only on the degree of the direct sum components of the defining
vector bundle. In case (a), the classification is a bit more complicated than in cases
(b) and (¢).

In Section |4} we calculate the dimension of the cohomology group H'(®y)
(i =0,1,2) for every P>-bundle W, where @y is the holomorphic tangent sheaf of
W. In order to do it, we write the patching data, namely, the transition function as a
P2-bundle for every isomorphism classes.

As an application, we construct the families of P>-bundles that are similar to the
cases of ruled surfaces. We set some P?-bundle W, and construct the family & X - M
with £€71(0) = W for some 0 € M and dimM = dim H'(®y). We consider three
cases of the isomorphism classes of W. The families are given by parametrizing the
transition function of W as a P>-bundle. Furthermore, we prove that these families
are effectively parametrized and complete.

2 Preliminaries

Let E5(7, d) be a set of the isomorphism classes of indecomposable vector bundles of
rank r and of degree d over an elliptic curve B.

Theorem 2.1 (cf. [l]) If B is an elliptic curve, then we have Ep(r,d) # & for any
r€Zsoandd € Z. For any Ey, E; € Eg(r,d), E; 2 E; ® L holds for some L € £5(1,0).
For any r € N, there is a unique element F, € Eg(r,0) with H*(B, F,) = C. For any
E e &p(r,0) \ {F,}, we have H°(B, E) = 0.

Remark 2.2 'We use the notation Eg(r,d) and F, freely in the rest of the paper.

Lemma 2.3 (¢f. e.g, [4]) If B is an elliptic curve, then the following hold:

(i) There exists an automorphism ¢ € Aut(B) satisfying L, = ¢* L, for any two line
bundles L, and L, of degree d, where d is any positive integer.

(ii) Let p € B be any fixed point. For any L € Pic’(B), there exists a point p’ € B
satisfying L = Op(p — p'), where — is an operator of divisors.

(iii) Let U, be the local coordinate neighbourhood near some point p € B, and let u;
be the coordinate on Uy. Put Uy := B~ {p}, and let vy be a complex number. Then the
line bundle obtained by patching (u1,2o) € Ug x C and (uy,z1) € Uy x C when they
satisfy zo = e""/“‘zl for uy € Uy n Uy is contained in E5(1,0). Furthermore, this line
bundle is trivial if and only if vo [u, is in the image of H'(B,Z) — H'(B, Op).

3 Classification of the Isomorphism Classes

Lemma 3.1 Let dy, dy, dj, dj be integers with 0 < dy < dp and 0 < d| < dj}. Put
E:=0p ®L1®L2fOT’Li € 83(1, d,) (l = 1,2) and E' = OBGBL{@L;](OTL;- € Sg(l,d;)
(j =12). Then P(E) = P(E’) holds if and only if there exists an automorphism ¢ €
Aut(B) with ¢*Ly = L] and ¢* L, 2 L}. Necessarily, we have d, = d| and d, = d;,.
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Proof Denote by 7: W := P(E) — Band n’: W’ := P(E’) — B the P?-bundles. Let
W: W — W’ be an isomorphism. Since there exists no surjective morphism from P2
to B, ¥ maps any fiber of 7 to the fiber of 7. Then we get the following commutative
diagram:

where ¢ is an automorphism of B induced by . If T is a tautological divisor of W’,
then we have 7, ¥* Oy (T') = ¢*E’ by the base change theorem. Hence, we obtain
the line bundle £ with E = (¢*E’") ® L. We obtain £ = Op, L] ~ ¢*Lyand L}, = ¢*L,.

Next, we prove the converse. Let W' be the fiber product W’ xg B for n': W' :=
P(E') - Band ¢:B — B. Then we obtain the morphisms ¥": W’ — W' and
n"": W — B. Clearly, ¥’ is an isomorphism. On the other hand, we obtain

" Ow (T') 2 ¢*E' 2 E,

by the base change theorem, where T” is the tautological divisor of W’. Hence we
obtain W 2 W := P(E). |

Remark 3.2 For di € Zsy, there exists ¢ € Aut(C) with ¢*L; = L{ for any
Ly, L € €c(1,d,). Hence, when we consider the isomorphism class of P?-bundles
as in Lemma 3.1} we can fix the second component of the direct sum and have only to
consider the case where the isomorphism class of the third component varies.

Lemma 3.3 PutE := Op®EgandE' := Op®E( for Eg € Eg(2,¢) and E| € Ep(2,¢"),
where e and e’ are both nonzero integers. Then P(E) is isomorphic to P(E') if and only
ife = e’ holds.

Proof The proof of the only if part is similar to Lemma In order to prove the
if part, it is sufficient to prove that there exists an automorphism y € Aut(B) with
Ey = y*E{. If e is odd, there exists y with det Eg = det(y*E() by Lemma [2.3{i).
Since the map det: £5(2,e) — Ep(1, e) is bijective (cf. [1, Corollary to Theorem 7]),
we obtain Eq = y* Ej. If e is even, there exist line bundles Ly and L with Eg = Ly ® F»,
and Ej = Ly ® F,. Hence, the statement is obtained. [ |

Remark 3.4 When e = ¢’ = 0, the “if” part of Lemma does not hold. Put
E:= Op®F,,and E' := Op®E, for Ey € E5(2,0){F,}. Then the cohomology groups
of the holomorphic tangent bundles for P(E) and P(E’) have different dimension
each other. See Theorem [4.1(ix) and (xii).

The following is trivial by the results of [1]].

Lemma 3.5 The isomorphism classes of the projective plane bundles defined by inde-
composable vector bundles over an elliptic curve of rank three are the following:

(i) P(F;) (Fs;e€é&p(3,0)),
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(ii) P(Fs1) (Fs1¢€€3(3,1)),
(iil) P(Fs2) (Fs2¢€€&g(3,2)).

4 The Cohomology Groups of the Holomorphic Tangent Sheaf

In this section, we consider the dimension of the cohomology groups of the holo-
morphic tangent sheaf for each isomorphism class of P2-bundle. Let E be a vector
bundle of rank 3 over an elliptic curve B, and W := P(E) the P2-bundle. Then from
the results of the previous section, we have to consider the following cases:

(i) Ez0%.

(i) E=Op@® Op @ L,, where L, € Pic’(B) ~ {O}.

(iii) ExOp® Ly ® Ly, where L, L; € PICO(B) N\ {OB} and L, %f L,.

(iv) E2Op® Op® L,, whereL, ¢ 83(1, dz),dz > 0.

(v) EzOp@®L;®L;,where L€ Ep(1,d;),d; >0.

(vi) E=0Op®L ®L,where L, L} ¢ E5(1,dy),Ly % L], dy > 0.

(vii) E= Op ® L, ® Ly, where L, € Pic®(B) ~ {Op} and L, € €5(1,d,),d, > 0.

(viii) ExOp@® L; ® L,, where L; € 83(1, d,)(l = 1,2) and 0 < d; < d,.

(ix) Ex0Op@®PF,.

(x) EzOp®Eg, where Eg € £5(2,¢),e>0and e = 0(2).

(xi) E=Op® Eg, where Eg € £5(2,¢), e >0and e =1(2).

(xii) E = L @ F,, where L € Pic’(B) \ {O3}.

(xiii) E= F, ® L, where L € £(1,d) and d > 0.

(xiv) Ex F,;® L, where L € £3(1,d) and d > 0.

(xv) E = F;.

(xvi) E = F;;.

(XVii) Ez F3,2.

Let B be defined as B = C/(1, w), where w is an element of the upper half plane of
C. For any ug € C, let [ug] € B be a class whose representative element is 4.

For each case, W is obtained as following:

In cases (i), (iv), (v), (ix), (x), (xi), (xiii), (xiv), (xv), (xvi), and (xvii), let Uy and U;
be as in Lemmal[2.3{iii). Then W is obtained by patching Uy x P? and U, x P2, Let
u; be alocal coordinate near p. Denote by (u;, (X;:Y;:Z;)) (i = 0,1) the element of
U; x P2, where (X;:Y;:Z;) is a homogeneous coordinate of P2,

In case (i), we obtain W by patching

(1o, (Xo0:Y0:Zy)) € Uy xP* and  (uy, (X1:Y1:2;)) € Uy x P?

when they satisfy Xo = X3, Yo = Y1, Zg = Z1 and [ug] = p + w3, where p + u; means
[u'+u;] for u’ € Csuch that p = [u/].

Similarly, in other cases, W is obtained by the following patching data with the
equality [ug] = p + ug:
In case (iV), X() = X], YO = YlaZO = %Zl.

Uy
In case (V), X() = Xl, Y() = %YI)ZO = %Zl
Uy Uy

In case (IX), X() = Xl) YO = Y] + uLlZl’ZO = Z].

1 1 1 e
In case (x), Xo = X1, Yo = ;s 1 + w1 21, Z0 = w21 (eo=%).
1 1 1
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. 1 1 1 -1
In case (xi), Xo = X, Yo = oo V1 + —m=2 21, Zo = —oom Z1,(eo = ET)
1 1 1
In case (xiii), Xo = X1 + uilYl, Yo=Y1,Zp = u—ﬂ,zl.
1
In case (xiv), Xy = X; + #Yl, Yo = u%YbZo =Lz.
1

uf

In case (xv), Xo = X1 + - Y1, Yo = Vi + ;- Z1, Zo = Z1.
In case (xvi), Xo = X; + uilYl, Yo=Y + uilzZl,Zo = uilZl.
In case (xvii), Xy = X; + uilzl, Yo=Y+ 521,20 = =7

Next, we consider cases (ii), (vi), (vii)l, (viii), an<11 (xii). Let p € Band p' € B
(p # p") bepoints with L, = Op(p—p') in case (ii), L; 2 Op(d;p) and L] = Op(d1p’)
in case (vi), L; = Op(p - p’) and L, = Op(d,p) in case (vii), L; = Op(d;p), and
L, = Op(d,p") in case (viii) and L = Op(p — p’) in case (xii). Put Uy := B\ {p,p'},
and let (Uy, u;) and (U,, uy) be local coordinate system near p and p’, respectively.
We can assume that U; n U, = @. Denote the element of U; x P? by (u;, (X;:Y;:Z;))
(i=0,1,2).

In case (ii), we obtain W by patching (uo, (Xo:Y0:Zo)) and (uy, (X1:Y1:Z1))
when they satisfy

1
Xo=X1,Yo=Y1,Zo=—2; and [ug]=p+us;
up

(o, (Xo0:Y9:Zp)) and (uy, (X;:Y2:Z;)) when they satisfy
XO = X2, YO = Y2,Z0 = leZz and [Ho] = p, + Uj.

Similarly, in other cases, W is obtained by the following patching data with the
equalities [tg] = p + ug and [uo] = p' + uy:
In case (vi),

1 1
XO = Xl, YO = TIYI’ZO = Zl and Xo = X2, YO = Yz,ZO = 7122
uy U,

In case (vii),

1 1
Xo=X, Yy = LTYI)ZO =54 and Xy =X5, Yy =uy Y5, Zg = Z,.
1 uj

In case (viii),

1 1
XO:XI)YO:TIYI)ZO:ZI and X():X2>Y():Y2r20:7222-
uy Uy

In case (xii),
1 1
XO = —Xl, Yo = Y] + *ZI)ZO = Z] and X() = M2X2, Y() = Yz,Zo = Z2.
751 u

Finally, we consider case (iii). Let p, p’, p”’ € B be the points with L; = Og(p — p’),
Ly 2 Op(p-p"). Put Uy := B~ {p, p’, p"}, and let (Uy, u;), (U, uz), and (Us, u3)
be the local coordinate systems near p, p’, and p”, respectively. We can assume that
UinUj =@ (i,j = 1,2,3,i # j). Denote by (u;, (X;:Y;:Z;)) (i = 0,1,2,3) the
element of U; x P2.

https://doi.org/10.4153/CMB-2017-025-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-025-8

206 T. Takahashi
We obtain W by patching (u, (Xo:Y0:Z0)) and (u, (X;:Y1:Z;)) with

Xo=X,Y = in,ZO = izl and [ug] =p+up;
u i
(o, (Xo0:Y9:Zp)) and (uy, (X:Y2:Z;)) with
Xo=X2Yo=u2Y2,Zg=2, and [ug]=p’ +u;
(0, (Xo0:Y9:Zp)) and (u3, (X3:Y3:Z3)) with
Xo=X3,Yy=Ys,Zg=usZs and [uo]=p" +us.

Theorem 4.1 Let m: W := P(E) — B be a P*-bundle over an elliptic curve B defined

by a vector bundle E of rank 3, and let ®y; be the holomorphic tangent bundle.

(i) Wehave dim H*(W,®y) = dim H*(W, @) = 0.

(ii) We have dim H*(W,®y) = dim H'(W, ®). If we let N be this dimension,
then it has the following values:

Case | (i) | (i) | (i) [ Gv) | V) | (i) | (viD) | (viii)
N [ 9] 5] 3 |2dy+4|2di+4]2d1+2]|2dr+2 | 2d,+2

Case (ix)‘ (x) ‘ (xi) ‘(Xii)‘ (xiii) ‘(XiV) ‘ (xv) ‘ (xvi) ‘ (xvii)
N |5 |e+2]e+1| 3 [2d+2]| 2d | 3 | 1 | 1

Proof Consider the following two exact sequences:
0— Ow — Ow(T)®7"EY — Oy — 0,

0— Oy/p — Oy — Oy — 0.
Since H/(W,0w) = 0 and H (W, Ow(T) ® 7*E") = 0 hold for j > 2, we obtain
H/(W,®y/g) = 0and H/(W,®y) = 0. Since
dim H*(W, 0w (T) ® n*E¥) = dim H*(B,E® E")

=dimH'(B,E®E") =dim H (W, 0w (T) ® n*E")

holds by Serre duality theorem, we obtain

dim H(W, @) = dim H' (W, @y ).
Hence, it is sufficient to prove the statement for dim H*(W, @y ).

Putx; = X;/Z; and y; = Y;/Z; for i = 0,1,2. On Uy, a global holomorphic vector
field 6 € H°(W, @) is written as

2
Olu, = (ag + a1xp + axyo + asxs + a4x0y0)§
0

0
— t+c—,
Byg auo
where a; (i =0,1,2,3,4,5), bj (j = 0,1,2), and ¢ are holomorphic functions on Uy.
Since each case can be proved similarly, we prove only cases (ii) and (xiii), and
leave the details of the other cases to readers.

+ (b(] + b1X0 + bzy() +dszXo)o + 04)/3)
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Consider case (ii). On Uy n U; and on Uy N U,, O can be written as

0| =a 9 +aix a2, 9 ax2i+ﬂx 2
UpnU; = oax1 11al )/1al 318x1 11)’1a
d 0 c d
b b by+ — ) y1—
+ Oulay + 1u1xlayl+( 2+u1)y18y1
+ aszx E 2 9
3 1}/1a 9 )/1 8y1 8u1’
0| a +arx +axu 9 + asx; 9 + aglrx
UonU, = 082 128x2 22}’282 3282 422}’2az
by 0 by d c 0
i) b, — —
+L{1 8y2+u1x28y2+( 2 uz)yzayz

+ a3X2}/287y2 +aguzy, aaz + CTMZ
We obtain that ay, a1, a3, and c are arbitrary constants. Furthermore, we obtain a, =
0, a4 =0, by = 0, and b; = 0. We have that b, is a meromorphic function with two
poles p and p’ of order one. If ( is the zeta function with period (1, ), there exists
a constant ¢’ with b, = ¢’ — c{(uo - p) + c{(up — p"). Consequently, we obtain five
arbitrary constants ao, a;, a3, ¢ and ¢/, which leads us to dim H*(W, @) = 5.
Let W be case (xiii). On Uy n Uy, 6 is written as

aop bo 0 by +dc d
9|UQHU1=(E_uii+l)aixl+(al— )x
al—b2+c—b1

up

1
u; aXl

9
ax1

0 0 _
+(a2+ )yla +a3uiixlza—xl+(a3uf 1+a4uf)x1y1
b() d 0 bl_c d
20 9 b i (by+ )
+ 8 1+ 1x13y1+( 2t ” ))’layl

+a udxyi+(au +agud) J +ci
31118)/1 3U; 41)’181 ou
We obtain that ag and by are identically zero, and b; and ¢ are constants. Since there is
no meromorphic function that has p as a pole of order 1 and no other pole, a; and b,
are constants, and b; = ¢ = 0 holds. For the same reason as above, we obtain a; = b,
and a, is a constant. Then a; and a4 determine the meromorphic functions which
have p as a unique pole of order at most d and d +1, respectively. The coeflicient of the

term for u;(d“) of a4 depends on a3. Hence, we obtain dim H*(W, @) = 2d+2. W

Construction of the Families

In this section, we construct a family of the projective plane bundles over an elliptic
curve that is complete and effectively parametrized. Let the notation be as before.
Recall that B is defined as B = C/(1, w).

(i) Let M c C® be a domain containing the origin, and let (#;,.. ., tg, @) be the
parameter on M x H. Let Wy, 1, 11 tu.ts.t6.t7,15,0 D€ @ P>-bundle obtained by patching
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(1o, (Xo0:Y0:Zp)) € Uy x P* and (uy, (X1:Y1:Z;)) € Uy x P? with

n L t t s t
X0:€“11X1+f2},1+f3Z1, YO:—4X1+6“1Y1+—6Z1,
Uy Lot Uy Lot
¢ t
Zole1+in+Z1, [uo]:p+u1.
[Z51 u;

Then we have Wy,0,0,0,0,0,0,0,0 = P(0?). Fori =1,2,3,4,5,6,7,8, denote by W,, the
P2-bundle Wy,,...¢,,o whent; # 0and t; =0 (j e {1,... ,i,...,8}), where7is a sign for
elimination. By applying the result of [4, §3], we have W, @ W;, 2 P(Op ® Op @ L)
for some L € Pic’(B),and W,, & W,, = W,, = W,, = W;, = W,, = P(Op @ F).
For i,i’ =1,2,3,4,5,6,7,8 (i < i’), denote by W, ;, the P*>-bundle W, », when
tity #0andt; =0 (je{L....,7,...,7,...,8}). Then we have W, ;, = Wi, ;, =
P(F;).
Ifweputx; = X;/Z;and y; = Y;/Z; (i =1,2), then we have

4 t t t 5 t
uy L2 23 L4 uy L6
(51) X _e x1+u1y1+u1 B u1x1+e y1+u1
: 0= T fs 1’ Yo =—¢ ts 1
LTIXI + ;Iyl + u*IXI + ;lyl +

Theorem 5.1 The above family is complete and effectively parametrized at the point
(0,0,0,0,0,0,0,0, ).

Proof PutO =(0,0,0,0,0,0,0,0,w) and let Tyx3¢,0 be the tangent space of M x H
Spencer map. It is sufficient to prove that ¢ is an isomorphism. Let 0W/d¢; and
oW /dw be the image of d/0¢; (i =1,...8) and d/dw by o, respectively. It is clear that
0W /dw can not be written as a linear combination of W /d¢; (i = 0,...,8). Hence,
it is sufficient to prove that oW /d¢; (i =1,..., 8) are linearly independent. Consider
that these are the elements of the cohomology group H' (U, ®+y) corresponding to the
open covering U := {Up, U, }. Let 9W/9t; be expressed as a I-cocycle §(*) = {ef,{"’ 1.
Then by (5.1), we obtain the following:

() _x 0 () _» 2 () _ 1 2 (ta) _ 1 2 (ts) _»n 2
601 T u; 9x0° 901 T up 9x0° 001 T uy 9x0° 901 T up 9y 901 T u; 9y0
lte) = L o gt __x o _xn o pglts) _ _xn oy 2
01 Uy Byo’ 01 (1) D

u; 0xg uy 0yg "

T uy 9xg uy 9y’

Assume that Z?:l a;0(t) ~ 0 holds for constants aj, ..., as. Then there exist 0, €
['(Up,®w) and 6, € T(Uj, ®yy) such that

8
(5.2) S ;650 = 6 - 6.
i=1
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If 6 and 6, are written as

d
90 = (ao +ad1Xg +az)o + a3x(2) + a4x0y0)£
0
sy O 0
+ (bo + b]XO + bz}/o +asXo)o + a4y0) ay + Co— au
0 0
d
0 = (a10 +anx; +ap)y + a13x12 + 1114961)/1)5
1
sy O 0
+ (blo +bnxt + by + aizxiy + auy; )@ + 615,
1 1

then by (5.2), we have
@mx 0 ooy 0 a0 e 9 sy 9
u aX() u aX() u aX() u a)/() u ayo

ag O azx? 0 0c7x1yli_och1yli_ocgyfi

251 Byo U 8x0 u Byo 251 8x0 U 8y0

0

0
— +(a—an)xi=— + (a2 —an)y1=— + (a3 - 6113)96127
0 aXO

0xg 0xg

d d d
+(a4—a14)xlyla +(b0_b10) +(b1 bll)xl y +(b2—b12))/1 y

d 8
+(a3—a13)x1y1£ +(a4 a14)y1 a +(CO—C1)a o

and hence, we have

o3 o o (4%

ap —aip = —> ar—an=—, a —an = —), az — a3 =——,
231 231 231 231

ag 6 4 5

a4 — a4 = ——> bo — by = —, by -by=—, by —bp=—.
up up up 231

We can write ag = a3/u;+ajg. Since p cannot be a pole of order 1for ag, we have a3 = 0
(ap = ajp =constant). Similarly, we obtain o; = 0 (i = 1,2,4,5,6,7,8). Therefore,
oW/ot; (i=1,2,3,4,5,6,7,8) are linearly independent. [ |

(ii) Let M c C* be a domain containing the origin, and let (#,, t,, t3, t4, w) be
the parameter on M x JH{. Further, let ¢t € C be a complex number such that the
line bundle whose transition function on Uy n Uy is represented as e!/" is contained
in Pic’(B) \ {Op}. Let Wy, 1, t,.1..0 be the P2-bundle over B obtained by patching
(w0, (XO:YO:ZO)) € Up x P? and (uy, (X1:Y1:Zy)) € Up x P? with

tty

t 11 tty
Xo—X1+ Yl> YoziX1+€“iY1, Zo=e™ Z1, [uo]l=p+u.
231

Then we have WO,(),O,O,w = P(0%* @ L,) for some L, € Pic’(B). Furthermore,
Wi,0,0,0,0 2 Wo,t,,00,0 2 P(F, ® L)

when t; # 0and ¢, # 0, Wo,0,,,0,0 = P(Op @ L; & L) for some L, € Pic’(B) when
t3 # 0and Wo 0,010 = P(O92 @ L)) for some L € Pic’(B) when t4 # 0.
We can prove the following theorem by the same argument as Theorem 5.1}
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Theorem 5.2  The above family is complete and effectively parametrized at
(0,0,0,0, w).

(iii) Let M ¢ C? be a domain containing the origin, and let (#,, t,, w) be the param-
eter on M x K. Further, let ¢ and ¢’ be complex numbers such that the line bundles
whose transition functions on Uy N Uj are represented as et/ and e!'/* are con-
tained in Pic’(B) \ {Og}. Let W,, 1, ., be the P>-bundle over B obtained by patching
(uo, (Xo0:Y0:Zp)) € Uy x P* and (uy, (X;:Y1:Z;)) € Uy x P? with

Xo = X1, YQZETllYI, Z()ZeTIZZl, [uo]:p+u1.
It is clear that Wy, 4, ,, is defined by Op @ L @ L), for some L} € Pic’(B) (i = 1,2).

We can prove the following theorem by the same argument as Theorem 5.1}

Theorem 5.3  The above family is complete and effectively parametrized at (0,0, w).
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