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SL(29 5) AND FROBENIUS GALOIS GROUPS OVER 0 

JACK SONN 

A finite transitive permutation group G is called a Frobenius group if every 
element of G other than 1 leaves at most one letter fixed, and some element of 
G other than 1 leaves some letter fixed. It is proved in [20] (and sketched 
below) that if k is a number field such that SL(2, 5) and one other nonsolvable 
group S5 of order 240 are realizable as Galois groups over k, then every Fro
benius group is realizable over k. It was also proved in [20] that there exists a 
quadratic (imaginary) field Q(^/~D) over which these two groups are realizable. 
In this paper we prove that they are realizable over the rationals 0 , hence we 
obtain 

THEOREM 1. Every Frobenius group is realizable as the Galois group of an 
extension of the rational numbers Q. 

SL(2, 5) is the group of 2 X 2 matrices of determinant 1 over the field of 
five elements. Its center is ± 7 , and modulo its center it is isomorphic to the 
simple group A5, the alternating group on 5 letters. Thus SL(2, 5) is a central 
extension of A 5 by a cyclic group C2 of order 2. Similarly, 55 is a central exten
sion of the symmetric group S5 by C2, and it is the one whose Sylow 2 subgroup 
is the generalized quaternion group of order 16. (SL(2, 5) and S5 are in fact 
stem covers of A5 and S5 respectively [4, pp. 212-213]; see also Corollary to 
Theorem 3 below.) 

We will prove that the splitting field K of the quintic 

f(x) = x5 + 2x4 - 3x3 - 5x2 + x + 1 

admits a quadratic extension K^s/a) Galois over Q, with Galois group 05. 
Similarly, the splitting field of the quintic 

g(x) = x5 - 2.5.911X4 + 22.35.52.911x3 - 27.35.52.19.911x2 

+ 26.35.52.19.911x + 27.36.5.19.101.911 

admits a quadratic extension Galois over 0 with Galois group SL(2, 5). 
§ 1 contains a collection of known facts on embedding problems; the proofs 

of the above statements on the quintics/(x) and g(x) appear in § 2. 
We remark that there have recently appeared some results concerning 

arithmetic properties of extensions K/Q with Frobenius Galois group [8, 9]. 
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1. Embedding problems. Let t be a field, k its separable closure, 
Gk = G (k/k) the Galois group of k/k. Let K/k be a finite Galois extension. 
An embedding problem for K/k is given by an epimorphism 

e: E-+G(K/k) 

with E a finite group. A solution to this embedding problem is given by a 
homomorphism 

/ : G* -» E 

such that e o / = Res(k/K): Gk —» G (K/k), the restriction map. If / is sur-
jective, then the fixed field of its kernel is a Galois extension Loik containing K 
with G(L/k)~E. 

For a group G and G-module A, let Hl(G, A) denote the ith cohomology 
group of the pair G, A. Suppose A is the kernel of e. Then the exact sequence 

1->A ->E->G(K/k)->l 

determines uniquely a cohomology class a £ H2(G(K/k), A). The embedding 
problem has a solution if and only if inf (a) = 0, where inf is the inflation map 

inf: H2(G(K/k), A) -> H2(Gk, A) 

[5, p. 82], or [10]. 
Let k be a number field, v a prime of k, v a prime of k above v, kv an algebraic 

closure of kv. A given (fixed) embedding of k into kv (preserving v) can be 
extended to an embedding of k into kv (preserving v), relative to 
which kv = k.kv, so we may identify G(kv/kv) with the decomposition group 
Gk(v) = G(k/kC\kv). 

An embedding problem e : E —> G (K/k) induces a local one given by 

ev: Ev-+ G(Kv/kv) 

where Ev = e~lG(KJkv), and Kv = K.kv. A global solution restricts to a local 
solution, but surjectivity is not necessarily preserved. 
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Suppose £ is a central extension of G(K/k); i.e., A = ker(e) Q center(£). 
Then A is a G(K/k)-module with trivial action, and is then naturally a 
G^-module with trivial action. In this case, the map 

H2(Gk, A) - i n H2(Gk(v), A) (one v for each v) 
V 

is injective, see [5, 3.7 and 6.1] or [10, Satz 4.7]. The preceding discussion 
yields 

LEMMA 1. If k is a number field and e: E —> G (K/k) is a central extension, 
then the embedding problem has a global solution if and only if the corresponding 
local embedding problem at v has a solution, for every prime v of k [5, p. 96], [10, 
Satz 2.2]. 

Note that Ikeda's theorem [19, p. 416] implies that the global solution can 
be assumed surjective. 

Suppose now that k is a number field containing the nth roots of unity, n a 
positive integer, and that E is a central extension of G (K/k), where ker(e) ~ 
Z/nZ. 

The short exact sequences 

0 -> Z/nZ - >k*^k*-

0 -> Z/nZ -> *,* A %* -» 1 

yield, by Hilbert's Theorem 90, monomorphisms 

H\Gk,Z/nZ)^H\Gk,k*) 

H\Gkv,Z/nZ)^H\Gkv,k*). 

Consider the commutative diagram 

0 >H*{Gk,k*) 

(1) 

^ I W ^ , , * / ) m v 

TIL 

->0/z 

H*(Gt,Z/nZ)1[^ntH
i(Gt., Z/nZ) 

inf 

H*(G(K/k), Z /nZ)-
Up 

ninf, 

*II„HHG(K,/kv), Z/nZ) 

The top row is exact [21, p. 196]. Let a € H2(G(K/k), Z/nZ). The image of 
a in O/Z is therefore zero. Suppose that Do is a fixed prime of k and that the 
embedding problem corresponding to a has a local solution at all v j± v0. Then 
inf5p„(a) = 0 for all v ?± v0, so 

ivinivpv(a) = 0, fori; ¥" Vo. 
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But thenf | v ivmivpv(a) has zero component for all v ^ VQ and its image under 
inv is zero. That implies iVomiVopH(a) = 0 as well, so 

Y[vivinfvpv(a) = 0 = (Yllv) O i o inf (a), 

hence inf (a) = 0 so the global embedding problem has a solution. We therefore 
have 

LEMMA 2. Let k be a number field containing the nth roots of unity, n a positive 
integer, and let e: E —> G(K/k) be a central extension with ker(e) c^Z/nZ. 
Then if the embedding problem has a local solution at v for all primes v of k except 
one, then it has a global solution, (cf. [1, Theorem 7, p. 423].) 

We conclude this section with two simple and well-known facts about 
embedding problems for cyclic extensions of local fields, which will be used in 
the next section. 

LEMMA 3. Let k be a number field, v a prime of k, kv the completion of k at v, 
Kv/kv a cyclic extension of degree n, e: E —» G(Kv/kv) an embedding problem. 

1. / / Kv/kv is unramified, then the embedding problem has a solution. 
2. If Kv/kv is totally and tamely ramified and E is cyclic, then the embedding 

problem is solvable if and only if kv contains the m-th roots of unity, 
where \E\ = m.m', and m' is the largest divisor of \E\ prime to n. (See [80], 
Satz 5.1). 

Proof. 1. Let C be a cyclic subgroup of E of minimal order such that 
Cker(e) = E; then \C\ = n.s. A solution field (i.e. fixed field of the kernel of 
a solution m a p / ) is the unramified extension of kv of degree n.s, and the exis
tence of a solution map / is insured by the fact that any automorphism of a 
factor group of a cyclic group C can be lifted to an automorphism of C. 

2. Suppose kv contains the m-th roots of unity. Kv = kv(-K
n~l) for some prime 

7T of kv [22, p. 89]. Then a solution field is kv{-Km~l), keeping in mind the remark 
at the end of the previous case. Conversely, suppose L is a solution field. Then 
L/kv is a cyclic extension containing Kv and G(L/kv) is isomorphic to a sub
group C of E such that C ker(e) = E. Therefore C must be of order divisible 
by m, hence L contains a subfield Lx D Kv with [Li : kv] = m. L\/kv is totally 
and tamely ramified since Kv/kv is, hence Lx = kv(j

m~l) for some prime -K of 
kv [22, p. 89] and kv must then contain the m-th roots of unity. 

We remark that the preceding proof shows that in the case Kv/kv totally 
and tamely ramified, if kv contains the m-th roots of unity and E is any group 
containing a cyclic subgroup C of order m such that Cker(e) = E, the em
bedding problem has a solution. However, the converse to this is false. Take 
kv = O3, Kv = C M A / S ) , E the quaternion group of order 8. This embedding 
problem has a solution, but Q3 does not contain the 4-th roots of unity. 
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2. Q u i n t i c s . The results in § 1 make it easy to prove the desired facts about 
the polynomial f(x) = x5 + 2x4 — 3x3 — 5x2 + x + 1. The discriminant D 
of f(x) is 36, 497, a prime congruent to 1 mod 4. I t is easily checked t h a t / ( x ) 
is irreducible mod 2 and factors into the product (x — 1) (x4 + x — 1) of 
irreducible factors mod 3. Fur thermore, 

f(x) = (x - 27031)2(x - 15152)(* - 15789) (* - 24486) (mod D) 

which shows both tha t the Galois group of f(x) is S-> and tha t K/Q(\/D) is 
unramified, where K is the splitting field of f(x). Indeed, the above three fac
torizations of f(x) mod 2, 3 and D show tha t G(K/Q) contains a 5-cycle, a 
4-cycle, and a transposition, and is therefore S-0. The factorization of f(x) 
mod D shows tha t the local degree of K/Q a t D is 2, which is also the local 
degree of Q(\/rD)/Q a t D. Hence D (or rather-s/TJ) splits completely in 
K/Q(\/rD). Thus every prime of Q(y/T>) (including oo ) is unramified in K. 
We therefore obtain the following result as an immediate application of § 1. 

T H E O R E M 2. Let K be the splitting field of the polynomial 

/ ( x ) = x5 + 2x4 - 3x3 - 5x2 + x + 1 

over Q. Then 
1. G(K/Q)~S,. 
2. Every embedding problem e: E —» G (K/Q) with ker(e) of order 2 has a 

(surjective) solution. 

Indeed, Lemma 3 implies tha t the local embedding problem is solvable a t 
every prime, hence by Lemma 1, the global embedding problem is solvable. 

We add tha t there are four nonisomorphic extensions E of S-0 by C2, two of 
which contain SL(2, 5) as a subgroup of index two. 

We turn now to SL(2, 5). An explicit example of a totally real polynomial 
g(x) G Q[x] having Galois group A-0 over 0 was given by Schur [15] in his 
investigation of Galois groups of some classes of polynomials in the book of 
Polya and Szego [10, p. 88]. For our purposes we are interested in the class of 
generalized Laguerre polynomials Ln

(a)(x), defined for non-negative integers n 
and real a by the equation 

(2) ~ , (e-xxn+a) = n\e-*xaL(:\x). 

When a — 0 one gets the ordinary Laguerre polynomials. When a is a rational 
number A/ju, L" has rational coefficients. In this case Schur normalizes 
Ln

(a)(x) to obtain the polynomials 

(3) F „ ( X , M , * ) = Fn(pc) = ( - l ) W A ( X l n Kn n—1 

-)=x - j x 

~2TX - • • • + ( - ! ) -, 
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where km = m(X + /xm), m = 1, . . . , n. The recursion equations 

(4) xFn' = nFn + knFn-! (n __ 1, F„ = 1) 

(5) Fw = (x - kn + ftn_i)7v_i - /xfen_iFn_2 (w __ 2) 

can be verified directly. Using (4), (5) and the formulas 

(6) D„ = (-i)»<»-»«rL *•«'(*.) 
where Z5„ is the discriminant of /•"„, and £a runs through the roots of F„, and 

(7) Rn = Res^ , / w ) = EL ^-i(£«.) = II» fi.0?») 
where Rn is the resultant of Fn and iv-i , and r]b runs through the roots of 
Fn-i, Schur derives the formula 

(8) Dn = n\ ^n-1)/2k2kz2k,* . . . kn
n~\ 

For X = jit = 1 and n odd, Dn is a perfect square, and Schur shows that 
Fn(l, 1, x) has Galois group An for n odd. Unfortunately, for n = 5, the split
ting field of F»(l, 1, x), which has Galois group _45, cannot be embedded into 
an extension having SL(2, 5) as Galois group, because the embedding problem 
is not locally solvable at some primes (namely at 2 and 3). However, we will 
find an F-}(\, /x, x) which fulfills all the necessary requirements. 

In [12] it is shown that Ln
(a) (x) has all distinct real positive roots for a > — 1 

[12, p. 274]. Nevertheless, the Ln
(a) (x) are defined for all a by formula (2). 

Since we will need to take —2 < a < — 1 , we require the following lemma. 

LEMMA 4. Ln
{a) (x) has all real roots for —2 < a < — 1, hence so doesFn(\, n, x) 

for - 2 < X/V < - 1 . 

Proof. Let —2 < a < —1 and write /3 = a + 1. Then 

c xx" 
-2-Yw —1+/3 

Hence 

i —x a T (a) / \ 

dxn dx dx 

in 7 m—1 
i —x a j (a) / \ ____ ~x w + a „~x*Sl~l+P 

^ - * ^ r C> 

Since (3 > — 1, L^-i^O^) has « — 1 distinct positive roots so e~xx^Ln^
] (x) 

changes sign w — 1 times along the positive real axis. Thus its derivative 

-xaj (a) ~x a j (a) / \ 
e x -Ljfi \X j (n - 1)! 

vanishes n — 2 times between the first and last roots of L„_i(^(x). Further
more, if xn-\ is the largest root of Ln-i(/3) (x), and if n is odd, say, then the leading 
coefficient of Lw_i(/3) is positive, so Lw_i(/3)(x) and hence e~xx$Ln-i

m (x) is 
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increasing at x = xn_i so Ln
(a) (xn_i) > 0. The leading coefficient of L„(û0(x) is 

negative, so Ln
(a) (x) must vanish once more after xn-i, hence Ln

{a) (x) has n — 1 
positive real roots. But Lw

(a)(x) has real coefficients, so it must have n real 
roots. The argument is similar for n even. 

This lemma can also be proved by showing that the recursive relations (5) 
yield a Sturm sequence for Fn. 

Let us now take n = 5 and rewrite formula (8) according the definition 
km = m(\ + juw) as 

(9) D5 = M
10.210.33.56.(X + 2/x)(X + 3/x)2(X + 4ju)3(X + 5/x)4. 

In order that D5 be a square, it is necessary that 3 and 5 appear to odd 
powers in (X + 2/x) (X + 4/x) and that the remaining primes in (X + 2/i) 
(X + 4/z) appear to even powers. For example, if X and n are chosen relatively 
prime such that X + 4/x = 3l5j with i, j odd, it suffices to solve 3*5j — 2/x = m2 

for m. In fact in this last equation, if we choose any odd m2 < 3i5j then 
n = ^(3i5j — m2), X = m2 — 2/x will do, provided m is not divisible by 3 or 5. 
Notice that — 2 < X//z. We now choose i = 5, j = 1, m = 1 (found by trial 
and error). Then 

M = |(35.5 - 1) = 607, a prime, 
X = 1 _ 2M = -1213 , 

(10) g(x) = Fb(x) = x5 - (2.5.911)x4 + (22.35.52.911)x3 

- (27.35.52.19.911)x2 + (26.35.52.19.911)x 

+ 27.36.5.19.101.911. 
g(x) has all real roots and its discriminant is 

(11) D = 224.318.58.(19)2.(607)10.(911)4 

which is of course a square, so the Galois group of g(x) is a subgroup of A5. It 
will be clear from the ensuing discussion that it is the full group A5. 

Let K be the splitting field of g(x). We investigate the local extensions 
Kp/Qp. Since K is totally real, Kœ = Qoo = R, so the embedding problem is 
solvable trivially at p = oo. At a prime p which is unramified in K, the em
bedding problem is locally solvable by Lemma 3. It remains to investigate the 
prime divisors of D, namely 2, 3, 5, 19, 607, 911, and by Lemma 2, we may 
omit one of them, 607. 

p = 911. g (x) is Eisenstein with respect to p = 911 hence is irreducible over 
Qp. If g(a) = 0 then Qp(a)/Qp is totally and tamely ramified of degree 5, 
[22, p. 86] hence [22, p. 89] Qp(<*) = Qp(ir

1/5)y where 7ris a prime element of Qp. 
But 911 = 1 (mod 5) so Qp contains the 5 th roots of unity. But then Qp(a) is 
Galois over Qp. Kp is the composite of the Qp(a) as a runs through the roots of 
g(x), so Kp/Qp is abelian of exponent 5. Since G(KP/QP) is a subgroup of A5 

it must be a cyclic group of order 5, so Kp = 0p(«)- Since 5 is prime to 2, the 
local embedding problem is solvable trivially at p = 911. 
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p = 19. The Newton polygon [22, p. 73] of g(x) a t p = 19 consists of two 
segments, one from (0, 1) to (3, 0) and one from (3, 0) to (5, 0) . T h u s g(x) 
factors over Qp into the product of a cubic a(x) whose roots have ordp = 1/3 
and a quadra t ic b(x) whose roots have ordp = 0. Since 

g(x) = xz(x — 4)(x — 5) (mod 19) 

h(x) factors into linear factors over Qp, by Hensel 's Lemma [22, p. 45]. Since 
ovdp(a) = 1/3 for the roots a of a(x), a(x) is irreducible, and Qp(a) is total ly 
and tamely ramified over Qp. Since 19 = 1 (mod 3), Qp contains the cube roots 
of uni ty, so Qp(a)/Qp is Galois, so by the reasoning of the previous case, 
Kp/Qp is cubic, so the embedding problem is solvable a t p = 19. 

We interrupt here to note t ha t the above two cases show already t ha t 
G(K/Q) c^. A$. For G(K/Q) now contains a 5-cycle and a 3-cycle, hence is a 
subgroup of A*0 of order divisible by 15. But Ab contains no subgroups of order 
15 or 30, hence G(K/Q) ~ A,. 

P — 5. g(x) is Eisenstein with respect to 5 hence irreducible over Qp and for 
roots a of g(x), Qp(a) is totally and wildly ramified over Qp, of degree 5. Hence 
the local Galois group is a subgroup of A» of order divisible by 5, hence of order 
5 or 10, since A5 has no subgroups of order 15 (groups of order 15 are cyclic), 
20 (such a subgroup would have a normal 5-Sylow subgroup, bu t the normalizer 
of a 5-Sylow subgroup of A5 is dihedral of order 10), or 30 (A5 is simple of order 
60). If it is 5, then as in the case p = 911, the embedding problem is solvable 
trivially a t p = 5. If it is 10, then the local Galois group is the dihedral group 
of order 10. T h e extension Kp/Qp then contains a quadra t ic extension 
Qp(\/rp)/Qpi and by [19, Theorem 3.1] local embedding problem reduced to 
embedding this quadra t ic extension into a cyclic extension of degree 4, since 
every element of order 2 in Ah increases its order when lifted to SX(2, 5) . If 
Q P ( \ / / 3 ) / Q P is unramified, the local embedding problem has a solution by 
Lemma 3. If QP( \ /J3)/Qp is ramified, then the local embedding problem has a 
solution by Lemma 3, since 5 = 1 (mod 4) . 

p = 3. T h e Newton polygon of g(x) a t p = 3 consists of the segment from 
(0, 6) to (4, 0) and the segment from (4, 0) to (5, 0) . Hence g(x) factors over 
0P into a(x)b(x) with a(x) of degree 4, with roots having ordp = 3/2 and b(x) 
linear. T h u s either a(x) is irreducible, or factors into two irreducible quad
ratics. If a{x) is irreducible, then the degree of Kp/Qp is divisible by 4, so 
G(KP/QP) is either the 4-group F4 , or A4. Bu t AA is not realizable as a Galois 
group over Ç3 (see [22, p. 100]). Hence the only possibility is F 4 if a(x) is 
irreducible, in which case Kp/Qp is tamely ramified. If a(x) factors into 
irreducible quadra t ic factors c(x)d(x), its split t ing field is the composite LcLd 

of the splitt ing fields of c(x) and d{x). Since the roots of a(x) have ord3 = 3 /2 , 
Lc and Ld are ramified quadra t ic extensions of Q3 of which there are two, 
namely Q 3 ( \ / 3 ) and Qz(cs/ —3). Wi thou t loss of generali ty assume 
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Lc = Q 3 ( \ / 3 ) . We claim L(l is then Q C v ^ ) . For suppose Lc = Ld. Then the 
roots of a(x) are all of the form r + s \ /3> Y^ $ £ Z3 . Moreover since 
ord3(r + sy/%) = 3/2, it follows tha t ord3(r) ^ 2, ord3(s) = 1. The difference 
of two such roots has ord3 ^ 3/2, so tha t the product of the squares of the 
differences of the 4 roots of a(x) has ord3 ^ 6.2.3/2 = 18. Since 3 divides D 
to the power 18, it follows tha t the difference of any two roots of a(x) has 
ord3 = 3/2. If r + s\/?> and r' + s ' \ / 3 are two such roots, it follows tha t 
ord3(s — s') = 1, so s 7^ s' mod 9. Since s = 0 mod 3, there are only two pos
sibilities for s mod 9, namely 3 and 6. Hence a t most two roots of a(x) can be 
of the form r + s\/H. T h u s the other two are of the form r + s\/ — 3, so 
Lc 7^ Ld, and again K3/Q3 is tamely ramified with Galois group F4 . 

The local embedding problem a t p = 3 is then tha t of embedding the 
biquadrat ic extension i£3 = Q3(\/3> \ / - ~ ï ) into an extension L / Q 3 with 
G(L/Q$) ^ Q, the quaternion group of order 8. Actually wre should prove t ha t 
given an epimorphism e : Q —> G(i£ 3 /Q 3 ) , there exists a Galois extension L / Q 3 

containing i£3 and an isomorphism 

a:G(L/Q,)-+Q 

such t ha t ea = res(L/K%). However, since every automorphism of 
Q/ jdz l} c^ VA lifts to an automorphism of Q, it is seen tha t it will suffice to 
show tha t some Galois extension L / Q 3 containing K% has Q as Galois group. 
But any L/Q3 with Galois group Q must contain i£3, which is the only exten
sion of Q 3 with Galois group VA- SO it is enough to prove tha t Q is a group over 
Q3- Now the maximal 2-extension of Q 3 has Galois group G isomorphic to the 
pro-2 group on 2 generators x, y with one defining relation 

x-iyX = 3,3 [16, H-34]. 

I t follows tha t Q is a factor group of G, which is wha t we need. 

p = 2. Subst i tut ing x = 2y we may replace g(x) by 2~5g(2;y) = gi(y) whose 
Newton polygon consists of the segments from (0, 2) to (3, 0) and from (3, 0) 
to (5, 0) . Then g\(x) factors over O2 into a(x)b(x) with a(x) a cubic with roots 
having ord2 = 2 /3 and b(x) irreducible quadrat ic = x2 + x + 1 mod 2. T h e 
splitting field of b (x) over Q2 is then unramified quadrat ic . If a: is a root of a (x), 
then 02(a) is a totally and tamely ramified cubic extension of O2, so is of the 
form Q2(V1/3), 7T a prime of O2. I ts splitting field is then Q2(7r1/3, p), p a 
primitive cube root of unity. Since Qï(p) is the split t ing field of b(x), 
CMTT1 7 3 , p) is the splitting field of gi(x) over O2. I ts Galois group is S3. T h e 
local embedding problem reduces [19, Theorem 3.1] to embedding Q2(p) into a 
cyclic extension of degree 4, which, by Lemma 3, is solvable. 

All the local embedding problems (with p = 607 omit ted) are therefore 
solvable, so by Lemma 2, the global embedding problem given by SL(2, 5) —> 
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G(k/Q) has a solution, necessarily surjective, and the solution field L has 
Galois group SL(2, 5) over Q. 

We have therefore proved 

THEOREM 3. Let K be the splitting field of the quintic g(x) given by (10). Then, 
l.G(K/Q)~A-0. 
2. There is a Galois extension L/Q containing K with G(L/Q) c^ SL(2, 5). 

COROLLARY. Every central extension of A-0 is realizable as a Galois group 
over Q. 

This corollary follows from Theorem 3 and the following lemma. 

LEMMA 4. Let k be a number field, G a finite perfect group (coincides with its 
commutator subgroup). Let G be the unique stem cover (Darstellungsgruppe) of G 
[7, p. 634]. If G is realizable as a Galois group over k, then so is every finite central 
extension of G. 

Proof. Let e: E —> G be a central extension of G with kernel A, and let U be a 
minimal cover of e, i.e. a subgroup of E such that UA = E and such that for 
no proper subgroup U\ of U, U\A = E. Then £ is a homomorphic image of the 
direct product U X A, so it suffices to realize U over k, since A is realizable 
infinitely often over k. Now U is a central extension of G by B = U C\ A, and 
since G' = G, where G' is the commutator subgroup of G, U'B = U, hence 
U'A = UA = E, so U' = U by minimality of U as a cover. It follows that 
U' = U ^ B, so £7 is a s/era extension of G [4, p. 212]. By [4, Proposition 8, 
p. 213], U is then a homomorphic image of the unique stem cover G of G, 
hence realizable over k. 

For G = -A», G = SL(2, 5) [7, p. 646], hence the corollary follows from 
Theorem 3 and Lemma 4. 

For the convenience of the reader, we sketch a proof of Theorem 2.7 in [20], 
which, together with Theorems 2 and 3 above, implies Theorem 1. 

THEOREM (2.7 of [20]). Let k be a number field such that SL(2, 5) and §b are 
Galois groups over k. Then every Trobenius group is a Galois group over k. 

Sketch of proof. Let G be a Frobenius group. By a theorem of Frobenius 
[7, p. 495] or [11, p. 179], the set of all elements of G fixing no letter, together 
with 1, forms a normal subgroup M of G, the Frobenius kernel of G. If H is the 
subgroup of G fixing some given letter, then H has order prime to that of M, 
and HM = G, so G is a split extension of M by H. H is called a Frobenius 
complement of G. By virtue of Shafarevich's theorem [18], every finite solvable 
group is a Galois group over k, so we may assume G nonsolvable. By a theorem 
of Thompson [7, p. 499], M is nilpotent, hence H is nonsolvable. If H is realiz
able as G(K/k), then by [17], the embedding problem G -+ G(K/k) has a 
surjective solution, which reduces the problem to realizing if as a Galois group 
over k. By a theorem of Zassenhaus [11, Theorem 18.7], if contains a subgroup 
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of index 1 or 2 of the form Z X SL(2, 5), where Z is the semidirect product of 
two cyclic groups Cm and Cn of orders m and n, respectively, and m and n are 
relatively prime to each other and to 2, 3, 5. In particular H has even order, 
so by [7, p. 506], M is abelian, hence the solvability of the embedding problem 
G —» G(K/k) follows from an older theorem of Scholz [14]. Two more applica
tions of [14] reduce the problem to realizing H/Z over k, and since the Sylow 
2-subgroups of H are cyclic or generalized quaternion [7, p. 499], H/Z mus t be 
either SL(2, 5) or S, (see [20]). 

In conclusion, let us point out the relevance of these results to the work of 
Jehne [8], who deals with real Frobenius fields F/Q of maximal type 
(G = G (F/Q) = HM is a Frobenius group of maximal type, i.e. 
\H\ = \M\ — 1). We claim tha t there exist nonsolvable real Frobenius fields 
of maximal type. Firstly, there exist nonsolvable Frobenius groups of maximal 
type, e.g., the semidirect product of SL(2, 5) and the twro-dimensional vector 
space over the field of 11 elements [7, p. 500]. (SL(2, 11) contains a subgroup 
H ~ SL(2, 5) which acts fixed point free on the non-zero vectors of (Z/11Z) ( 2 ) 

[7, p. 500].) Secondly, the A5 extension K/Q of Theorem 3 is (necessarily) 
real, and therefore the SL(2, 5) extension L = K(^/a) can be taken as real, 
for K{^/ — a)/Q has Galois group SL(2, 5) as well. Finally, since M has odd 
order, any extension F D L with 

G(F/Q) ~ G = SL(2.5).(Z/11Z)<2 ) 

must also be real. 

Remark. The quintic g(x) of Theorem 3 has an application to a problem of 
Schacher [13, p. 469] (see also, [2, 3]). A finite group G is Q-admissible if G is 
realizable as the Galois group of an extension K/Q, where K is the maximal 
commuta t ive subfield of a division ring D with center Q. 

T H E O R E M 4. SL{2, 5) is Q-admissible. 

Proof. By [13, Proposition 2.6] it suffices to prove tha t for each prime p 
dividing the order of SL(2, 5), i.e., p = 2, 3, 5, the local Galois group G(LV/QV) 
contains a p-Sy\o\v subgroup of SL(2, 5) for a t least two primes v of Q, where 
L is the field of Theorem 3 with G {L/C)) ^ SL(2, 5) . 'By vir tue of Chebotarev 's 
densi ty theorem, this condition is satisfied for cyclic Sylow subgroups, so it is 
enough to verify it for p = 2. The Sylow 2-subgroups of SL(2, 5) are isomor
phic to the quaternion group Q% of order 8. We have already seen t ha t W is the 
local Galois group G(KV/QV) a t v = 3, wThere K is the splitting field of the 
quintic g(x) in Theorem 3. Since Lv is a local solution field to the embedding 
problem given by e: 5 L ( 2 , 5 ) -> G(K/Q) ~ A5, it follows tha t G(L v /Q v) ~ Q8, 
for v = 3. 

We now claim tha t the same is true a t v = JJL = 607. For this it suffices to 
show tha t G(KV/QV) ~ V,. Recall t ha t g(x) = F5(X, /z, x) with X = 1213, 
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ix = 607. Using X + 2/x = 1 and formula (3), we obtain 

g(x + 1) = x* - 15/xx4 + 10/x(6/x - l)x3 + 10M
2(7 - 6M)x2 

+ 15M
2(1 - 6M)x + M

3(6/x - 25). 

The Newton polygon of g(x + 1 ) consists of the segment from (0, 3) to (1, 2) 
and the segment from (1, 2) to (5, 0). Hence g(x + 1) and therefore g(x) have 
a linear factor over Q r, and v = 607 ramifies in K. Therefore Kr/Qv is a tamely 
ramified extension with G(KV/QV) a metacyclic subgroup of A*, of which there 
are three (nontrivial): C2, C3, and T4. From the Newton polygon, it cannot be 
CV If it were Co, then by Lemma 3, Kr/Qv could not be embedded into a cyclic 
extension of Or of degree 4. But this would be the local embedding problem at 
v = 607 corresponding to the global embedding problem given by 

e:SL(2J3)-^G(K/Q)1 

which is solvable by Theorem 3, a contradiction. If follows that G(Kr/Qv) c^ F4. 

We observe in concluding that Lemma 2 has been used as a substitute for 
direct computation of the local Galois group of Kr/Qv at v = 607. A technique 
used in [3, proof of Theorem 1] can be applied to g (x + 1) to show that 
g(x + 1) has an irreducible quartic factor over Or, v = 607, which implies 
that G(Kr/Qv) ^ VA. Then the local embedding problem at v = 607 is solv
able, by the argument used at v = 3, since 607 = 3 (mod 4). The same tech
nique can be used to show that g(x) has an irreducible quartic factor at v = 3, 
instead of the argument given in the proof of Theorem 3. 
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