ON B_{4}-SEQUENCES

BY
JOHN C. M. NASH

Abstract

In [2], Erdös showed that the counting function $A(n)$ of a B_{2}-sequence satisfies $\underline{\lim } A(N) \log ^{1 / 2} / n^{1 / 2}<\infty$. Here it is shown that $A(n)$ satisfies an analogous relationship for B_{4}-sequences! $\underline{\lim A(n)} \log ^{1 / 4} n / n^{1 / 4}<\infty$.

Notation and terminology. A denotes a set of positive integers. $n A=\left\{a_{1}+a_{2}+\right.$ $\left.\cdots+a_{n} \mid a_{i} \in A\right\} . A(n)=|A \cap\{1,2,, \ldots, n\}| . A$ is a B_{4}-sequence if the equation

$$
\begin{equation*}
n=a_{1}+a_{2}+\cdots+a_{k}, a_{1} \leqq a_{2} \leqq \cdots \leqq a_{k}, a_{i} \in A, \tag{1}
\end{equation*}
$$

has at most one solution for all n.

Introduction. In [2], Erdös showed that

$$
\begin{equation*}
\underline{\left.\lim A(n) \log ^{1 / 2} n / n^{1 / 2}<\infty\right) .} \tag{2}
\end{equation*}
$$

for all B_{2}-sequences. I will show that the analogous relationship
for all B_{4}-sequences.
Let A be a B_{4}-sequence, so that $A(N) \ll N^{1 / 4}$. Then A is also a B_{2}-sequence (as well as a B_{3}-sequence) and therefore, if n is large enough,

$$
(2 A)(n) \geqq\binom{ A[n / 2]}{2} \geqq A\left(\left[\frac{n}{2}\right]\right)^{2} .
$$

Thus (3) would follow at once from

$$
\begin{equation*}
\underline{\lim (2 A)(n) \log ^{1 / 2} / n^{1 / 2}<\infty ; ~} \tag{4}
\end{equation*}
$$

and (4) would be true if $2 A$ were a B_{2}-sequence. While this is not the case $-(a+c)+$ $(b+d)=(a+b)+(c+d)=(a+d)+(b+c)-$ we shall see that $2 A$ is close enough in structure to a B_{2}-sequence for Erdös' proof of (2) to apply.

[^0]Lemma 1 below contains the essence of Erdös' argument.
Lemma 1. Let C be any sequence of positive integers and let D_{l} denote the number of elements of C in the interval $(l-1) N<c \leqq l N,(l=1,2, \ldots, N)$. If

$$
\begin{equation*}
\sum_{l=1}^{N} D_{l}^{2} \ll N \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\underline{\lim C(n)} \log ^{1 / 2} n / n^{1 / 2}<\infty . \tag{6}
\end{equation*}
$$

Proof. (See [1], pp. 89-90.)
Let $\tau_{A}(N)=\int_{n \geqq N} A(n)(\log n / n)^{1 / 2}$. We shall show that $\tau_{A}(N) \ll 1$, where the implied constant is absolute. By Cauchy's inequality,

$$
\begin{equation*}
\left(\sum_{l=1}^{N} \frac{1}{l}\right)\left(\sum_{l=1}^{N} D_{l}^{2}\right) \geqq\left(\sum_{l=1}^{N} \frac{D_{l}}{l^{1 / 2}}\right)^{2} . \tag{A}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
\sum_{l=1}^{N} \frac{D_{l}}{l^{1 / 2}} & =\sum_{l=1}^{N}(A(l N)-A((l-1) N)) \frac{1}{l^{1 / 2}} \\
& =\sum_{l=1}^{N} A(l N)\left(\frac{1}{l^{1 / 2}}-\frac{1}{(l+1)^{1 / 2}}\right)+\frac{A\left(N^{2}\right)}{(N+1)^{1 / 2}} \\
& \geqq \tau_{A}(N) \sum_{l=1}^{N}\left(\frac{l N}{\log l N}\right)^{1 / 2}\left(\frac{1}{l^{1 / 2}}-\frac{1}{(l+1)^{1 / 2}}\right) \\
& \gg \tau_{A}(N)\left(\frac{N}{\log N}\right)^{1 / 2} \sum_{l=1}^{N} \frac{1}{l}
\end{aligned}
$$

Substituting in (A), we obtain

$$
\sum_{l=1}^{N} D_{l}^{2} \gg N \tau_{A}^{2}(N)
$$

and (4) now yields the required inequality $\tau_{A}(N) \ll 1$.
Thus if (5) is true when $C=2 A$, (4) holds and (3) follows. Accordingly, we study the strictly positive differences of elements from $2 A$ in blocks of length $N,[(l-1), I N]$, $1 \leqq l \leqq N$, just as Erdös did when proving (5) for B_{2}-sequences. Since

$$
4\binom{D_{l}}{2} \leqq D_{l}^{2}
$$

except when $D_{l}=1$, we have

$$
\sum_{l=1}^{N} D_{l}^{2} \leqq 4 \sum_{l=1}^{N}\binom{D_{l}}{2}+\sum_{\substack{l=1 \\ D_{l}=1}}^{N} 1 \leqq 4 \sum_{l=1}^{N}\binom{D_{l}}{2}+N
$$

and (5) will follow from

$$
\begin{equation*}
\sum_{l=1}^{N}\binom{D_{l}}{2} \ll N \tag{7}
\end{equation*}
$$

Observe that there are precisely

$$
\binom{D_{l}}{2}
$$

positive differences that can be formed from elements of $2 A$ in the l-th block, and that the difference lies in $(0, N]$. Thus, if

$$
S=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right): a_{i} \in A, a_{i} \leqq N^{2}, 1 \leqq a_{1}+a_{2}-a_{3}-a_{4} \leqq N\right\}
$$

then

$$
\sum_{l=1}^{N}\binom{D_{l}}{2} \leqq|S|
$$

so that to prove (7) it suffices to show that

$$
\begin{equation*}
|S| \ll N . \tag{8}
\end{equation*}
$$

We divide the 4-tuples in S into two classes: the first class to consist of those 4-tuples that satisfy, in addition to the conditions implicit in the definition of S,

$$
\begin{equation*}
a_{1} \neq a_{3}, a_{1} \neq a_{4}, a_{2} \neq a_{3}, a_{2} \neq a_{4} \tag{9}
\end{equation*}
$$

and the second class to contain the remaining 4 -tuples.
Consider the 4 -tuples from the first class. If $\left(a_{1}, \ldots, a_{4}\right)$ and $\left(a_{1}^{\prime}, \ldots, a_{4}^{\prime}\right)$ belong to the first class and are such that

$$
a_{1}+a_{2}-a_{3}-a_{4}=a_{1}^{\prime}+a_{2}^{\prime}-a_{3}^{\prime}-a_{4}^{\prime}
$$

then $a_{1}+a_{2}+a_{3}^{\prime}+a_{4}^{\prime}=a_{1}^{\prime}+a_{2}^{\prime}+a_{3}+a_{4}$; by the B_{4}-property of A it follows that the numbers $a_{1}^{\prime}, a_{2}^{\prime}, a_{3}, a_{4}$ form a permutation of the numbers $a_{1}, a_{2}, a_{3}^{\prime}, a_{4}^{\prime}$. In view of (9), this can only hold in the four cases $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}\right),\left(a_{2}, a_{1}, a_{3}, a_{4}\right)$, $\left(a_{1}, a_{2}, a_{4}, a_{3}\right)$ or ($a_{2}, a_{1}, a_{4}, a_{3}$). Thus, for each $n, 1 \leqq n \leqq N$, there are at most 4tuples $\left(a_{1}, \ldots, a_{4}\right)$ in S of the first class with $a_{1}+a_{2}-a_{3}-a_{4}=n$. The contribution to $|S|$ from the first class is therefore at most $4 N$.

We now turn to the 4-tuples in S of the second class, i.e., those 4-tuples (a_{1}, \ldots, a_{4}) for which one of the conditions in (9) is violated. Assume, for example, that the first condition fails, so that $a_{1}=a_{3}$ and

$$
a_{1}+a_{2}-a_{3}-a_{4}=a_{2}-a_{4} .
$$

The contribution of such 4-tuples to $|S|$ is equal to $A\left(N^{2}\right)$ - the number of choices of a_{1} - times the cardinality $|T|$ of the set

$$
T=\left\{\left(a_{2}, a_{4}\right): a_{i} \in A, a_{i} \leqq N^{2}, 1 \leqq a_{2}-a_{4} \leqq N\right\}
$$

The same bound applies in the case of any one of the remaining three conditions in (9) being violated, so that altogether there are at most $4 A\left(N^{2}\right)|T| 4$-tuples in the second class. Thus

$$
\begin{equation*}
|S| \leqq 4 N+4 A\left(N^{2}\right)|T| ; \tag{10}
\end{equation*}
$$

since

$$
\begin{equation*}
A\left(N^{2}\right) \ll N^{1 / 2} \tag{11}
\end{equation*}
$$

the desired bound (8) follows from

$$
\begin{equation*}
|T| \ll N^{1 / 2} \tag{12}
\end{equation*}
$$

It remains to prove (12). Observe that
(13) $\binom{|T|}{2} \leqq \#\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right): a_{i} \in A, a_{i} \leqq N^{2}, 1 \leqq a_{4}-a_{2}<a_{1}-a_{3} \leqq N\right\}$

$$
\begin{aligned}
& \leqq \#\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right): a_{i} \in A, a_{i} \leqq N^{2}, 1 \leqq\left(a_{1}-a_{3}\right)-\left(a_{4}-a_{2}\right) \leqq N\right\} \\
& =|S| .
\end{aligned}
$$

For $|T| \geqq 2$ we have

$$
|T|^{2} \ll\binom{|T|}{2}
$$

and we obtain, substituting (11) and (13) into (10),

$$
|T|^{2} \ll N+N^{1 / 2}|T| .
$$

This implies (12), and the proof of (8) - and therefore also of (3) - is now complete.

References

1. H. Halberstam and K. F. Roth, Sequences, Oxford Univ. Press, Oxford, 1966.
2. A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, II, J. reine angew. Math. 194 (1955) 111-40.

Department of Mathematics
Marshall University
Huntington, West Virginia 25701

[^0]: Received by the editors February 5, 1988 and, in revised form, November 16, 1988.
 AMS (1985) classification number: 11B83.
 © Canadian Mathematical Society 1988.

