Issued by the

Directorates of Scientific Research and Technical Development, Air Ministry. (Prepared by R.T.P.)

No. 93. August, 1941.

Notices and abstracts from the Scientific and Technical Press are prepared primarily for the information of Scientific and Technical Staffs. Particular attention is paid to the work carried out in foreign countries, on the assumption that the more accessible British work (for example, that published by the Aeronautical Research Committee) is already known to these Staffs.

Requests from scientific and technical staffs for further information or translations should be addressed to R.T.P.3, Ministry of Aircraft Production.

Only a limited number of the articles quoted from foreign journals are translated and usually only the *original* can be supplied on loan. If, however, translation is required, application should be made in writing to R.T.Pr3, the requests being considered in accordance with existing facilities.

Note.—As far as possible, the country of origin quoted in the items refers to the original source.

LIST OF ABBREVIATIONS OF TITLES AND JOURNALS.

A	Abstracts from the Scientific and Technical Press.
Aeron. Eng	Aeronautical Engineering (U.S.S.R.)
Aer. Res. Inst. Tokyo	Aeronautical Research Institute of Tokyo.
A.C.I.C	Air Corps Information Circular.
Ann. d. Phys.	Annalen der Physik
Army Ord	Army Ordnance.
Army Ord Autom. Eng	Automobile Engineer
Autom, Ind	Automobile Industries.
Autom. Tech. Zeit.	Automobile Technische Zeitschrift.
Bell Tele, Pubs	Automobile Technische Zeitschrift. Bell Telephone Publications.
Bur. Stan. J. Res	Bureau of Standards (U.S.A.) Journal of Research.
Chem. Absts	Chemical Abstracts.
Chem. and Ind	Chemistry and Industry.
Comp. Rend	Comptes Rendus de L'Académie des Sciences.
Eng. Absts	Engineering Abstracts.
E.N.S.A	Revue Technique de l'Association des Ingénieurs de l'Ecole Nationale
	Supérieure de L'Aéronautique.
Forschung	Forschung auf dem Gebiete des Ingenieurwesens.
Fuel	Fuel in Science and Practice.
H.F. Technik	Hochirequenziechnik und Electroakustik.
Ind. and Eng. Chem	Industrial and Engineering Chemistry.
	Ingenieur-Archiv.
Inst. Autom. Eng	Institute of Automobile Engineers (Research and Standardisation
	Committee).
	Journal of the Aeronautical Sciences.
J. App. Mech	Journal of Applied Mechanics.
J. Am. Soc. Nav. Engs.	Journal of American Society of Naval Engineers.
J. Roy. Aero. Soc	Journal of Royal Aeronautical Society.
	Journal of Franklin Institute.
J. Inst. Civ. Engs	Journal of Institute of Civil Engineers.
J. Inst. Elec. Engs	Journal of Institute of Electrical Engineers.
	265

J. Inst. Petrol	Journal of the Institute of Petroleum.
J. Met. Soc	Journal of Meteorological Society.
J. Sci. Inst	Journal of Scientific Instruments.
J.S.A.E	Journal of Society of Automotive Engineers.
J. Soc. Chem. Ind.	Journal of the Society of Chemical Industry (British Chemical
(Abstracts B)	Abstracts B)
L'Aéron	L'Aéronautique.
L.F.,F	Luftfahrt-Forschung.
Luschau	Luftfahrt-Schrifttum des Ausiandes
Met. Mag	Meteorological Magazine.
Met. Prog	Metal Progress.
N.A.C.A	National Advisory Committee for Aeronautics (U.S.A.).
Phil. Mag	Philosophical Magazine.
Phil. Trans. Roy. Soc.	
Phys. Berichte	Physikalische Berichte.
Phys. Zeit	Physikalische Zeitschrift.
Proc. Camb. Phil. Soc.	Proceedings of Cambridge Philosophical Society.
Proc. Inst. Rad. Engs.	Proceedings of Institute of Radio Engineers.
Proc. Roy. Soc	Proceedings of Royal Society.
Pub. Sci. et Tech	Publications Scientifiques et Techniques du Ministère de l'Air.
Q.J. Roy. Met. Soc	Quarterly Journal of the Royal Meteorological Society.
R. and M	Reports and Memoranda of the Aeronautical Research Committee.
Rev. de l'Arm. de l'Air	Revue de l'Armée de l'Air.
Riv. Aeron	Rivista Aeronautica.
Sci. Absts. (A. or B.)	Science Abstracts (A or B.).
Sci. Am	Scientific American.
Sci. Proc. Roy. Dublin	Scientific Proceedings of Royal Dublin Society.
Soc.	
Tech. Aéron	La Technique Aéronautique.
Trans, A.S.M.E	Transactions of the American Society of Mechanical Engineers.
Trans. C.A.H.I	Transactions of the Central Aero-Hydrodynamical Institute, Moscow.
U.S. Nav. Inst. Proc.	U.S. Naval Institute Proceedings.
Verroffent (Siemens)	Veroffentlichungen aus dem Gebiete der Nachrichtentechnik (Siemens).
W.R.H	Werft Reederei Hafen.
W.T.M	Wehrtechnische Monatschefte.
Z.A.M.M	Zeitschrift für Angewandte Mathematik und Mechanik.
Z.G.S.S	Zeitschrift für Das Gesamte Schiess und Sprengstoffwessen mit der
	Sonderabteilung Gasschutz.
Z. Instrum	Zeitschrift für Instrumentenkunde.
Z. Mech	77 11.1 CH 3.6 .111
Z. Metallk	Zeitschrift für Metallkunde.
Z.V.D.I	Zeitschrift des Vereines Deutscher Ingenieure.

Tactics of Photographic Reconnaissance in the Defence Zone. (P. I. Russ, Air Fleet News, U.S.S.R., Vol. 23, No. 2, Feb., 1941, pp. 117-119.) (93/1 U.S.S.R.)

The most valuable form of aerial reconnaissance is photography, with subsequent evaluation (interpretation) of the results.

During an advance, aerial (photographic) reconnaissance of the enemy defence zone is of the utmost importance. Photographic reconnaissance material will be required by all units down to the tank company and artillery battery. This will call for a great deal of hard and detailed work by the photographic reconnaissance units.

An aircraft on photographic reconnaissance must carry out its flight under pre-determined conditions, which may not be varied. The altitude is determined by the required scale of the reproduction, and the focal length of the camera used. The altitude can be calculated by H=f. Mc, wherein H=altitude, f=focal length of the camera, Mc=required scale.

Sharpness of definition depends on the time of exposure which must not produce a corresponding displacement of the target on the film by more than 0.1 mm., the maximum exposure time is thus given by

$$E_{\max} = \frac{M}{100 W}$$

where W = aircraft speed in m./sec.

Enemy fighter aircraft may be standing ready for interception on the forward aerodromes, or in ambush. They must be driven off, or their attention distracted to another area. This curtails fighter support. Alternatively, the reconnaissance may be effected by surprise.

Enemy anti-aircraft artillery may be put out of action by dive-bombing. Advantage may also be taken of the pause of about three to five minutes every eight to ten minutes, when the guns have to stop firing in order to cool the barrels. Finally, photographs may be taken with a telephotographic lens from a safe altitude.

Aerial photographic reconnaissance requires the utmost co-operation between local headquarters of the air force in the attack zone and the staffs of the ground troop.

Tactical Requirements in Fighter Design. (M. P. Stroyeu, Aeronautical Engineering, U.S.S.R., Vol. 17, No. 12, Dec., 1940, pp. 18-24.) (93/2 U.S.S.R.)

The science of tactics (" methods of combat ") depends on the quality of men and machines. Technical development is not static, and at any given moment bears potential possibilities of progress to a higher plane. It is the business of tactical science to examine these possibilities, and incorporate their fulfilment in the design of new weapons—in the present case, fighter aircraft:—

CONCLUSIONS.

- 1. Fighter aircraft of all types should be designed exclusively for aerial combat; any other employment should be purely subsidiary.
- 2. Three standard fighter types are necessary; single-seater, high speed and manœuvrable monoplanes, and long-range two-seater twin-engined machines.
- 3. For aerial combat it would be desirable to replace the existing singleseater fighters by a pusher-screw type, subject to suitable technical development of this arrangement.
- 4. Particular attention is desirable to the further development of flaps and similar controls so as to combine the qualities of manœuvrability and high speed in a single type of fighter.
- 5. Night fighters and sub-stratosphere types can be obtained by adaptation of existing basic types.

New Air Force Tactics in the Present War. (N. Juravlev, Aeroplane, U.S.S.R., Vol. 18, No. 1, Jan., 1941, pp. 31-34.) (93/3 U.S.S.R.)

All opinions on the tactics, methods, and objectives of aerial warfare are now undergoing the test of actual war; some opinions will be found maintained, others refuted, and others requiring modification. In any case, all tactical views and principles have become considerably more stabilized and concrete than in times of peace.

From a careful examination of German aerial tactics during the present war, the following conclusions result:

The air arm in its present development has become a mighty and effective weapon, capable of co-operating effectively with the sea and land forces, but able also to carry out independent strategical tasks (sea blockade, destruction of enemy economic resources) which can have a decisive influence on the course of the war.

Experience shows that such independent operations require ample resources, and *time*. The former assumptions of the ease with which "smashing blows" could be delivered on industrial centres need considerable revision.

Such operations, under present conditions, can be performed only at night. The success of night operations depends principally on the training of air-crews. In daylight operations the most suitable aircraft type is the twin-engined, twoseater, fighter-bomber. Daylight bombing is limited in range by the endurance of the indispensable fighter escort.

The most effective interceptor is the cannon armed fighter.

The only really new tactical development in the present war is the use by the Germans of two-seater fighter-bombers for the attack on industrial targets.

Echo Sounder for Air Defence. (Inter. Avia., No. 764-765, 19/5/41, pp. 19-20.) (93/4 U.S.A.)

From publications by the U.S. Patent Office the plans are disclosed of a novel device for the detection of the position of aeroplanes at night or in bad visibility. The instrument appears to be based on principles similar to those employed in the Absolute Altimeter developed by the Western Electric Corp., which, with the aid of two dipole antennas, transmits radio waves and again receives part of the waves reflected from the ground, ultimately determining the absolute distance between the ground surface and the aeroplane from the elapsed period of time. However, while the waves transmitted by the transmitter of the altimeter spread over a hemispherical space below the aeroplane, the ultrafrequency waves of the aircraft locator (measuring about 50 centimetres) are focussed into beams by parabolic reflectors. When, directed into space, the beam encounters an aeroplane, the location and the altitude of the machine can be determined from the direction and time differential of the reflected wave; flying course and flying speed of the aeroplane are calculated from successive measurements. By rapid to and fro motions of the transmitted beam on the principle of the television apparatus, a certain air space can be constantly surveyed and the flying course of the aeroplane made visible by controlling a cathode ray. A distinction between attacking and defending aeroplanes is naturally not possible.

Bell Sound Detector. (Inter. Avia, No. 764-765, 19/5/41, p. 20.) (93/5 U.S.A.)

The Bell Telephone Laboratories Inc., of New York, have taken out U.S. patent No. 2,225,322 to protect a new type of sound detector for ground defences. The instrument consists of a cluster of parallel tubes varying in diameter and length, the open ends of which form a spiral. A completed model comprised 49 such tubes. The length of the longest tube corresponds to the wave-length of the lowest sound frequency to be detected. The sensitivity of the instrument to sound waves not exactly parallel to the tubes is very small and thus permits the accurate determination of the direction of the sound.

Dive Bombing (Attack Bombing) in Sea Warfare. (D. U. Marchukoo, Air Fleet News, U.S.S.R., Vol. 23, No. 1, Jan., 1941, pp. 17-22.) (93/6 U.S.S.R.)

The particular features of maritime targets—mobility, manœuvrability, small dimensions—entail a totally different technique of attack, which favours the use of attack-bomber types. Suitable types are instanced—the Japanese "96" aircraft, with a 850 h.p. Wright-Cyclone engine: top speed 300 km./hr., ceiling 7,000 m., range 2,000 km., crew of three, armament 5 machine guns, and 500 kilos. bomb load. Also the American "Vought 90," designed as a fleet fighter.

kilos. bomb load. Also the American "Vought 90," designed as a fleet fighter. The Germans have used "Messerschmidt 110," "Dornier 17," "Heinkel He 111K," and "Junkers 87," types. The ideal naval attack bomber would be a machine with 400 km. top speed, 4-b machine guns or 2 m.g.'s and 2 cannon guns, possibly in turrets; bomb-chutes for a total of 400 kilos. small bombs, from 1 to 10 kilos. each; wing bombs up to 50 kilos., 8-10 in number. The machine must be able to alight on the water and remain afloat at least 2-3 hours.

Any type of fighter, fighter-bomber, or attack-bomber can, however, be used against naval targets provided the aircraft crews are suitably trained. Winter Camouflage of Aircraft. (S. Y. Miroutsev, Air Fleet News, U.S.S.R., Vol. 23, No. 1, Jan., 1941, pp. 37-40.) (93/7 U.S.S.R.)

The article gives detailed instructions for the camouflage of aircraft on the ground under winter conditions in various surroundings; woods, bushes, open fields, built-up areas, burnt and ruined buildings, etc.

In addition, care should be taken in selecting positions for grounded aircraft, to prevent disclosure by the appearance of tracks, discoloured or trampled snow, shadows thrown by the aircraft or reflection or glare produced by it. Aircraft should preferably be disposed to take advantage of natural features, roads, buildings, etc., so as to conceal all traces of activity around them.

Instructions are given for the design and construction of building mock-ups, camouflage screens, sheets, etc. for the purpose of screening the aircraft.

The Servicing of Aircraft Weapons for Firing at High Altitudes. (H. Kumpiak, Air Fleet News, U.S.S.R., Vol. 23, No. 1, Jan., 1941, pp. 67-68.) (93/8 U.S.S.R.)

Automatically operated machine or cannon guns for action at high altitudes require special preparation, either by the use of heaters or by the use of cold resistant lubricants.

Heaters may be electric, or use exhaust gases, and serve to maintain a suitable temperature for unhindered operation of the automatic weapon. They are fitted on or around the breech mechanism and thus impair the accessibility of the gun. Electric heaters are essential for movable weapons and turret guns. Unfortunately the extra electrical energy required is not always easily provided for. Exhaust-gas heaters can only be used for fixed weapons.

The adoption of a lubricant of low congealing point appears the most suitable means of assuring the operation of automatic weapons at high altitudes. The lubricant should be kept in sealed drums until used, and the weapon thoroughly cleaned and dried before lubricating. All excess of lubricant should be avoided.

(No details of the oil specification are given.)

Aircraft versus Submarine. (A. Ignatier, Aeroplane, U.S.S.R., Vol. 18, No. 5, May, 1941, pp. 25-27.) (93/9 U.S.S.R.)

After giving details of the activities of German submarines in the Great War, and the methods of aerial warfare used to combat them, the author passes to a consideration of the interaction of aircraft and submarine forces under present conditions.

The submarine presents little danger to the aircraft. The aircraft, on the other hand, is specifically an offensive weapon. Its advantages in anti-submarine warfare are: the possibility of mass attack, the suddenness of the attack, and co-operation with surface craft.

Aircraft are an effective weapon against under-water craft on the surface, and unable to submerge. The submarine must then rely only on increased aerial observation, co-operation with defending aircraft, and camouflage to lower the visibility of the submarine when surfacing.

Co-operation between aircraft and submarines should be both tactical and operational. Simultaneous action should not be sought; co-operation resolves itself into reconnaissance, exchange of information, and individual attack on the target as opportunity presents itself.

The German attempt to blockade the British Isles in the "Battle of the Atlantic" affords the best example of operational co-operation of aircraft and submarine, *e.g.*, by aerial attacks on ports and bases, after the submarines have spotted and reported the approaching convoys; air attack on industrial and production centres, to render the country more dependent on imported materials, which then are exposed to submarine attack en route. The air forces carry out the "close blockade," and submarine forces the "long-range blockade."

Whether Britain's armed forces can cope with the menace, depends primarily on her ability to secure preponderance of aerial and anti-submarine forces. In any case, this battle for the lines of communication is the principal feature of the war at present.

Tactical Requirements in Fighter Design. (Y. P. Nikolaev, Aeronautical Engineering, U.S.S.R., Vol. 15, No. 3, May, 1941, pp. 56-58.) (93/10 U.S.S.R.)

The author's review refer to a previous article under the same title by M. P. Stroyev ("Aeron. Eng." U.S.S.R., Vol. 14, No. 12, Dec., 1940-R.T.P. notice 26,763). The following conclusions are put forward:--

- 1. The twin-engined, single-seater fighter, particularly with air-cooled engines, has considerable tactical advantages by comparison with the singleengined fighter.
- 2. In aerial combat with single-engined fighters the twin-engined machine will have the following advantages:—speed, vertical manœuvrability, service ceiling, armament, and field of vision from the cockpit.
- 3. The twin-engined machine is better adapted for bomber interception, particularly on account of its heavier armament. The same feature renders it suitable for anti-tank operations.
- 4. The subsidiary tactical possibilities of the twin-engined machine are far greater.

Aircraft Armour—Production Speed Up. (Scientific American, Vol. 165, No. 2, Aug., 1941, p. 95.) (93/11 U.S.A.)

The severe limitations on airplane weight require that the gauge of the armour plate be as light as possible, consistent with effective resistance to the projectile. Thus, airplane armour ranges up to 44 inches by 44 inches by $1\frac{1}{2}$ inches, most of it being in $\frac{1}{4}$, $\frac{3}{8}$, and $\frac{1}{2}$ of an inch in thickness. Armour plate is essentially a nickel-alloy steel. It must be exceedingly hard on the exposed side; tough but more ductile on the interior side,

The requisite hardness is obtained by carburisation of the exposed surface. As much as 50 hours may be required for a complete heat for $\frac{1}{4}$ inch plate. In the new Breeze process, three heats can be carried out in 24 hours. The carburising treatment is accomplished with a liquid salt bath in an electric furnace. This equipment enables the work to be charged and removed quickly, brings the plates up to the desired temperature quickly and makes accurate control of the temperature possible.

Contribution to the Theory of Wind Tunnel Turbulence. (W. Tollmien and M. Schafer, Z.A.M.M., Vol. 21, No. 1, Feb., 1941, pp. 1-17.) (93/12 Germany.)

After a review of previous research work, a mathematical model of the wind tunnel turbulence is obtained by linearizing the hydrodynamic equations, without making the usual assumption of isotropic turbulence. A new integration theory is developed for the evaluation of the problem which results in a separation of the flow into a potential and a diffusion constituent. [The possibility of such a sub-division was first mentioned by the senior author when taking part in a discussion at the 5th Int. Congress of Applied Mechanics 1938.]

Some mean values for both types of flow taken separately are determined and methods are indicated for obtaining similar values for the constituent.

The Effect of Nozzle and Collector on Resistance Measurement in the Free Jet Wind Tunnel. (D. Kucheman and F. Vardrey, Z.A.M.M., Vol. 21, No. 1, Feb., 1941, pp. 17-31.) (93/13 Germany.)

The author calculates the 3 dimensional potential flow round semi infinite bodies and source-sink bodies in a circular tunnel consisting of nozzle, collector

and free jet. In order to satisfy the boundary conditions the solid walls are provided with vortices. The integral equation determining their distributions is of the second kind and can be solved numerically by iteration. Once the source and vortex distribution is known, the flow round semi-infinite bodies and source-sink bodies of various thickness and in varying position relative to the nozzle, can be calculated and the force due to the additional velocities determined. The author shows that whilst the velocity distribution in the neighbourhood of the body may be appreciably affected by the presence of nozzzle, collector and jet confines, the effect on the resistance measurement is negligibly small.

Potential Flow Through Centrifugal Pumps and Turbines. (E. Sörensen, Z.A.M.M., Vol. 7, No. 2, April, 1927.) (R.T.P. Translation T.M. 973.) (93/14 Germany.)

The method of conformal transformation has only been applied to the potential flow about bodies in rotation to a limited extent. The main reason is the fact that the boundary conditions are not maintained after the transformation. In the case of pure translation this difficulty can be overcome by considering relative inertia only. This method is not applicable to rotary motions since the relative motion is no longer irrotational. The author, in applying the conformal transformation, follows *Spannhake* (Z.A.M.M., Vol. 5, No. 6, 1925, pp. 481/484) in taking the absolute flow as a basis of his investigations. Only two-dimensional flow is considered. Whilst, however, Spannhake's solution for the complex potential depends on finding the coefficients of a Fourier series (which for this purpose must be rapidly converging, and may often present difficulties), the author gives the potential in the form of a definite integral of the same type as first discussed by *Walther* (Trans. C.A.H.I., Moscow 1926). The case when the pump blades are logarithmic spirals is discussed in detail, use being made of a transformation function given by König (Z.A.M.M., Vol. 2, No. 6, 1922).

Of interest is the variation of angular velocity (w'_o) for shock-free entry with a number of blades n. With increase of n the angular velocity approaches the limiting value w_o given by the Euler formula.

This is illustrated in the following table :

~	
n	w'_{o}/w_{o}
I	.02
2	.23
3	·43
6	.72
12	.82
24	.92
∞	Ι.Ο

(For the effect of entry shock on the characteristics, see F. Riegel & J. Weber, Z.A.M.M., Vol. 12, Feb. 1941, pp. 63-69, R.T.P. Translation No. 1245).

Numerical Calculation of the Neutral Point of a Wing. (E. Kuhle, L.F.F., Vol. 17, No. 9, 20/9/40, pp. 257-266.) (Available as R.T.P. Translation No. 1,234.) (93/15 Germany.)

The neutral point of a wing section is defined as the point about which the longitudinal moment is independent of the incidence. Provided such a point exists for each end section, the author shows for all practical wing shapes, that a neutral point exists for the wing as a whole. The position of this point can be found provided the lift distribution over the span is known. An approximate method for calculating this distribution is described, which is of sufficient accuracy for the purpose in view, provided that no extensive cut-outs in the wing surface exist. This is illustrated by means of two worked-out examples and the good agreement with experiment indicates that an accurate knowledge of the lift distribution is not generally required.

Since the fuselage as such has no neutral point, the combination of wing and body will only have such a characteristic if the wing interference masks the body effect. In general, there will be a series of neutral points, each of which applies to a limited range of c_* values.

Explosive Rivets for the Repair of Aircraft at Advanced Air Bases. (Air Fleet News, U.S.S.R., Vol. 23, No. 2, Feb., 1941.) (93/16 U.S.S.R.)

The author summarises an article in the German periodical "Werkstatt und Betriel" for November, 1940, dealing with the system of explosive rivetting developed by the Heinkel works.

The method is particularly useful at advanced air bases for patching bullet holes in aircraft, where the hole is accessible only from one side. The hole is cut away to a suitable circular or rectangular shape, a patch laid on, and temporarily secured by a special form of hook-bolt with a securing nut. The rivets are then inserted and exploded in the usual way. It is important to select the right length of rivet, and a special form of micrometer gauge is therefore used to measure the thickness of the plates and patch to be joined in place.

It is estimated that this method speeds up repairs some seven to ten times.

A short note on the same German article is also given in "Aviation Industry," U.S.S.R., Vol. II, No. 3, January, 1934.

Notes on the Maintenance of Aircraft in Winter. (V. G. Alexandrov, Civil Aviation, U.S.S.R., Vol. 2, No. 1, January, 1941.) (93/17 U.S.S.R.)

These notes deal with the effect of low temperatures on materials of construction and equipment. Pine and spruce, frozen in a damp condition, lose up to 15-30 per cent. of their strength. Ice crystals forming between the fibres of the wood, dimish its strength and cause splitting. Expansion at freezing also weakens butts, joints, and connections. Upon thawing, the resultant moisture favours infestation with moulds. In winter, therefore, aircraft of *wooden* construction, or wooden parts of aircraft, should be protected from moisture as far as possible, kept dry and well ventilated, with painted or varnished surfaces intact, and carefully dried out after getting wet with rain or snow.

AIRCRAFT AND METAL PARTS.

The use of materials with different coefficients of expansion and heat transmission in metal causes internal stresses with change in temperature, leading to snapping of rivers, leakage of seams, and bursting of skin plating. Moisture penetrating inside also gives rise to corrosion. Rivetted and welded joints should therefore be carefully inspected in winter for failures arising from such temperature Lubrication also needs attention; some oils thicken to such an extent effects. at temperatures between -10° and -20° , as to lose all lubricating properties. For prevention of corrosion, aircraft should be thoroughly dried, both inside and out, after being exposed to rain or snow. All bare places should be specially treated with anti-corrosives, as the usual painting is generally insufficient under winter conditions. Parts exposed to ice accretion should be thawed out with rags dipped in hot water (not over 50-60°C.) and rubbed dry. Rubber preserves its normal properties down to a temperature of -25° to -40° C. Below this it loses its elasticity and resilience powers. On stony or gravelly ground tyre covers and tubes are often punctured owing to such loss of elasticity at low temperatures, and runways of this type should not be swept of snow. Iced or frozen surfaces may be lightly sanded or treated with chopped hay or straw, frozen in place by means of the aerodrome water-cart. If parked in the open, planks, twigs or straw should be placed under all landing wheels, skids or runners, and wheels kept covered.

Rubber parts should be protected from splashing by oil, petrol or paraffin, which softens the rubber. Splashes should be washed off only with warm soapy water.

Engines require special attention when starting up in winter. The cooling system should be filled with water at 70-90°C., and the engine warmly covered. The first 10-15 litres of cooling water should be at a lower temperature (50-60°) to prevent cracks in the radiator. All drain cocks should be left open until the water leaves them at approximately filling temperature. When filling, attention should be paid to any frozen pockets in the radiator. If such are found, filling should be stopped, and the frozen places thawed by rags dipped in hot water, or by hot air from the heating above. If left out in the cold, the water should be drained off as soon as its temperature falls below 30-40°C.; and in order to prevent fractures in the radiator or cylinder jackets the drain cocks must be left open. Anti-freeze compound contracts at low temperatures and therefore does not require to be drained off. To assist starting at temperatures of about -8° to -10° C., the anti-freeze or the engine can be warmed up. On heating, anti-freeze expands more than water, and a smaller quantity should therefore be used in filling the radiator.

Air-cooled engines can be easily started if warmed up by the heating stove, filled with hot oil at 80-90°C., and the sparking plugs well cleaned from oil and dirt. Flooding the engine with petrol, or using low vapour pressure fuel will impede starting up. The engine should always be swung over some 8-10 revs. by hand before switching on.

The engine should never be started at very low temperatures without being first warmed up, as otherwise there is a grave risk of damage to the auxiliary drives.

Determination of the Optimum Flight Conditions for Aircraft PS-84. (L. S. Konikor, Civil Aviation, U.S.S.R., Vol. 11, No. 5, May, 1941, pp. 3-4.) (93/18 U.S.S.R.)

Experiments made on the Leningrad-Moscow air route to determine the optimum conditions of flight are described.

From the recorded wind strength, the speed-increment due to wind (w-v) was determined and added to the speed-increment due to altitude (Δv) . The optimum altitude was assumed to be that at which the algebraic sum of $\Delta v + (w-v)$ had the greatest positive value.

For the PS-84 aircraft, however, this method of estimating optimum flying height led to considerable wastage of fuel, amounting in some cases to more than 200 kg. above calculated consumption (0.92 kg. per kilometre).

It was found that pilots were in the habit of flying at recommended cruising output of 550 h.p. with a speed by instrument of 250-260 km./hour and about 450 h.p. output, 240 km./hr. speed by instrument and 600 m.m. supercharge, 700 m.m. supercharge. Loss of control was apparently feared at lower speeds.

Tests flights at reduced output were therefore made to check this. At 400the excess fuel consumption was immediately reduced to 16 kg. for the trip (Leningrad-Moscow, 617 km.) with a following wind, and 22 kg. with a contrary wind. Finding that the aircraft still arrived at destination ahead of schedule (with a following wind), instrument speed was reduced to 235 km./hr. and supercharge to 580 m.m. This resulted in a saving in fuel of 25 kg. over the calculated standard.

The ultimate result of these experimental round trips with the PS-84 was as follows:---

1. Theoretical fuel consumption of 0.92 kg./hr. at a mean indicated speed 265 km./hr. could be maintained with a following, but not a contrary, wind.

- 2 It is recommended that the cruising h.p. be reduced to 420-450 h.p. knowing the wind at optimum altitude, the indicated air speed for schedule follows. This in turn settles the h.p. more exactly.
- 3. Optimum flying height should be determined not only by the maximum $\Delta v + (w v)$ but also allowing for increased fuel consumption in climb. Special curves are recommended for each route, from which pilots can obtain the optimum altitude in relation to maximum speed and minimum fuel consumption.

Airscrews for High-Speed Aircraft with High-Power Engines. (B. N. Egorov, Aeronautical Engineering, U.S.S.R., Vol. 15, No. 3, March, 1941, pp. 11-27.) (93/19 U.S.S.R.)

The available information on the problem can be summarised in the following points:—

- 1. The tip-speed of the airscrew should not exceed 0.90-0.95 of the velocity of sound.
- 2. High power engines require airscrews of large diameter, with corresponding reduction of the engine revolutions.
- 3. Increased airscrew diameter implies increased weight, and increased weight/power ratio. To reduce weight, many-bladed airscrews should be used, despite the consequent drop in efficiency.
- 4. High-power engines for fighter aircraft will require many-bladed airscrews on account of limitations of weight and diameter. This will, however, cause difficulty in take-off and landing.
- 5. For single-engined, high-powered aircraft, co-axial airscrews are necessary to reduce the reaction moments.
- 6. The increased weight of the airscrew for high powers suggests intensive research on the construction of airscrews of light alloys, or with hollow blades, and measures against blade-vibration.

Investigations were conducted for engine powers of 1,000, 1,500, 2,500 4,000, 6,000, and 8,000 h.p. at a standard altitude of 6,000 metres, for n/Δ ratios of 1,860 2,790, 4,650, 7,470, 10,150, and 17,850 (Δ =relative density), airspeeds of 500, 650, 800, and 950 km./hr., and airscrew diameters of 2.5, 3.0, 4.0, 5.0 and 6.0 metres, with 3, 4, and 6 blades. To elucidate the influence of the revolution speed and tip speed on efficiency, calculations were also carried out for Mach numbers of 0.8, 0.9, 1.0, 1.1, and 1.2.

The conclusions from these researches are as follows :----

- 1. With increase of flying speed to 650-700 km./hr., the efficiency increases for constant diameter, number of blades, and engine power; at higher speeds efficiency again falls.
- 2. Up to airspeeds of 850 km./hr. the tip speed should not exceed 0.9-0.95 of the velocity of sound. The top speed may equal the velocity of sound for airspeeds above 900 km./hr.
- 3. Increasing the engine power at constant airscrew diameter and airspeed reduces efficiency, the reduction being less with increasing diameter.
- 4. To allow maximum efficiency of airscrews for powers from 2,000 h.p. upwards, large diameters (up to 6 m.) with corresponding reduction of the revolution speed will be required.
- 5. Up to 1,500 h.p., four- and six-bladed airscrews are unsuitable on account of increased weight.
- 6. For powers of 2,000 h.p. and over, many-bladed airscrews are preferable in order to reduce weight and diameter.
- 7. The use of co-axial airscrews permits of reducing the diameter and reactive moment. The efficiency can also be somewhat increased by the elimination of twist in the slip-stream.

- 8. The considerable increase in weight caused by the increase in diameter and number of blades demands research on the lighter construction of airscrews.
- 9. The reduction ratio (of airscrew revolutions) calculated by Caldwell's method (Journal of Aeronautical Science, Dec. 1937) for powers of 1,000 to 1,600 h.p. at an altitude of 6,000 m., corresponds in practice with the reduction obtained by calculation according to the optimum distribution of circulation.

10. For engines exceeding 2,500 h.p. at an altitude of 6,000 m. (i.e. $\frac{n}{\overline{\Lambda}} > 4,650$)

the revolution speeds, varying between 600 and 1,200 r.p.m. depending on diameter of airscrew recommended in this article will be suitable.

A New Wind Tunnel Balance for Model Airscrew Experiments. (A. Eula, Atto di Guidonia, No. 44, 20/2/41,) (93/20 Italy.)

The balance enables the usual thrust and torque measurements to be made on model airscrews with a diameter of the order of 1 m. rotating at speeds up to 3,000 r.p.m. The balance is intended for use in open jet wind tunnels with a diameter of the order of 2 m. Of main interest is the 3-phase electric motor for operating the screw. This has been designed and constructed by the Goettingen Laboratory (Germany), and delivers a maximum of 100 h.p. at 30,000 r.p.m. for a total weight of 70 kg., the external dimensions being approximately 18 cm. diameter, 60 cm. length. For the Guidonia Installation, the periodicity has been reduced from 500 to a maximum of 100 cycles/sec., with the result that the maximum h.p. is now of the order of 20 at 6,000 r.p.m. A 2/1 reduction gear between airscrew and motor reduces the speed of the former to a maximum of 3,000 r.p.m. Speed and power control are obtained by means of the well known Ward Leonard system (control of frequency of a/c. supply).

The propeller torque is measured directly from the reaction of the motor casing and can be estimated to ± 10 gm. at a leverage of 20 cm. The thrust is obtained from the horizontal pull on the motor, with an error of ± 20 gm.

By rotating the whole suspension about the wind tunnel axis, the lateral force acting on the propeller due to oblique incidence can be obtained with an accuracy of ± 50 gm. For measuring propeller characteristics in free air, the motor is enclosed in a fixed stream line casing of considerable length, the propeller hub being shielded by a fixed nose piece of suitable shape.

The clearance between motor and casing is very small and in view of the restricted diameter of the former it is held that the flow approximates very closely to free air conditions.

If the effect of engine nacelles has to be investigated, models of the latter are mounted directly on the motor casing and the motor casing and the resultant torque and thrust measurements indicate the amount of body interference.

Model airscrew experiments necessarily suffer from the defect that both the Reynolds and Mach numbers differ appreciably from those occurring in full scale flight. The author, however, points out that similar corrections have also to be applied to full scale propeller tests on the ground, since the air speeds of the large wind tunnels so far constructed in which these experiments are carried out are all considerably below flying speeds. In view of the reduced cost and saving in time, experiments with models of the dimensions discussed above seem well worth while.

Parachutes and Their Manufacture. (G. Sedlwayr, Luftwissen, Vol. 8, No. 5, May, 1941, pp. 146-150.) (93/21 Germany.)

Some details of the manufacture of the standard parachute as employed by the Luftwaffe for their aircrews are given. The canopy requires about 40 m.² of silk fabric and the packing requires benches 8 m. long. The cutting out

is carried out on 20 m. benches by means of electrical machines, several hundred parts of the same shape being cut simultaneously. The complete canopy consists of 96 parts and great care is taken in the lay-out of the pattern to reduce wastage of the expensive material to a minimum. The sewing together of the parts is carried out by means of special 4-needle sewing machines, the seams being checked by means of transmitted light. A series of 13 photographs show details of the manufacture and method of packing. Female labour is extensively made use of. The main parachute is controlled by the release of a small pilot parachuted and generally is unfolded only after the speed of descent has dropped to about 200 km./hr. This reduces the opening shock on the body of the parachutist. In several emergency cases, however, the parachute had to be operated at speeds as high as 600 km./hr. without ill effect to the parachutist. The landing speed is normally of the order of 6-7 m./sec. If the parachute is used to drop supplies etc. greater landing speeds are permissible and a cheaper and more "transparent" fabric can be employed. It is obvious that such parachutes must be positively controlled either by being attached to the aircraft by means of a release line or fitted with some clockwork mechanism which will open the canopy after a certain time lag.

Operation of Aircraft Fuel System at High Altitudes. (M. P. Fokin, Air Fleet News, U.S.S.R., Vol. 23, No. 5, May, 1941, pp. 445-447.) (93/22 U.S.S.R.)

Irregularities in the running of aircraft engines at high altitudes are due to the formation of "vapour locks" in the fuel system.

Such vapour locks are produced by:-

- 1. Presence of high-volatility components in the fuel which separate at high altitudes owing to the reduced atmospheric pressure.
- 2. Pressure of dissolved air in the fuel which segregates under the same conditions.
- 3. Heating of the fuel in certain parts of the system, promoting volatilization of the fuel.

The proportion of high volatile fractions in the petrol can be determined by the vapour tension, the normal figure being 360 m.m. Hg. at 38°C. The higher the tension the greater the risk of vapour locks.

The fuel should therefore be kept as cool as possible in ground storage, protected both there and in the fuel tanks from the heat of the sun. A vapour tension of 270-330 m.m. Hg. at 38°C. should ensure normal running at altitude.

Operation of the Cooling System of a High Altitude Aircraft. (Air Fleet News, U.S.S.R., Vol. 23, No. 4, April, 1941, pp. 340-344.) (93/24 U.S.S.R.)

At altitude, either the designed radiator surface will be insufficient, causing overheating of the engines, or it will be excessive, causing over-cooling. This is due to the pressure and temperature drop at high altitudes. The boiling point of the coolant will also be reduced, and special measures will be required for its maintenance:

The usual remedy is to employ closed circuit cooling, permitting the coolant to be kept at a pressure above the atmospheric, and thus at a higher boiling point. The controlling element in such a system is a reducing or safety valve at the highest point of the circuit.

The necessary excess pressure can be determined by the formulæ

 $P_{\mathbf{x}} = P_{\mathbf{o}} - P_{\mathbf{h}}$

where $P_x = \text{excess}$ pressure in the cooling system, $P_o = \text{atmospheric}$ pressure at ground level, $P_h = \text{atmospheric}$ pressure at altitude.

With change in altitude the relief valve of the closed circuit system will thus require spring tension and special precautions must be taken for the case of rapid loss of height (long glides or dive bombing).

The increased pressure in the system will call for increased care in construction and maintenance in order to ensure the structural strength of all components and prevent breakdown.

The relief valve, being the most vulnerable point of the closed circuit cooling system, requires special attention in regard to construction, operation and maintenance.

Design Features of D.B. 601A Aircraft Engine. (Autom. Ind., Vol. 84, No. 12, 15/6/41, pp. 616-617.) (93/23 U.S.A.)

The following comparisons of the D. 0601 with other representative watercooled engines of similar power is of interest.

	F	-8r				•
1.	Make	Mercedes-	Allison	Rolls-	Hispano-	Juno
		Benz		Royce	Suiza	a Torra A
2.	Model	DA-601A	V-1710C-15	Merlin X	12Y-51	211
3.	Number of cylinders	12	12	12	12	12
		Inverted Vee	Vee	Vee	Vee Inv	verted Vee
	Bore (inches)	5.7	5.5	5.4	5.9	5.9
	Stroke (inches)	Stroke			6.7	6.5
	Piston displacement (cubic					
	inches)	2,070	1,710	1,647	2,197	2,136
8.	Military rating (horsepower)	1,000		1.025		975
	Military rating (r.p.m.)	2,400	3,000	3,000	2,400	2,300
	Military rating altitude (feet)	14,760	13,200	17,750	10,696	
	Hypothetical horsepower at	, ·		gh Blower)		gh Blower)
	15,000 feet	990	1,020	1,150	920	990
	Take-off rating (horsepower)	1,150	1,040	1,045	1,100	1,100
	Take-off rating (r.p.m.)	2,500	3,000		2,400	2,400
14.	B.M.E.P. (military rating)		168	164	156	157
	B.M.E.P. (take-off)	167	160	176	166	170
	Compression ratio	6.8	6.65	<u> </u>	7.0	6.5
	Take-off piston speed (feet per					
	minute)	2,625	3,000	2,850	2,690	2,600
	Total piston head area (sq.				•	
	inches)	306	285.5	275	328	328
	Take-off horsepower per sq. in.				and the second	
•	piston area	3.84	3.65	3.81	3.36	3.36
20,	Take-off horsepower per cubic					
	inch displacement per minute	.000111	.000101	.000111	.000104	.000107
21.	Dry weight (pounds)	1,367	1,325	1,394	1,085	1,356
	Unit weight (pounds per take-off					
	horsepower)	1.19	1.27	1.33	.993	1.23
23.	Height (inches)	40.5	42.1	41.1	37.2	41.7
	Width (inches)	29.1	30.6	29.8	30.1	31.7
	Overall length (inches)	84.0		75.1	84.1	68.7
	_ , ,				•	

Comparison of Engine Specifications and Performance.

Increasing the Altitude Performance of Aircraft Engines. (V. A. Dollerzhal, Aeronautical Engineering, U.S.S.R., Vol. 15, No. 3, March, 1941, pp. 39-42.) (93/25 U.S.S.R.)

To increase the m.e.p. of the engine at altitude, the most suitable combination is a moderate compression ratio, and a high degree of supercharge.

"It is doubtful whether the necessary supercharge is obtainable from a single stage blower. Either a two-stage blower, or a combination of mechanically operated blower and exhaust driven turbo-blower are probably required.

In connection with high altitude operation, the question of the blower speed becomes important. The present standardised two-speed drive becomes inefficient at intermediate altitudes, and the need for some infinitely variable gear is indicated.

For this purpose the author described a hydraulic coupling, somewhat on the line of that fitted to the German DB, 6or engine.

Cam Shape for the Valve Operation of Four-Stroke Engines. (H. Denkmeier, Luftwissen, Vol. 8, No. 5, May, 1941, pp. 157-162, and No. 6, June, 1941, pp. 181-188.) (93/26 Germany.)

A series of harmonic cams producing the same valve lift with different acceleration characteristics were investigated both theoretically and experimentally, special attention being paid to the effect of valve tappet clearance. It appears that the electricity of the valve operating gear, including lay shaft drive (if present), is of paramount importance in determining the force between cam and tappet. The "give" in the operating gear will generally increase with increasing radius of curvature of the cam flank and this will reduce the impact force automatically. The opening of the valve can then be carried out rapidly without undue risk. In the case of excessive tappet clearance, however, the symmetrical cam of high acceleration may overload the valve stem during the closing operation. Although according to the author, very rapid opening of the valve does not lead to mechanical difficulties, engine tests show that such rapid opening does not necessarily lead to an increase in power. Possible limitations due to gas speed and spring flutter are not considered by the author.

Bramo Jafnir Petrol Injection Radial Aero Engine, Type 323 A-D and 323 P. (Luftwissen, Vol. 8, No. 6, June, 1941, pp. 189-193.) (93/27 Germany.)

These nine-cylinder radials (bore 154 mm., stroke 160 mm.) are a development of the SH. 22 radial, manufactured by Siemens and Halske.

Earlier models of the 3^23 were fitted with Sum carburettors. The replacement of these by petrol injection pumps does not appear to have affected the power output appreciably. The most economic fuel consumption has, however, been reduced by about 10 per cent. Types C and D are both fitted with a low speed supercharger (9.5 gear ratio) and only differ in the value of the airscrew reduction gear (1.41 and 1.61 respectively). These models develop 1,000 h.p. at take-off. Types A and B are both supercharged to 4,200 m. (11.4 blower ratio) and differ again in airscrew reduction gear. These engines develop 730 h.p. at the rated altitude. Type P (not previously built) differs from the others in having a twospeed epicyclic blower gear (9.6 and 12.4 ratio), which enables the engine to combine 1,000 h.p. at take-off with an output of 775 h.p. at 4,250 m. Details of the blower reduction gear are given. Of special interest is a vapour trap which is incorporated in the fuel line between the supply pump and the injection pump.

Performance Tests on an Internal Combustion Gas Turbine. (A. Stodola, Z.V.D.I., Vol. 84, No. 1, 6/1/40, pp. 17-20.) (93/28 Germany.)

The plant designed by B.B.C. (Switzerland) is intended for emergency operation at the Neuchâtel electric power station and was exhibited at the Swiss Engineering Exhibition, 1938. It is now housed in a bomb-proof underground section of the power station. In order to save cost and space, the turbine exhausts straight into the atmosphere, and no heat exchangers are installed. The multi-stage axial compressor running at 3,000 r.p.m., delivers about 220,000 kg. of air/hour, at a maximum compression pressure of 4.34 atm. abs. $(t=203^{\circ}C.)$. Only a portion of this air is directly burnt by passing the oil burner and the combustion gases mixing with the excess air enter the turbine (multi-stage axial) at 550°C. max. At maximum load the shaft horse-power of the turbine is 15,660 kW., and that of the compressor 11,480 kW., leaving an available power output of 4,180 kW. The corresponding thermal efficiency is 18 per cent. (compression efficiency of blower 85 per cent., and turbine efficiency 88 per cent.).

It is specially emphasised that this novel power plant, since it requires no cooling water, is extremely compact. By fitting heat exchangers an appreciable increase in the thermal efficiency should become possible.

Surface Quality of a Medium Carbon Steel. (O. W. Boston and W. W. Gilbert, Engineering, Vol. 152, No. 3,939, 11/7/41, p. 35.) (93/29 Great Britain.)

For the S.A.E. 3,140 steel in a normalised and annealed condition, when cut dry, the surface quality produced at low cutting speeds, as observed from photographs and profilograms, is poor. As high speeds are reached the surface quality is greatly improved. At a certain minimum speed, called the optimum speed, the cutting edge of the tool actually produces the machined surface which is superior to the surface at all lower speeds in which the chip is removed by means of a built-up edge. Photographs and profilograms show little difference in surface quality at high cutting speeds when various types of cutting fluids are used. At low speeds, however, it appears that the surface quality is improved as compared with dry cutting when a cutting fluid, consisting of a sulphurised mineral or sulphurised base oil, is used. The optimum cutting speed for each of several structures is lowest for the hardest steel and highest for the softest steel. It appears also that the surface quality changes but slightly as the speed, cutting fluid, or structure is changed for values of cutting speed above the optimum.

The Spot Welding of Light Alloys. (Tylecote, Trans. Inst. Weld., April, 1941, pp. 56-75.) (Met. Vick. Tech. News Bull. No. 770, 11/7/41, p. 8.) (93/30 Great Britain.)

Literature, published up to October, 1940, on the spot welding of light alloys is reviewed. The subject matter includes weldability, machines and machine settings, surface preparation, electrodes, strength properties, etc. A bibliography and an author index are appended.

(Abstract supplied by Research Dept., Met. Vickers.)

The Welding of Non-Ferrous Metals. (West, Trans. Inst. Weld., April, 1941, pp. 76-112.) (93/31 Great Britain.)

The author reviews literature published during 1939-1940 on non-ferrous metal welding. It is stated that the main object has been to present as complete a picture as possible of the present position of non-ferrous metal welding and its problems. The subject matter is presented in the form of short abstracts and a subject and name index are appended.

(Abstract supplied by Research Dept., Met. Vickers.)

Ball and Roller Bearings. (G. A. Ungar, Machinist, 5 and 12/7/41, pp. 130 E and 138 E-140 E.) (93/32 Great Britain.)

These issues contain an article dealing with the basic factors underlying the selection of ball and roller bearings, since confusion may arise from the wide differences in load capacity ratings for bearings of the same type and size, but of different makes. The author outlines how catalogued ratings may be corrected to a standard of comparison, factors discussed including the ratio of expected to tested life, actual bearing life, loading per unit of area, etc. Criteria of - comparison are tabulated for various types of ball and roller bearings and for some needle bearings.

(Abstract supplied by Research Dept., Met. Vickers.)

Ultrasonics—A New Metallurgical Tool. (Cosman, Iron Age, 15/5/41, pp. 48-50.) (93/33 Great Britain.)

The technique of ultrasonics is stated to be little beyond the theoretical stage, but some of its possibilities as an engineering tool are indicated. Ultrasonic radiations, produced by magneto-striction or the piezo-electric machine, occupy a position in the frequency scale between the upper limit of human hearing and radio waves. Fine cracks or impurities in material obstruct the passage

of these waves, absorption and reflection taking place. They are also stated to produce marked physical effects and may be used for fatigue testing degassing liquid metals, speeding up hardening operations and other purposes.

(Abstract supplied by Research Dept.; Met. Vickers.)

Control of Carbon Content of Protective Gas in Heat Treatment Furnaces. (Scientific American, Vol. 165, No. 2, Aug., 1941, p. 63.) (93/34 U.S.A.)

In the Endogas method of treating steel, developed by Westinghouse Electric and Manufacturing Company, a protective gas is used in the heat-treating furnaces to prevent softening or scaling of the surface during treatment. It is necessary, however, that the protective gas be of precisely the correct composition for the work in hand.

Since the carbon content or pressure of Endogas is the critical factor, it must be carefully controlled. It is not possible, however, to make this determination quickly enough by ordinary chemical analysis; and a special so-called "hot wire carbon gauge" has been produced for this purpose. In this gauge a thin steel wire is heated for a few minutes in a test sample of the Endogas until a "carbon balance" is established between the gas and the wire. Because the wire retains its carbon in a solid form known as martensite, its electrical resistance and certain other physical properties can then be used as a measure of its carbon content, which in turn measures the carbon pressure of the gas. By means of this gauge the quality of the furnace atmosphere can be quickly determined at any time and pre-adjusted to suit the carbon content of any steel to be treated.

Synthetic or Natural Rubber. (Inter. Avia., No. 766, 27/5/41, p. 1-4.) (93/35 Switzerland.)

Five different types of synthetic rubber are listed :---

- 1. Neoprene (polymers of chloroprene).
- 2. Thiokole (reaction products of aliphatic dihalides with alkali polysulfides).
- 3. Perbunan, Buna S, Ameripols, Hycars, Chemigum (co-polymers of butadiene with other polymerisable compounds).
- 4. Koroseal (plasticised polymers of vinyl chloride).
- 5. Vistanex (polymers of isobutylene).

All of these differ chemically from natural rubber.

The purely mechanical properties of composition of natural rubber are not surpassed to any marked extent by those of synthetic rubber stocks, so that in view of the present high production cost of synthetic rubber it is improbable that synthetic rubber will replace the natural product in articles which depend for utility on such properties alone. It frequently happens, however, that in service rubber must be subjected to influences which rapidly impair its mechanical excellence. Often high temperatures, direct exposure to bright sunlight, or contact with oil cannot be avoided. In such cases compositions of synthetics or of mixtures of synthetics with natural rubber may result in certain improvements.

The Synthetic products are superior to natural rubber in the following points :---

- (a) Resistance to swelling and deterioration in contact with oils, organic solvents and water.
- (b) Resistance to cracking in sunlight.
- (c) Resistance to deterioration by heat.
- (d) Resistance to powerful oxidising agents.
- (e) Resistance to diffusion of gases.
- (f) Possibility of compounding to graphite so as to render the product electrically conductory.

Natural rubber still exhibits superiority to all the synthetics now available in :--

(a) Elasticity and rebound.

(b) Low heat generation through hysteresis.

(c) Extensibility.

(d) Resistance to stiffening at low temperatures.

The synthetic rubber industry in Germany started on its way in 1934 with an annual output of 10 tons, was claimed to have reached 4,000 tons already by 1937, and is now estimated to produce at the rate of about 60,000 tons annually. As a comparison, the American industry now produces only about 3,000 tons of synthetic rubber a year, the yearly consumption of natural rubber being of the order of 750,000 tons.

Determination of the Shearing Stresses in Axially Symmetrical Shafts Under Torsion by Finite Difference Methods. (S. T. Newing, J. Phil. Mag., Vol. 32, No. 210, July, 1941, pp. 33-49.) (93/36 Great Britain.)

The application of finite difference methods to the determination of numerical solutions of differential equations provides a standard method of attack upon problems which are not amendable to exact formal analysis. Some methods of this kind are discussed in detail in a paper by L. F. Richardson,* who applied them to the determination of the stresses arising in masonry dams. It is found, however, that when numerical solutions are required over semi-infinite plane regions, the method described in this paper for arranging that the convergence of the process of iteration shall be rapid is not applicable.

The present paper describes the application of a similar finite difference method to three problems relating to the torsion of symmetrical shafts of different types, and treats the convergence of the process from a standpoint entirely different from Richardson's. The resultant shear stresses are determined for hollow shafts of varying section and also for a shaft with a concentric bore whose radius is 0.25 that of the shaft.

Friction and Adhesion. (J. J. Bikerman, J. Phil. Mag., Vol. 32, No. 210, July, 1941, pp. 67-76.) (93/37 Great Britain.)

Recent literature on sliding friction is critically reviewed, it is concluded that :---

- 1. Friction cannot be due to welding as the law of friction and its numerical constant may be identical for the pairs Pt/Pt, Pt/wood, and wood/wood.
- 2. Friction cannot be due to adhesion in general as no adhesion can be detected by measuring the normal force.
- 3. Coulomb's law cannot be reconciled with the adhesion hypothesis by assuming the real area of contact to be proportional to the load; this assumption is refuted by experiments using decreasing loads.
- 4. In experiments which seemed to prove that friction was not due to the surface roughness, the real friction was not measured; mostly it was scratch hardness.
- 5. "Stick-and-slip" patterns have no bearing on the mechanism of friction.
- 6. The absolute values of the coefficient of friction are accounted for by Coulomb's theory attributing friction to surface asperities.

The Buckling of Heavy Struts. (F. A. Willers, Z.A.M.M., Vol. 21, No. 1, Feb., 1941, pp. 43-51.) (93/38 Germany.)

The buckling of short struts is not affected by the weight of the strut. In the case of drills for deep bore holes, the weight of the rod is considerable and will affect the buckling load. Starting with the well known principle of minimum energy, stability equations and boundary conditions are developed by the author

^{*} Phil. Trans. Roy. Soc. A., ccx, pp. 307-57 (1910).

for this case. The integration of the differential equations is carried out by means of Bessel and Lommel functions. The asymptotic representation of these functions enables the buckling force of very large rods to be estimated.

The Strength of Lugs (Eye Bolts). (O. Volkersen and R. Goschler, Luftwissen, Vol. 8, No. 5, May, 1941, pp. 151-156.) (93/39 Germany.)

If

 ρ = tensile load, s = thickness of plate, d = diameter of bolt hole, $2a_1$ = width of plate, a_1 = distance of hole from side of lug,

the maximum resultant stress in the lug on either side of the hole is given by

$$\sigma_{\rm L} = 2.4 \frac{\rho}{(2a_1 - d) s}$$
 (app.)

provided the elastic range of the materials is not exceeded. The ultimate breaking load of the lug cannot, however, be estimated from this equation, since the stress distribution will be considerably modified by the yielding of the material.

Experiments have shown that the breaking load does not only depend on " a_1 " (defined above), but also on "a" (distance of hole from end or vortex of lug) and on the ratio s/d. The plan form of the lug on the other hand (rectangular, round or necked) plays only an unimportant rôle.

The authors have carried out a series of experiments both on the ultimate strength of lugs (fractures either at vortex, *i.e.*, above hole or at sides of hole) as well as on the limiting tensile loads for either 0.1 and 1 per cent. permanent extension of the eye hole.

The results are given in a series of tables and graphs and cover dural plates ranging from 0.6 to 10 mm. in thickness. For most of the experiments, the diameter of the hole was 10 mm.

In order to utilise the material to the utmost, a lug should be designed so as to be equally strong at vortex and sides of hole (*i.e.*, resistance to crushing at hole equal to tensile strength of lug section perpendicular to load under these conditions). For a given value of a_1/d , a/a_1 will increase rapidly as s/d diminishes.

This is shown in the following table:----

s/d	a/a_1	a_1/d
0.08	1.8	1.0
0.10	I.2	. I.O
0.15	2.3	1.5
0.20	1.5	1.5
0.60	1.4	1.5

Fatigue Testing Machines for Large Specimen. (E. Erlinger, Luftwissen, Vol. 8, No. 6, June, 1941, pp. 177-181.) (93/40 Germany.)

Experience has shown that mechanical strength investigations should be carried out whenever possible on the actual structural element, or if that is not feasible, the specimen undergoing test should closely resemble the finished product as to dimensions, shape and surface finish. Whilst tensile test machines capable of handling large samples have been in use for some time, the range of fatigue testing machines available so far only enabled relatively small samples to be tested. In this article the author gives some details of large fatigue testing machines designed by him to cover the range of bending, torsion and compressionextension. (1) Bending Fatigue.—Rotating specimen, max. bending moment 750 mkg., max. length of sample 65 cm. The bending moment applied may be either constant or variable. A small axial load ensures separation of sample as soon as broken and prevents further damage to the surfaces of the fracture.

(2) Torsion Fatigue.—Three machines (" torsators ") working on the resonance principle are described with maximum torques of ± 300 , 1,000 and 2,000 mkg. respectively. If required, a static torque can be superposed on the fluctuations. The forcing frequency (20 or 50 cycles/sec.) is obtained by a rotary out-of-balance mass attached excentrically to one of the inertia masses of the system. These masses can be tuned so as to obtain resonance and the vibration amplitude of the specimen is maintained constant throughout the test by an automatic control of the forcing frequency. In this manner the development of a crack can be detected before complete fracture of the specimen. The machines are not only big enough to handle complete engine crankshafts, but provision is also made to control the temperature of the specimen during the tests and subject it to the influence of corrosive agents.

(3) Tension-Compression (Pulsator).—An oscillating stress up to ± 25 tons at a frequency of 40 cycles per second can be applied to the specimen through the agency of a heavy leaf spring subjected to forcing impulses. A static stress up to 25 tons can be superposed, the maximum load thus being equal to 50 tons. A photograph shows an aero engine piston undergoing tests on a machine of this type.

Both "torsators " and " pulsators " are mounted on rubber blocks so as to isolate ground vibrations.

Acoustic Models of Radio Antennas. (E. C. Jordan and W. L. Everitt, Procs. of I.R.E., Vol. 29, No. 4, April, 1941, pp. 186-194.) (93/41 U.S.A.)

The large number of independent variables in antenna arrays make it advisable to develop means for rapidly surveying the field patterns which may be obtained. The advantages in the use of acoustic models for this purpose are shown.

Two analogous acoustic antennas are developed, one for the measurement of fields at a distance and the other for fields close to the antenna. The procedure which can be followed in setting up the models and making measurements is outlined.

Advantages are demonstrated for the acoustic model in the study of nonsinusoidal current distributions, and their effect on the field pattern.

The measurement of mutual impedance between antennas may be conveniently carried out with one of the models. The arrangement for phasing and magnitude control in a multi-unit array are shown. The field of an acoustic model is shown in comparison with the field of an actual array which it simulates.

Control of Night Error in Aeroplane Direction Finding (Digest). (H. Busignies, Procs. of I.R.E., Vol. 29, No. 4, April, 1941, p. 222.) (93/42 U.S.A.)

This paper describes the development of a method enabling pilots to determine the accuracy of night bearings obtained by means of a radio compass in the wave length range of 200 to 2,000 metres (150 to 1,500 kilocycles), and the effect on the indication when the plane passes through the combination of fields due to the reflection of waves from the E layer or from a mountain side. Consideration is given to the appearance of the night error on the ground and in altitude, taking into account the simultaneous presence of (1) the direct wave; (2) the sky wave; and (3) the sky wave reflected from the ground. It is demonstrated that the night error is smaller in the air than on the ground; also that there are regions in the atmosphere where the night error is very small.

The dynamic aspect of the night error is then studied in the case of a plane moving through the above-mentioned system of waves. How the radio-compass indication changes regularly about a mean value, whether correct or not, according to the polarisation of the sky wave, is next discussed. All cases of polarisation are examined.

In conclusion, a number of rules are formulated relative to night direction finding on board aeroplanes above land or sea, supplemented by maps showing areas where direction finding is safe, unsafe, or dangerous. The maps show that the practical range of night direction finding is increased substantially by the correct interpretation of the radio-compass indications.

A Mechanical Calculator for Directional Antenna Patterns (Digest). (W. G. Hutton, Procs. of I.R.E., Vol. 29, No. 4, April, 1941, p. 224.) (93/43 U.S.A.)

The object of this paper is to describe a mechanical directional-antenna-pattern calculator to be used when all the factors are known that completely determine the pattern. This mechanical directional-antenna-pattern calculator is a machine which can be adjusted for any or all the factors that determine completely the directional pattern, and which on operation will automatically rotate the vectors that represent the relative antenna fields in such a way with respect to each other that the resultant vector or field ratios may be read directly.

The design problem for a directional-antenna pattern may involve the calculation of several trial patterns before the correct pattern is obtained. Thus, a machine such as this paper describes will speed up and simplify design work for directional arrays.

The standard equation for field-intensity patterns is shown and an analysis is made to show that the result given by the machine is the solution to this equation.

The operating procedure is given for calculating the horizontal pattern with the machine described. The operating procedure is given for calculating the vertical-field pattern for any particular horizontal angle after the horizontal pattern has been figured by use of the machine.

The procedure is given for converting the vector values given by the machine to micro-volts per metre both for the horizontal and vertical patterns.

Aerial Photography in Winter. Experience of the Operation of the A.F.A. Aerial Camera Under Winter Conditions. (P. G. Timofeev, Air Fleet News, U.S.S.R., Vol. 23, No. 2, Feb., 1941, pp. 254-258.) (93/44 U.S.S.R.)

A list of defects in design and breakdowns in operation of various (Russian) service types of aerial cameras is given. The main troubles due to winter conditions are :—Freezing of the film-feed rollers, freezing of the shutter, rupture of flexible shafts.

The heating device of the camera should be carefully inspected before the flight. The heater should be adjusted to a number of temperature stages, since in view of the danger of the shutter freezing-up at temperatures not requiring general heating of the camera, it is desirable to have an auxiliary heating stage for the shutter only.

A Device for Joining Short Lengths of Aerial Photo Films. (K. N. Sakharov, Air Fleet News, U.S.S.R., Vol. 23, No. 3, March, 1941, pp. 263-264. Translated by L. J. Goodlet.) (93/45 U.S.S.R.)

In the practical evaluation of aerial reconnaissance material, it is frequently necessary to deal with short length aero films, usually those from the "AFA-I" aerial camera.

The length of such films does not exceed nine metres, and they are developed in apparatus designed for handling films of 28-30 metres in length, taking from 30 to 35 minutes for the operation. Consequently, if the laboratory receives three to six such films, it will require $r_{\frac{1}{2}}$ to 3 hours to deal with them. Furthermore, the utilisation of the apparatus will be one-third only of the designed capacity, and the consumption of solutions and chemicals will be correspondingly excessive.

The most economical method of treating such short films is, therefore, to handle a number of them simultaneously by glueing them together into one strip.

The glueing is performed in the following manner:—Using a brush or a tuft of cotton wool, ordinary technical "Emaillit" is applied to the emulsion side of the aero film (about 4-5 cm. wide). Before the adhesive dries, the section to be joined on is applied with the gelatine side to the glued section and rubbed down with a clean rag until the adhesive has dried. This method is reliable, the glued film does not tear when passed through the standard Air Force developing appliance, nor dissolves in the liquid used in the treatment of negatives: De-sensitiser, water, developer, fixing bath, or alcohol.

Determination of Position and Altitude of an Aircraft in Space by Means of Photogrammetric Methods. (M. di Jordis, Atti di Guidonia, No. 43, 10/2/41, pp. 21-36.) (93/46 Italy.)

In the usual method of aerial survey, the ground is photographed from an aircraft flying at a known altitude and the resulting picture converted into a scalar map by means of special machines, provided the inclination of the optre axis of the camera with the vertical is known. It is obvious that the procedure can be reversed, *i.e.* if the relative position of a number of landmarks appearing on the photograph is already known from a terrestrial map, the position of the camera at the instant the photograph was taken can be determined. The author describes a simplified form of projector which will achieve this and estimates that the error in altitude is not more than .1 per cent. for the range 2,000 to 5,000 m. whilst angular inclination of the aircraft can be read to about $\frac{1}{2}^{\circ}$, provided the exposures are not taken too near the vertical. By taking a series of ground photographs each with a clock face image giving time to $\frac{1}{50}$ sec., the speed of aircraft between successive exposures can be calculated.

Cases of Petrol Poisoning in Flight. (P. F. Vokhmyani, Air Fleet News, U.S.S.R., Vol. 23, No. 3, March, 1941, pp. 265-266.) (93/47 U.S.S.R.)

Two recent instances of poisoning by petrol fumes in flight are described. Both refer to "R2" two-sector bombers with open cockpit. In one case the pipe line between fuel tank and engine fractured; in the second, the nipple on the fuel pressure gauge became unscrewed. In neither case did the defect reveal itself, as a petrol spray or splash and the smell in the cockpit was not unduly marked. Nevertheless, the broken pipe led to both pilot and observer ultimately losing consciousness and being injured in the subsequent crash. The consequences of the unscrewed nipple were not so serious since the pilot landed soon after the smell became noticeable. The landing was, however, rough and the handling of the aircraft much below the standard for this pilot. The latter, however, seems to have been unaware of this.

It must consequently be assumed that in both cases petrol poisoning in flight took place, owing to leakage and an accumulation of highly concentrated fuel fumes in the cockpit. The handbook description of petrol-fume poisonng states: "Light cases of petrol or paraffin poisoning are manifested in the form of a slight intoxication. The symptoms are hallucinations of short duration."

In serious cases, reduced pulse with irregular breathing, contracted or dilated pupils, foam on the lips, cutaneous hæmorrhage, and loss of consciousness result. Loewe and Kolesnikov (Baku) and Lazarev (Leningrad) found by experiments on animals that aviation spirit (pure) is a heart toxic. Insensibility results from a concentration of 0.05 gm. per cubic metre after 4-5 hours.

Since doped petrol was used in the above cases, the question arises whether poisoning was due to the petrol or the added tetra-ethyl lead. Acute tetra-ethyl lead poisoning is distinguished by the following symptoms: insomnia, extreme excitation, visual and aural hallucination, delirium, talkativeness, insecure gait. In light cases, insomnia, nightmare, sickness, bad taste in the mouth, giddiness, headache, general lassitude. Characteristic for tetra-ethyl lead poisoning is a dormant form lasting several days. The official handbook states that owing to the small percentage of addition, poisoning with doped petrol is scarcely distinguishable from the effects of pure petrol.

Comparing these descriptions of symptoms with the two cases quoted above, it may be concluded that, even if the dope participated in the effect, the principal poisoning was by means of petrol. Neither did tetra-ethyl lead poisoning appear later.

CONCLUSIONS.

- 1. Acute poisoning by the fuel, in case of leakage in flight, is possible even in an open cockpit.
- 2. In both cases mentioned, the poisoning manifested itself as rapid, but not deep, insensibility, after a short previous phase of excitation.
- The Reflections of Sound Pulses by Convex Parabolic Reflectors. (F. G. Friedlander, Proc. Cambs. Phil. Soc., Vol. 37, Part 2, April, 1941, pp. 134-149.) (93/48 Great Britain.)

The reflexion of a train of simple harmonic waves by a convex parabolic of revolution, and by a parabolic cylinder, has been discussed by Lamb.* In the present paper these results are extended to the reflexion of plane waves of arbitrary form. It is found that on the introduction of suitable variables the equation of sound propogation transforms (in each case) into a simpler equation whose general integral can be obtained by quadratures. Two unknown functions are introduced during the integration, which have to be determined from the boundary conditions. This involves in both cases the solution of a Volterra integral equation, which is effected numerically by calculation of the first terms in the series development of the resolving kernel. An interesting feature of the solutions obtained is that when a suitable time scale is introduced (for a sharpfronted pulse the time must be counted from the onset of the wave), the reflected wave experienced is the same at all points on any paraboloid (or parabolic cylinder) confocal with the reflector.

Experiments in Approximating to Solutions of a Partial Differential Equation. (W. G. Bickley, J. Phil. Mag., Vol. 32, No. 210, July, 1941, pp. 50-66.) (93/49 Great Britain.)

The author describes a number of experimental attempts to approximate to the solution of the differential equation

$$\frac{\partial^2 \theta}{\partial \xi^2} = \frac{\partial \theta}{\partial z}$$

for the ranges $0 < \xi < 1$, $0 < z < \infty$ with certain boundary and initial conditions. By assuming a polynomial in ξ , the coefficients of which are functions of z, the problem is reduced to solving ordinary differential equations for these coefficients. These differential equations may be constructed by collocation, or by the Galerkin method of (weighted) integrals. The initial conditions are similarly treated. Quite good agreement is obtained with only two disposable coefficients; if interest is largely centred in one point, collocation at that point produces results better than the Galerkin method. The method of least squares applied to the error is apparently not well suited for use with an infinite range, unless it is the asymptotic behaviour only which is sought.

^{*} Lamb. "On Sommerfield's diffraction problem; and on reflexion by a parabolic mirror." Proc. London Math. Soc. (2), 4 (1906), 190.

Expansion Turbine Producing Low Temperature Applied to Air Liquefaction.
(P. Kapitza, Journal of Physics, U.S.S.R., Vol. 1, No. 1, 1939, pp. 7-27.)
(93/50 U.S.S.R.)

In the well known Linde process, the air is compressed to about 200 atmospheres and expanded through a nozzle, the resulting cooling being due to the Joule-Thomson effect. This effect is small in the case of air and much greater cooling would result if the expanding gas could be made to do useful work.

The author has succeeded in designing a suitable radial turbine for this expansion, the required pressure drop being only of the order of five atmospheres instead of the 200 atm. of the Linde machine. The main difficulty in the design of such expansion turbines is the rotor friction and proper utilisation of the large centrifugal forces in the medium due to its relatively high density. The final design has a rotor of only 8 cm. diameter, weighing 250 gm. and running at 40,000 r.p.m. Although this speed is well above the critical speed of the shaft, stability of operation required the introduction of a damper. The rotor is not mounted directly on the shaft, but a special universal joint allows the principal axis of inertia to coincide automatically with the axis of rotation. The expansion efficiency is of the order of 83 per cent. and the plant will yield about 30 kg. of liquid air per hour, at an energy cost of about 1.7 kw.h. per kg. Although this energy consumption is about 30 per cent. greater than that of orthodox installations, the simplicity, reliability and safety of the turbine plant are great assets. The space required is about one-sixth that of an equivalent Linde machine and the starting period only of the order of twenty minutes.

LIST OF SELECTED TRANSLATIONS.

No. 36.

Note.—Applications for the loan of copies of translations mentioned below should be addressed to the Secretary (R.T.P.3), Ministry of Aircraft Production, and not to the Royal Aeronautical Society. Copies will be loaned as far as availability of stocks permits. Suggestions concerning new translations will be considered in relation to general interest and facilities available.

Lists of selected translations have appeared in this publication since September, 1938.

		A	ero- and Hydrodynamics.
TRA	ANSLATION NUMBER		
-	AND AUTHOR.		TITLE AND REFERENCE.
1220	Multhropp	• • •	Aerodynamics of the Fuselage. (L.F.F., Vol. 18,
			No. 2-3, 29/3/41, pp. 52-66.)
1226	Eckert, B	•••	Resistance Coefficients of Commercial Type of Wire
	Pfluger, F	• • •	Grids. (L.F.F., Vol. 18, No. 4, 22/4/41, pp.
			142-146.)
1234	Kuhle, E	•••	Numerical Calculation of the Neutral Point of a Wing. (L.F.F., Vol. 17, No. 9, 20/9/40, pp. 257-266.)
		A	IRCRAFT AND ACCESSORIES.
1219	Wollf, H		The Influence of the Mach Number on the Efficiency
			of Airscrews. (L.F.F., Vol. 18, No. 2-3, 29/3/41,
		•	pp. 67-69.)
1227	Brode, K	•••	Dornier Do. 18 Flying Boat Fitted with B.M.W.
			132 Air-cooled Radial Engine. (Luftwissen,
1008	Hiorth, N		Vol. 7, No. 12, Dec., 1940, pp. 420-422.) Towed Gliders. (Flugsport, Vol. 33, No. 1-2,
1220	1110i ui, iv	•••	pp. 10-15 and 35-37.)
			pp. 10-15 and 35-37.9
			STRUCTURE.
1218	Fohlbusch, H.	•••	The Loading of Circular Frame Members in Shell
	Wagner, W.	•••	Structures. (L.F.F., Vol. 18, No. 4, 22/4/41,
			pp. 122-127.)
1224	Wagner, H.	···	The Provision for Taking up Longitudinal Forces
	Simon, H	•••	in Thin Walled Cylindrical Shell Structures.
			(L.F.F., Vol. 13, No. 9, 1936, pp. 293-308.)
			THEORY AND WARFARE.
1222	Borsani, D.		Vulnerability of Aerial Targets. (L'Ingegnere,
3	2010ani, 201	•••	Vol. 18, No. 5, 1940, pp. 369-374.)
1225	Stehli, R. H.		
v	,		Binoculars. (Flugwehr und Technik, Vol. 2,
			No. 10, Oct., 1940, pp. 226-227.)
1232	Kuhlen Kamp, A.	•••	Sound Location of Invisible Aircraft. (Z.V.D.I.,
			Vol. 85, No. 17, 26/4/41, pp. 393-400.)
			Man area a surge and
	A alconot I		MISCELLANEOUS.
1233	Ackeret, J Keller	•••	Closed Circuit Aerodynamical Heat Engines (Hot Air Turbines). (Z.V.D.I., Vol. 85, No. 22,
	Keller, C	•••	31/5/41, pp. 491-500.)
			3*/3/4*, PP: 49*-3001

TITLES AND REFERENCES OF ARTICLES AND PAPERS SELECTED FROM PUBLICATIONS RECEIVED IN R.T.P.3 DURING JULY, 1941, TOGETHER WITH LIST OF NEW TRANSLATIONS RENDERED AVAILABLE.

Notices and abstracts from the Scientific and Technical Press are prepared primarily for the information of the Scientific and Technical Staffs. Particular attention is paid to the work carried out in foreign countries, on the assumption that the more accessible British work (for example that published by the Aeronautical Research Committee) is already known to these Staffs.

THEORY AND PRACTICE OF WARFARE.

78/1	Great Britain	Bristol Beaufort General Purpose Aircraft. (Engineering,
78/2	Great Britain	Vol. 151, No. 3,934, 6/6/41, pp. 456-457.) Civilian Population Under Bombardment. (R. J. Bartlett, Nature, Vol. 147, No. 3,736, 7/6/41,
78/3	Great Britain	pp. 700-701.) Anti-Scatter Treatment for Windows. (H. M. Llewellyn, J. of Soc. of Chem. and Ind., Vol. 60, No. 23, 7/6/41,
78/4	Great Britain	pp. 433-434.) An Automatic Aid to the Rapid Testing of War Gases in the Field. (Huson and Hardwick, J. of Soc. of Cham and Ind. Val. 62. No. 22. 26/12. 20. 126 (10.)
78/6	Germany	Chem and Ind., Vol. 60, No. 23, 7/6/41, pp. 436-437.) German Air Raid Defence of Factories. (C. Wachtl, Chem. and Metallurgical Eng., Vol. 78, No. 4, April,
78/7	Germany	1941, pp. 92-94.) Mass Production of He. III. (Motor Schau., Vol. 5,
78/8	Germany	No. 1, Jan., 1941, pp. 48-52.) F.W. "Kurrier" (Photograph). (Motor Schau., Vol. 5,
78/9	Germany	No. 2, Feb., 1941, p. 127.) Photograph of Modern German Seaplanes. (V. Kinzel, Motor Schau., Vol. 5, No. 3, March, 1941, pp.
78/10	Switzerland	200-253.) Bombing by Day. (E. Amstutz, Inter. Avia., No. 763, 9/5/41, pp. 1-3.)
78/11	U.S.A./ Great Britain	Atlantic Ferry (U.S.AGreat Britain). (Inter. Avia., No. 763, 9/5/41, pp. 6-7.) (Abstract available.)
78/12	Spain	Hispano H.S. 42 Trainer. (Inter. Avia., No. 763, 9/5/41, pp. 8-9.)
78/13	Germany	Focke-Wulf F.W. 158 Single-Seat Pusher Fighter. (Inter. Avia., No. 763, 9/5/41, p. 10.)
78/14	U.S.A	Beechcraft AT. 7 Trainer. (Inter. Avia., No. 763, 9/5/41, p. 11.)
78/15	U.S.A	Boeing B. 17 D. Flying Fortress (Photograph). (Inter.
78/16	Switzerland	Avia., No. 763, 9/5/41, p. 1.) Estimation of Aircraft Distance with Binoculars. (R. H. Stehli, Flugwehr und Technik, Vol. 2, No. 10, Oct.,
78/17	Germany	1940, pp. 226-227.) German A.A. Gun of 130 mm. Calibre. (Flugwehr und Technik, Vol. 2, No. 10, Oct., 1940, pp. 227-228.)

78/18	Germany	German Air Raid Defence of Factories. (C. Wachtel, Chemical and Metallurgical Engineering, Vol. 48,
78/19	Germany	No. 4, April, 1941, pp. 92-94.) (Abstract available.) Focke-Wulf F.W. 189 Short Reconnaissance Plane. (Inter. Avia., No. 760, 16/4/41, pp. 6-7.)
78/20	U.S.A	Timn P.T160-K Plastic Trainer. (Inter. Avia., No. 760,
78/21	Switzerland	16/4/41, p. 9.) Piaggio P. 23 R. Three-Engined Bomber (Photograph). (Inter. Avia., No. 760, 16/4/41, p. 1.)
78/22	U.S.A	Organisation of U.S. Air Force. (Inter. Avia., No. 762, 1/5/41, pp. 1-5.)
78/23	U.S.A./ Great Britain	Caribou (Extra Weight of British Version of Bell P. 39).
78/24	U.S.A./	(Inter. Avia., No. 762, 1/5/41, p. 8.) Fairchild M. 62 Trainer. (Inter. Avia., No. 762, 1/5/41,
78/25	Canada U.S.A	p. 8.) Ammunition Supply of Republic P. 43 Lancer. (Inter.
78/26	U.S.A	Avia., No. 762, 1/5/41, p. 8.) Northrop N-3PE Twin Float Patrol Bomber. (Inter.
78/27	Ú.S.A	Avia., No. 762, 1/5/41 pp. 8-9.) Lockheed L. 49 Giant Aircraft Project. (Inter. Avia.,
78/28	U.S.A	No. 762, 1/5/41, p. 9.) Morrow Trainers Made of Plastic Plywood. (Inter. Avia.,
78/29	U.S.A	No. 762, 1/5/41, pp. 9-10.) U.S.A. Type Designation. (Inter. Avia., No. 762, 1/5/41,
78/30	Great Britain	p. 10.) North American Mustang and Me. 109F. (Silhouette). (Flight, Vol. 39, No. 1,696, 26/6/41, pp. 430d.)
78/31	Great Britain	Miles Master II Trainer. (Flight, Vol. 39, No. 1,696, 26/6/41, p. 434.)
78/32	U.S.A	Douglas B. 19 Giant Bomber Ready for Flight Trials. (Flight, Vol. 39, No. 1,695, 19/6/41; p. 416f-h.)
78/33	Great Britain	Oerlikon 20 mm. High Explosive Shell. (Flight, Vol. 39, No. 1,695, 19/6/41, p. 417.)
78/34	Great Britain	Types of Ammunition Used by Germany and Italy (Photograph). (Flight, Vol. 39, No. 1,695, 19/6/41,
78/35	U.S.A	p. 417.) Martin B. 26 "Marauder" Attack Bomber. (Aeroplane,
78/36	U.S.A. •	Vol. 60, No. 1,570, 27/6/41.) Curtiss Tomahawk Single-Seat Fighter (Sectional Drawing). (Aeroplane, Vol. 60, No. 1,570, 27/6/41,
78/37	France	p. 718.) French Aeroplanes in Action. (Aeroplane, Vol. 60,
78/38	U.S.A	No. 1,569, 20/6/41, p. 675.) Bell Aircobra (P. 39). (Aeroplane, Vol. 60, No. 1,569, 20/6/41.)
78/39	Italy	Caproni 316 Float Seaplane (Photograph). Inter. Avia., No. 761, 24/4/41, I.)
78/4 0	U.S.A	Taxi-ing Test of Douglas B. 19 Giant Bomber (Photo- graph). (Inter. Avia., No. 761, 24/4/41, p. 13.)
78/41	Germany	German Air Force—Preliminary Training of Hitler Youth. (Inter. Avia., No. 761, 24/4/41, p. 18.)
78/42	France	The French Air Force (Description of Principal Types). (Flugwehr und Technik, Vol. 1, No. 3, March, 1941,
78/43	Switzerland	pp. 61-65.) Bomb Ballistics. (H. Bachofner, Flugwehr und Technik, Vol. 1, No. 4, April, 1939, pp. 90-92.)

78/44	Switzerland	20 mm. Oerlikon Shell Gun for Tail Defence. (Flugwehr und Technik, Vol. 1, No. 4, April, 1939, p. 97.)
78/45	Switzerland	The Link Trainer. (O. Wuhrmann, Flugwehr und
78/46	Germany	Technik, Vol. 1, No. 1, Jan., 1939, pp. 14-16.) Dornier Do. 17 Bomber. (Flugwehr und Technik, Vol. 1,
78/47	Switzerland	No. 1, Jan., 1939, p. 22.) Oerlikon 20 mm. Wing Gun. (Flugwehr und Technik,
78/48	Switzerland	Vol. 1, No. 2, Feb., 1939, pp. 35-36.) Aerial Combat Between Fighter and Bomber. (C.
• • •	•	Rougeron, Flugwehr und Technik, Vol. 1, No. 2, Feb., 1939, pp. 37-40.)
78/49	Switzerland	The Importance of Psychological Factors in the Choice of Military Pilots. (H. Meier-Muller, Flugwehr und
78/50	U.S.A	Technik, Vol. 1, No. 2, Feb., 1939, pp. 43-46.) P. 36 Mohawk Fighter—Control and Armament Details and Flight Instructions. (R. A. Keith, Canadian
-0/	U.S.A	Aviation, Vol. 14, No. 5, May, 1941, pp. 18-30.)
		Cub. J-5 Cruiser (Blind Flying Trainer). (Canadian Aviation, Vol. 14, No. 5, May, 1941, p. 23.)
78/52	U.S.A	Hurricane and Martin B. 26 Produced in Canada. (Canadian Aviation, Vol. 14, No. 5, May, 1941, pp. 48-58.)
78/53	U.S.A	Curtiss X5B.2C-1 Dive Bomber. (Canadian Aviation,
78/54	U.S.A	Vol. 14, No. 5, May, 1941, p. 66.) Republic XP-47B "Thunderbolt" Interceptor Fighter. (American Aviation, Vol. 5, No. 1, June 1st, 1941,
78/55	U.S.A	p. 8.) North American XP-51 "Mustang" Pursuit. (American
78/56	Germany	Aviation, Vol. 5, No. 1, June 1st, 1941, p. 141.) Demolition by Means of Explosives (Earth, Rock, Bricks and Concrete). (Z.G.S.S., Vol. 36, No. 4,
78/57	U.S.A	April, 1941, pp. 85.) Production of 14-Cylinder Wright Cyclone. (Trade
78/58	U.S.A	Winds, May, 1941.) American Consolidated "Liberator" Heavy Bomber. (Aircraft Engineering, Vol. 13, No. 148, June, 1941,
78/59	U.S.S.R	pp. 164-165.) The Soviet Air Force. (Flight, Vol. 40, No. 1,697,
78/60	Great Britain	4/7/41, pp. 64-69.) Bristol Beaufighter Night Interceptor. (Flight, Vol. 40,
78/61	U.S.A	No. 1,697, 4/7/41, p. 10.) New American Types (from Model Airplane News, U.S.A.). (Aeroplane, Vol. 60, No. 1,571, 4/7/41,
78/62	U.S.A	p. 12.) Armament of Vultee V 120. (Aviation, Vol. 40, No. 5, May 1041 P. 50.)
78/63	Canada	May, 1941, p. 59.) Canadian Trainer and Transport (Fleet Aircraft, Ltd.). (Aviation, Vol. 40, No. 5, May, 1941, pp. 60-61.)
78 /64	U.S.A	Owlet Tricycle Trainer. (P. H. Wilkinson, Aviation, Vol. 40, No. 5, May, 1941, pp. 64-65.)
78 /65	U.S.A	Five-Gun Turret with Variable Fire Pattern. (L. Brukiss, Aviation, Vol. 40, No. 5, May, 1941, pp. 44-45,
78/66	U.S.A	146-148.) Blackburn Botha I. (Aviation, Vol. 40, No. 5, May,
78/67	U.S.A	1941, p. 67.) North Atlantic Ferry. (V. E. Smith, Aviation, Vol. 40,
		No. 5, May, 1941, pp. 30-31 and 132-138.)

78/68	Great Britain	The Effect of Rain on Rifle Fire. (Engineer, Vol. 171, No. 4,458, June 20th, 1941, pp. 401-402.)
78/69	Germany	Me. 109 F High Altitude Fighter. (Nature, Vol. 147, No. 3,738, 21/6/41, p. 773.)
78/70	U.S.S.R	Air Force of the U.S.S.R. (Equipment and Organisation). (Aeronautics, Vol. 4, No. 5, June, 1941, pp. 40-46.)
78/71	Great Britain	The First Power-Operated Gun Turret. (C. A. Rae, Vol. 4, No. 5, June, 1941, p. 77.)
78/72	Great Britain	Supplies Dropper (Blue Print). (Aeronautics, Vol. 4, No. 5, June, 1941, p. 59.)
78/73	Great Britain	Westland Lysander (Blue Print). (Aeronautics, Vol. 4, No. 5, June, 1941, pp. 60-61.)
78/74	U.S.A	 Consolidated Catalina (Blue Print). (Aeronautics, Vol. 4, No. 5, June, 1941, p. 62.)
78/75	Great Britain	Towed Glider Tactics. (W. E. Hick, Aeronautics, Vol. 4, No. 5, June, 1941, pp. 66-67.)
78/76	U.S.A	The Floating Fortress (Sea Drome). (C. F. McReynolds, J. of Coast Artillery, Vol. 84, No. 3, May-June, 1941,
78/77	U.S.A	pp. 220-225.) War Rockets in the Past. (W. Ley, J. of Coast Artillery, Vol. 84, No. 3, May-June, 1941, pp. 226-233.)
78/78	U.S.A	Parachute Troops (Successes, Training and Equipment). (C. J. Schmidt, J. of Coast Artillery, Vol. 84, No. 3,
78/79	U.S.A	May-June, 1941, pp. 242-247.) Shell Burst Projector and Spotting Trainer for A.A. Artillery. (B. D. Gill, J. of Coast Artillery, Vol. 84, No. 3, May-June, 1941, p. 259.)
78/80	Great Britain	Fighter Cockpits (Past and Present Layout). (Aero- nautics, Vol. 4, No. 6, July, 1941, pp. 32-35.)
78/81	U.S.A	Bell Aircobra (Garibou) (Dimensions). Aeronautics, Vol. 4, No. 6, July, 1941, pp. 43-46.)
78/82	Great Britain	Bristol Beaufort (Dimensions) (Photograph shows Rear Firing Gun). (Aeronautics, Vol. 4, No. 6, July, 1941,
78/83	U.S.A	pp. 44-45 and 49.) B. 17C Flying Fortress (Photograph). (Aeronautics, Vol. 4, No. 6, July, 1941, p. 64.)
78/84	U.S.A	Martin Maryland (Photograph). (Aeronautics, Vol. 4, No. 6, July, 1941, p. 75.)
78/85	U.S.A	Consolidated Liberator (Photograph). (Aeronautics, Vol. 4, No. 6, July, 1941, p. 83.)
78/86	Germany	Fiat R.S. 14 Twin-Float Seaplane Bomber (Photograph). (Der Flieger, Vol. 20, No. 3, March, 1941, p. 69.)
78/87	France	New Types of Military Aircraft of the R.A.F. and Luftwaffe for 1941. (P. Dublanc, La Science et la Vie, Vol. 59, No. 286, June, 1941, pp. 457-465.) (Abstract
78/88	France	available.) The Rôle of the Air Force in the Battle of the Ionian Islands (27-29 March). C. Rougeron, La Science et la Vie, Vol. 59, No. 286, June, 1941, pp. 466-480.)
78/89	Germany	(Abstract available.) The Use of A.A. Artillery in Aerial Warfare. (A. Fournier, La Science et la Vie, Vol. 59, No. 286,
78/90	U.S.S.R	June, 1941, pp. 498-507.) (Abstract available.) Co-operation between Aircraft and Ground Forces from
		Experience of the War on the Western Front. (A. E. Bogdanov, Air Fleet News, Vol. 23, No. 5, May, 1941, pp. 386-397.)

		•
78/91	U.S.S.R	The Struggle for Aerial Superiority. (B. A. Ageev, Air
78/92	U.S.S.R	Fleet News, Vol. 23, No. 5, May, 1941, pp. 398-408.) Aircraft Action against Navies from Experiences of the Present War (Continued). N. Nikoline, Air Fleet
		News, Vol. 23, No. 5, May, 1941, pp. 409-422.)
78/93	U.S.S.R	Camouflaging of Operational Aerodromes with Artificial Objects (False Trees, Cattle, Horses, Haystacks, etc.). (E. Z. Yacine, Air Fleet News, Vol. 23, No. 5, May,
		1941, pp. 423-429.) (Abstract available.)
78 /94	Germany	Oxygen Equipment of German Aircraft. (N. P. Egorov, Air Fleet News, Vol. 23, No. 5, May, 1941, pp. 448-
78 /95	U.S.A	455.) (Abstract available.) Consolidated B. 24. Bomber (Photograph). (Autom. Ind.,
78 /96	U.S.A	Vol. 84, No. 10, 15/5/41, p. 533.) Details of the Messerschmitt Me. 110 Shipped to Vultee
		Co. (U.S.A.). (Autom. Ind., Vol. 84, No. 10, 15/5/41, pp. 530-532 and 542.)
78/97	U.S.S.R	Aircraft versus Submarines. (A. Ignatiev, Aeroplane,
-0/-0	Creat Britain	U.S.S.R., Vol. 18, No. 5, May, 1941, pp. 25-27.)
78/9 8	Great Britain	Vought Sikorsky V. 156 ⁽⁴⁾ Chesapeke ⁽⁷⁾ Dive Bomber (Photograph). Aeroplane, Vol. 61, No. 1,573, 18/7/41, p. 58.)
78 /99	Germany	Messerschmitt Fighter Me. 109 F2 (Photograph). (Aero-
78 /100	Germany	plane, Vol. 61, No. 1,573, 18/7/41, p. 59.) 15 mm. Cannon Shell of Me. 109 F Fighter (Photograph).
78/101	Great Britain	Aeroplane, Vol. 61, No. 1,573, 18/7/41, p. 63.) Northrop N. 3 P.B. (Twin-Float) Patrol Bomber. (Aero-
		plane, Vol. 61, No. 1,573, 18/7/41, p. 74.)
78/102	U.S.S.R	Russian Air Power. (Aeroplane, Vol. 61, No. 1,573, 18/7/41, pp. 78-81.)
78/103	U.S.A./	U.S. Dive Bomber of the R.A.F. (Flight, Vol. 60,
78/104	Great Britain U.S.A	No. 1,699, 17/7/41, p. 34g.) Consolidated Liberator (Photograph). G. Brewer, Flight,
-	_	Vol. 60, No. 1,699, •17/7/41, pp. 35-37.)
78/105	Germany	Mass Production of He. III by the Rythm (Takt.) Process. (Flughafen, Vol. 9, No. 3, March, 1941,
78/106	Germany	pp. 5-8.) Development of the Do. 18 Flying Boat. (B. Berger,
		Flughafen, Vol. 9, No. 3, March, 1941, pp. 8-10.)
78/107	Switzerland	Speed and Ceiling of Bombers. (C. Rougeron, Inter. Avia., No. 768-769, 16/6/41, pp. 1-4.) (Abstract available.)
78/108	Germany	German High Command Report, No. 7 (Operations
		during 1941 up to and including Crete. (Inter. Avia., No. 768-769, 16/6/41, pp. 5-6.)
78/109	Germany	Messerschmitt Me. 109 F High Altitude Fighter. (Inter. Avia., No. 768-769, 16/6/41, pp. 11-12.)
78/110	Germany	Heinkel He. 177 Bomber. (Inter. Avia., No. 768-769, 16/6/41, p. 12.)
78/111	Germany	German Troop-Carrying Gliders. (Inter. Avia., No.
78/112	Great Britain	768-769, 16/6/41, pp. 12-13.) Bristol Beaufighter. (Inter. Avia., No. 768-769, 16/6/41,
78/113	Great Britain	p. 13.) Miles Master II Trainer. (Inter. Avia., No. 768-769,
78/114		16/6/41, p. 14.) Short Stirling Equipped with Cyclone Engine. (Inter.
	Great Britain	Avia., No. 768-769, 16/6/41, p. 14.)

78/115	U.S.A	<i>J</i> (* * * * * * * * * * * * * * * * * * *
78/116	U.S.A	No. 768-769, 16/6/41, p. 15.) Bellanca YO 50 Slow Speed Observation and Liaison
78/117	U.S.A	Aircraft. (Inter. Avia., No. 768-769, 16/6/41, p. 15.) Rearwin Blind Flying Trainer, Model 8135 T. (Inter.
78/118	Great Britain	Avia., No. 768-769, 16/6/41, p. 15.) Characteristics of Fire Jets. (J. S. Blair, J. Inst. Civil Engineers, Vol. 16, No. 7, June, 1941, pp. 354-380.)
78/119	U.S.A	(Abstract available.) Fire Retardent Synthetic Resin Paints. (A. V. Kleeck, Ind. and Eng. Chem. (News Edition), Vol. 19, No. 11,
78/120	Great Britain	10/6/41, pp. 626-628.) Automatic Detection of Incendiary Bombs. (The Engi-
78/121	U.S.A	neer, Vol. 172, No. 4,462, 18/7/41, p. 4.) Curtiss Wright Model 21-B. Interceptor Fighter. (Engi-
78/122	Great Britain	neering, Vol. 151, No. 3,925, 13/6/41, pp. 465-466.) Light Portable Fire Pumps. (Engineering, Vol. 151,
78/123	U.S.A	No. 3,935, 13/6/41, pp. 467-468.) Douglas B-19 Giant Bomber (Photograph). (Air Services, U.S., Vol. 26, No. 5, May, 1941, p. 11.)
78/124	U.S.A	Douglas DB-7 Attack Bomber (Photograph). (Air
78/125	Great Britain	Services, U.S., Vol. 26, No. 5, May, 1941, p. 25.) War Time Factory Lighting. (Engineering, Vol. 152,
78/126	Great Britain	No. 3,939, 11/7/41, p. 37.) Hawker Tornado and Typhoon. (Inter. Avia., No. 764-765, 19/5/41, p. 9.)
78/127	U.S.A./ Great Britain	Lockheed P. 38 "Lightning." (Inter. Avia., No. 764-
78/128	U.S.A./	765, 19/5/41, p. 11.) Douglas A-20A Attack Bomber "Havoc." (Inter. Avia.,
78/129	Great Britain U.S.A	No. 764-765, 19/5/41, p. 11.) North American Fighter N.A. 73 "Mustang" (P. 51). (Inter. Avia., No. 764-765, 19/5/41, pp. 12-15.)
78/130	U.S.A	Brewster Two-Seat Dive Bomber XSBA-1. (Inter. Avia.,
78/131	U.S.A	No. 764-765, 19/5/41, pp. 13-14.) Lockheed L. 49 "Constellation" Air Liner. (Inter. Avia., No. 764-765, 19/5/41, p. 16.)
78/132	U.S.A	Republic P-47 Fighter "Thunderbolt." (Inter. Avia., No. 764-765, 19/5/41, p. 14.)
78/133	U.S.A,	Grumman G44 Amphibian Widgeon. (Inter. Avia., No. 764-765, 19/5/41, pp. 14-15.)
78/134	Great Britain	Bristol Beaufort Torpedo Bomber. (Aircraft Engineering, Vol. 13, No. 149, July, 1941, pp. 188-189.)
78/135	Great Britain	Air Raid Shelter Air Purification. (Engineering, Vol. 252, No. 3,941, 25/7/41, pp. 66-67.)
78/136	U.S.S.R	The Use of Aircraft in Mountain Warfare in the Italian- Greek Campaign. (N. A. Vlassov, Air Fleet News,
78/137	U.S.S.R	U.S.S.R., Vol. 23, No. 4, April, 1941, pp. 290-300.) Some Problems of Dive Bombing. (M. P. Solovyev, Air Fleet News, U.S.S.R., Vol. 23, No. 4, April, 1941,
78/138	U.S.S.R	pp. 317-322.) Cross Sighting in Bombing from Horizontal Flight. (F. A. Rutkovsky, Air Fleet News, U.S.S.R., Vol. 23, No. 4, April, 1941, pp. 323-330.)
78/139	U.S.S.R	Tactical Requirements in Fighter Design. (Y. P. Nikolaev, Aeron. Eng., U.S.S.R., Vol. 15, No. 3, March, 1941, pp. 56-58.)

78/140	Germany	Boat Fitted with 23 mm. Cannon in Nose Turret.
78/141	U.S.S.R	(Aeroplane, Vol. 61, No. 1,574, 25/7/41, p. 89.) Bussian Air Force (II). (Aeroplane, Vol. 61, No. 1,574, 25/7/41, p. 94.)
78/142	Great Britain	Floating Rescue Stations (Photograph). (Aeroplane, Vol. 61, No. 1,574, 25/7/41, p. 98.)
78/143	U.S.A	North American NA-HOC Attack Bomber (B-25C). (Aeroplane, Vol. 61, No. 1,574, 25/7/41, p. 102.)
78/144	Great Britain	Republic XP-47B Fighter "Thunderbolt" (Photograph). (Flight, Vol. 60, No. 1,700, 24/7/41, p. 48.)
• / ••	U.S.A	Armament of the Aircobra. (Flight, Vol. 60, No. 1,700, 24/7/41, p. 48e.)
• • •		Martin Maryland Silhouette. (Flight, Vol. 60, No. 1,700, 24/7/41, p. 48h.)
78/147	Great Britain	American Bombers and Flying Boats for the R.A.F. (D.B. 7, 167 W, B 26, B 17, B 24, Consolidated Model 28 and 31). (Flight, Vol. 60, No. 1,700, 24/7/41, pp. 49-50.)
78/148	U.S.A	Bofors 40 mm. A.A. Gun Mounting. (American Chem. Soc. (News Edition), Vol. 19, No. 12, 25/6/41, p. 717.)
. ,	Great Britain	Dive Bombing. (Flight, Vol. 40, No. 1,698, 10/7/41, pp. 20a-d.)
78/150	Great Britain	American Fighters in the R.A.F. (Tomahawk, Mustang, Mohawk, Buffalo, Martlet, Vanguard, Lightning). (Flight, Vol. 40, No. 1,698, 10/7/41, pp. 20f-g.)
78/151	U.S.A	Republic P. 47 "Thunderbolt." (Flight, Vol. 40, No. 1,698, 10/7/41, p. 24.)
78/152	Germany	Messerschmitt Me. 109 F. 2. (Flight, Vol. 40, No. 1,698, 10/7/41, p. 24.)
78/153	Switzerland	The Problem of Aircraft Attack on Warships. (T. Weber, Flugwehr und Technik, Vol. 111, No. 6, June, 1941, pp. 129-131.)
78/154	Switzerland	Investigations on the Range Error in A.A. Fire. (N. Dometsch, Flugwehr und Technik, Vol. 111, No. 6, June, 1941, pp. 133-139.)
78/155	Great Britain	General Douhet's Theory and the Present War. (H. G. A. Wilson, Aeronautics, Vol. 5, No. 1, Aug., 1941, pp. 43-45.)
78/156	Great Britain	Spitfire in the Making. (Aeronautics, Vol. 5, No. 1, Aug., 1941, pp. 46-47.)
78/157	Great Britain	Curtiss Wright Model 21. B Interceptor Fighter. (Aero- nautics, Vol. 5, No. 1, Aug., 1941, pp. 51-52.)
		AERODYNAMICS AND HYDRODYNAMICS.
78/158	Germany	Aerodynamic Force Acting on the Wing Aileron-Tab Combination when Undergoing Harmonic Vibration. (F. Dietz, L.F.F., Vol. 18, No. 4, 22/4/41, pp. 135-141.) (Abstract available.)
78/159	Germany	Graphs for Shortening the Multhopp Calculation for Downwash with Two Worked Out Examples. (G. Braun and H. Scharn, L.F.F., Vol. 18, No. 5, 28/5/41, pp. 179-183.)
78/160	Italy	Breda Wind Tunnel. (Inter. Avia., No. 762, 1/5/41, pp. 6-7.)

296	, ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/161	U.S.A	U.S. Army New Wind Tunnel at Wright Field. (Ameri-
78/162	U.S.A	can Aviation, Vol. 5, No. 1, June 1st, 1941, p. 7.) Visualised Aerodynamic Research by Means of a Smoke Tunnel. (R. W. Griswold, S.A.E. Journal, Vol. 48, No. 5, May, 1941, pp. 180-187.) (Abstract available.)
78/163	Great Britain	Note on the Method of Successive Approximations for the Solution of the Boundary Layer Equations. (J. H. Preston, Phil. Mag., Vol. 31, No. 209, June, 1941,
78/164	U.S.A	 pp. 452-465.) (Abstract available.) Note on the Paper "A New Determination of the Viscosity of Air by the Rotating Cylinder Method." (G. Kellstrom, Phil. Mag., Vol. 31, No. 209, June,
78 /165	U.S.A	1941, pp. 466-470.) (Abstract available.) New 400 m.p.h. Wind Tunnel at Wright Field. (Sci. Am., Vol. 164, No. 6, June, 1941, p. 364.)
78 /166	Germany	The Elliptic Wing Based on the Potential Theory. (K. Kriens, Z.A.M.M., Vol. 20, No. 2, April, 1940.) (R.T.P. Translation T.M. 971.)
78/167	Germany	Use of Charts for Flow Discharge Calculations. (Lutz O.L.F.F., Vol. 17, No. 8, 26/10/40, pp. 332-335.) (R.T.P. Translation T.M. 972.)
78/168	Great Britain	Aerodynamics of Insect Flight. (F. W. Lane, Aero- nautics, Vol. 4, No. 6, July, 1941, pp. 50-54.)
78 /169	Canada	Recompression Phenomena in Steam Nozzles. (Robb Canad. J. Res., Sect. A, May, 1941, pp. 67-85.)
78/170	U.S.A	(Abstract available.) Wright Field Wind Tunnel. (Autom. Ind., Vol. 84,
78/171	Japan	No. 10, 15/5/41, pp. 511-555.) On the Subsonic Flow of a Compressible Fluid Past a Symmetrical Joukowski Aerofoil. (S. Tomotika and H. Umernoto, Air. Res. Inst., Tokio, Vol. 16, No. 205,
78/172	Switzerland	March, 1941, pp. 35-125.) (Abstract available.) Supersonic Studies. (J. Ackeret, Inter. Avia., No.
78/173	Great Britain	• 768-769, 16/6/41, pp. 9-10.) (Abstract available.) Turbulence in the Pulverised Coal Furnace. (Engineer- ing, Vol. 152, No. 3,940, 29/7/41, p. 58-60.)
	•	AIRCRAFT AND AIRSCREWS.
78/174	Great Britain	Labour in the Aircraft Industry. (Engineering, Vol. 151, No. 3,934, 6/6/41, p. 452.)
78/175	Great Britain	Calculation of Terminal Speeds. (C. H. Bosanquet and others, Engineering, Vol. 151, No. 3,939, 10/6/41, pp. 436-437.)
78/176	Germany	Comparison of Design Characteristics and Efficiency of Transport Vehicles, Ships and Aircraft (Review of Book). (F. Neeson, W.R.H., Vol. 22, No. 1, 1/1/41, pp. 8-10.)
78/178	U.S.A	Bibliography of Aeronautics, Supplement to Part 37— Airports. (Compiled from the Index of Aeronautics of the Institute of Aeronautical Sciences.)
78/ 179	U.S.A	Directional Stability and Vertical Surface Stalling. (G. S. Schairer, J. Aeron. Sci., Vol. 8, No. 7, May, 1941, p. 270.) (Abstract available.)
78/180	Germany 6	Clouds Produced by Aircraft (Condensation Trials). (H. Lohner, Motor Schau, Vol. 5, No. 2, Feb., 1941, pp. 188-189.)

78/181	Germany	Ice Accretion Produced on Aircraft. (K. Anders, Motor
78/182	Germany	Schau, Vol. 5, No. 2, Feb., 1941, pp. 192-194.) Some Notes on the Ideal Efficiency of Airscrews. (W. Hoff, L.F.F., Vol. 18, No. 4, 22/4/41, pp. 114-121.)
78/183	Germany	(Abstract available.) Design of Blade Feet for Airscrews. (G. Cordes, L.F.F., Vol. 18, No. 4, 22/4/41, pp. 128-134.) (Abstract
78/184	Great Britain	available.) Lord Beaverbrook on Aircraft Supplies. (Inter. Avia., No. 763, 9/5/41, pp. 7-8.)
78/185	U.S.A	Downhill Take-off for Heavy Loaded Aircraft. (Inter.
78/186	Germany	Avia., No. 763, 9/5/41, p. 11.) Systematic Flight Tests in Longitudinal Stability with Free Elevator. (R. Schmidt, L.F.F., Vol. 18, No. 5,
78/187	Germany	28/5/41, pp. 169-173.) Complete Characterisation of Flight Conditions at Minimum Velocity. (F. Hopper, L.F.F., Vol. 18,
78/188	Germany	No. 5, 28/5/41, pp. 198-203.) Straight Line Diving and Gliding Flight at Variable Air Density. (W. Muller, L.F.F., Vol. 18, No. 5, 28/5/41,
78/189	Germany	pp. 174-178.) Light Weight Tricycle Aircraft Wn. 16. (Inter. Avia.,
78/190	U.S.A	No. 762, 1/5/41, p. 7.) Weight Data of Landing Gear of B-19. (Inter. Avia.,
78/1 91	Great Britain	No. 762, 1/5/41, p. 8.) Boeing 314a for British Empire Route. (Flight, Vol. 39, No. 1,696, 26/6/41, p. 430 B-C.)
78/192	Great Britain	Ocean Air Transport (29th W. Wright Memorial Lecture).
78/193	U.S.A	(Flight, Vol. 39, No. 1,696, 26/6/41, p. 433.) New Lockheed Transport "Constellation" Under Development (Substratosphere, 74,000 lb. gross
78 /194	U.S.A. ,	weight). (Flight, Vol. 39, No. 1,695, 19/6/41, p. 416n.) Ocean Air Transport (29th W. Wright Lecture). (J. T. Trippe, Aeroplane, Vol. 60, No. 1,570, 27/6/41, p. 717.)
7 8 /195	Switzerland	The Nose Wheel Landing Gear. (Inter. Avia., No. 761, 24/4/41, pp. 1-5.) (Abstract available.)
78 /196	U.S.A	Organisation of the Office of Production Management in the U.S.A. (Inter. Avia., No. 761, 24/4/41, pp. 10-11.)
78 /197	U.S.A	Developments in Goodrich De-Icer. (Inter. Avia., No. 761, 24/4/41, p. 14.) (Abstract available.)
78/198	Italy	Piaggio P. 108 C. Four-Engined Substratosphere Aircraft (Photograph). (Inter. Avia., No. 761, 24/4/41, p. 16.)
78 /199	Switzerland	Constant Speed Airscrews (I). (J. Ackeret, Flugwehr und Technik, Vol. 1, No. 1, Jan., 1939, pp. 24-27.)
78/200	Switzerland	The Escher - Wyss V.P. Airscrew. (Flugwehr und Technik, Vol. 1, No. 1, Jan., 1939, p. 27.)
78/201	Switzerland	Constant Speed Airscrew (II). (T. Ackeret, Flugwehr und Technik, Vol. 1, No. 2, Feb., 1939, p. 52.)
78/202	Switzerland	The Escher-Wyss V.P. Airscrew. (C. Keller, Flugwehr und Technik, Vol. 1, No. 2, Feb., 1939, pp. 53-56.)
78/203	Germany	Singapore Air Port. (W. Kuster, Flughafen, Vol. 8, No. 11-12, NovDec., 1940, pp. 1-5.)
78/204	Germany	Civil Aviation in U.S.S.R. (Flughafen, Vol. 8, No. 11-12, NovDec., 1940, pp. 5-8.)

.

298	ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/205	Germany	Safety Devices on a Modern Airport. (E. Meissner and others, Flughafen, Vol. 8, No. 11-12, NovDec., 1940,
78/206	Germany	pp. 8-14.) French Fuel Tank Waggons. (Flughafen, Vol. 8, No. 11-12, NovDec., 1940, pp. 14-16.)
78/207	U.S.A	Ocean Air Transport. (J. T. Trippe, President Pan American Airways, 29th Wilbur Wright Memorial Lecture, 1941.) (Original available in R.T.P.3.)
78/208	U.S.A	Sikorsky Helicopter. (American Aviation, Vol. 5, No. 1, June 1st, 1941, p. 16.)
78/20 9	Great Britain	Variable Gear-Ratio Flying Controls. (F. E. Burger, Aircraft Engineering, Vol. 13, No. 148, June, 1941, pp. 154-155 and 161.)
78/210	Great Britain	The Jigging of Modern Airframes. (Aircraft Engineering, Vol. 13, No. 148, June, 1941, pp. 167-170.)
78/211	U.S.A	Aerobatics are Easy (II). (D. J. Brimon, Aviation, Vol. 40, No. 5, May, 1941, pp. 34-35, 150-154.)
78/212	U.S.A	Design Details of Boeing 314 Clipper (Main Bulkhead). (Aviation, Vol. 40, No. 5, May, 1941, p. 58.)
78/213	U.S.A	Drag of Riveted Wings. (C. P. Autry, Aviation, Vol. 40, No. 5, May, 1941, pp. 53-54.)
78/214	U.S.A	Accelerated Production Planning. (A. Nelson, Aviation, Vol. 40, No. 5, 1941, pp. 81, 158 and 160.)
78/215	U.S.A	Icing Problems in Transport Aircraft (Digest). (R. L. McBrien, Aviation, Vol. 40, No. 5, May, 1941, p. 138.)
78/216	Great Britain	High Flying Aircraft. (Engineer, Vol. 171, No. 4,459, 27/6/41, p. 416.)
787217	Great Britain	<i>Economics of Airport Design.</i> (Engineer, Vol. 171, No. 4,458, June 20th, 1941, p. 399.)
78/218	Great Britain	The Rotol Four-Bladed Airscrew. (Aeronautics, Vol. 4, No. 5, June, 1941, p. 47.)
78/219	Great Britain	Airscrew Blade Roots and Their Effect on Performance. (F. C. Lynam, Aeronautics, Vol. 4, No. 5, June, 1941, pp. 48-50.)
78/220	Great Britain	Electrical Installation on Aircraft. (G. H. G. Garbett, Aeronautics, Vol. 4, No. 5, June, 1941, pp. 68-70.)
78/221	Italy	Italian Variable Pitch Propeller. (Der Flieger, Vol. 20, No. 3, March, 1941, pp. 71-72.)
78/222	Germany	Aerodynamic Diving Brake. (Der Flieger, Vol. 20, No. 3, March, 1941, p. 73.)
78/223	Germany	Light Aircraft Wn. 16 (Tricycle Undercarriage, Pusher Airscrew). (Der Flieger, Vol. 20, No. 3, March, 1941, p. 68.).
78/224	Germany	Cant 2,511 Twin Float Seaplane Transport (Photograph). (Der Flieger, Vol. 20, No. 3, March, 1941, p. 69.)
78/225	U.S.S.R	Auxiliary Equipment for Aerodromes and Hangars. (A. N. Kriboshapko, Air Fleet News, Vol. 23, No. 5, May, 1941, pp. 456-461.)
78/226	U.S.A	Progress and Prospects in Aircraft Production. (J. H. Jouett, Autom. Ind., Vol. 84, No. 10, 15/5/41, pp. 515.) (Abstract available.)
78/233	U.S.A	Graphical Solution of the Bending Aileron Case of Flutter. (W. B. Bergen and L. Arnold, J. Aeron. Sci., Vol. 8, No. 8, June, 1941, p. 312.)

78/234	U.S.A	Some Experimental Results on Wing Flutter. (W. Bollay and C. D. Brown, J. Aeron. Sci., Vol. 8, No. 8,
78/235	U.S.A	June, 1941, pp. 313-318.) (Abstract available.) The Proportioning of Aircraft Frameworks. (N. J. Hoff, J. Aeron. Sci., Vol. 8, No. 8, June, 1941, pp. 319-324.) (Abstract available.)
78/236	U.S.A	The Effect of Design Variables on Cargo Plane Perform- ance. (A. Burstein, J. Aeron. Sci., Vol. 8, No. 8,
78/237	U.S.A	June, 1941, pp. 325-330.) (Abstract available.) Recent Air Corps Developments in Rotating Wing Aircraft. (H. F. Gregory, J. Aeron. Sci., Vol. 8,
78/238	U.S.S.R	No. 8, June, 1941, pp. 331-333.) (Abstract available.) Calculation of the Torsional Deflection of a Wing. (S. N. Kam, Aeron. Eng., U.S.S.R., Vol. 15, No. 4, April,
78/239	U.S.S.R	1941, pp. 5-20.) Calculation of Shock Absorbers with Variable Aperture. (N. S. Blake, Aeron. Eng., U.S.S.R., Vol. 15, No. 4,
78/240	U.S.S.R	April, 1941, p. 57.) Machinery for High Speed Production. (A. S. Rodoniov, Aviation Industry, U.S.S.R., No. 17, May, 1941,
78/241	U.S.S.R	pp. 3-7.) Calculation of Tolerances in Shock Absorbers Under- carriage Legs. (N. A. Peleeks, Aviation Industry,
78/242	U.S.S.R	U.S.S.R., No. 17, May, 1941, pp. 8-10.) Crane for Lifting the Tail of Aircraft. (Aviation Indus- try, U.S.S.R., No. 17, May, 1941, p. 20.)
78/243	U.S.S.R	Medical Examination for Service in the Civil Air Fleet. (Y. F. Samter, Civil Aviation, U.S.S.R., Vol. 2, No. 4,
78/244	U.S.S.R	April, 1941, pp. 25-27.) Determination of the Optimum Flight Conditions for Aircraft, P.S. 84. (L. S. Konikov, Civil Aviation, U.S.S.R., Vol. 2, No. 5, May, 1941, pp. 3-4.)
78/245	U.S.S.R	Indicated Air Pressure Behind a Supercharger (Effect of Throttle Position; Some Defects of Superchargers, Their Causes and Remedies). (E. A. Ivanov, Civil Aviation, U.S.S.R., Vol. 2, No. 5, May, 1941, pp. 10-13.)
78/246	U.S.S.R	Cheap Solution for Washing Aircraft. (E. T. Podlubnaya, Civil Aviation, U.S.S.R., Vol. 2, No. 5, May, 1941,
78/247	U.S.S.R	p. 15.) Ground Planning of Aerodromes. by Means of the Theodolite. (M. V. L. Lubomirov, Civil Aviation,
78/248	Great Britain	U.S.S.R., Vol. 2, No. 5, May, 1941, pp. 23-24.) Large Aircraft for the R.A.F. (Nature, Vol. 148, No.
78/249	Great Britain	3,742, 19/7/41, p. 79.) Airscrew Weight. (K. B. Gillmore and A. V. Cleaver, Aeroplane, Vol. 61, No. 1,573, 18/7/41, pp. 70-72.)
78/250	Great Britain	Curtiss C.W20 Transport (Photograph). (Aeroplane, Vol. 61, No. 1,573, 18/7/41, p. 83.)
78/251	Great Britain	Importance of Aspect Ratio in Tail Unit Design. (B. Foster, Flight, Vol. 60, No. 1,699, 17/7/41, p. 34 a-c.)
78/252	Germany	Utilisation of Hard Clinker for Aerodrome Aprons. (W. Freytag, Flughafen, Vol. 9, Nos. 1 and 2, JanFeb., 1941, pp. 1-9.)
78/253	Germany	Safety Devices on a Modern Aerodrome. (E. Miessner and others, Flughafen, Vol. 9, No. 1-2, Jan. and Feb., 1941, pp. 9-12.)

300	ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/2 54	Germany	Vertical Surface Drainage of Landing Grounds. (B. Barmert, Flughafen, Vol. 9, No. 1-2, JanFeb., 1941,
78/255	Germany	pp. 12-14.) Take-off and Landing in Winter. (G. Weimann, Eluchofon Vol a No. 1 and Est
78/256	Germany	Flughafen, Vol. 9, No. 1-2, JanFeb., 1941, p. 14.) Protection of Aerodrome Structure Against Corrosion. (A. Foulon, Flughafen, Vol. 9, No. 3, March, 1941, pp. 1-2.)
78/257	Germany	Aerodrome Equipment (Electric Trolleys for Fuel and Oil, Catalytic Type of Air Heater for Engine Starting, Smoke Generator for Wind Direction, etc.). (Flug-
•. = 8/2 = 8	Great Britain	hafen, Vol. 9, No. 3, March, 1941, pp. 2-5.)
		Possibilities of Air Freight Services in the U.S.A. (The Engineer, Vol. 172, No. 4,462, 18/7/41, p. 43.)
78/259	Great Britain	Labour in the Aircraft Industry (15th Report of Select Committee on National Expenditure). (The Engineer, Vol. 172, No. 4,462, 18/7/41, pp. 44-45.)
78/260	Great Britain	The Aviation Mechanic. (G. Norcross and J. D. Quinn, McGraw Hill, 21/) (Book Review.) (Engineering,
78/261	U.S.A	Vol. 151, No. 3,935, 13/6/41, p. 463.) Ocean Air Transport (29th Wilbur Wright Lecture). (J. T. Trippe, Engineer, Vol. 152, No. 3,938, 4/7/41,
78/262	U.S.A	pp. 14-16.) Mass Production of Hamilton Propellers. (A. Nelson, Autom. Ind., Vol. 84, No. 12, 15/6/41, pp. 610-613
78/263	Great Britain	and 650-653.) Ocean Air Transport. (J. T. Trippe, Engineering, Vol.
78/264	Switzerland	152, No. 3,939, 11/7/41, p. 34.) The American Aircraft Industry. (Inter. Avia., No.
78/265	Great Britain	764-765, 19/5/41, pp. 1-6.) Tricycle Undercarriage Take-off. (E. J. Andrews, Air- craft Engineering, Vol. 13, No. 149, July, 1941, pp. 180-183.)
78/266	Great Britain	The Szydlowski Planiol Supercharger. (A. Metral, Air- craft Engineering, Vol. 13, No. 149, July, 1941, pp. 84-88.) (R.T.P. Translation No. 1,002.)
78/267	Great Britain	Flutter at Altitude. (J. C. K. Shipp, Aircraft Engineering, Vol. 13, No. 149, July, 1941, pp. 193-194.)
78/268	Great Britain	The Jigging of Modern Airframes. (Aircraft Engineering, Vol. 13, No. 149, July, 1941, pp. 195-204.)
78/269	Great Britain	Mobile Cradle Assembly Equipment. (Aircraft Produc- tion, Vol. 3, No. 34, Aug., 1941, pp. 267-268.)
78/270	Great Britain	Junkers Method of Unit Assembly at Floor Level. (Aircraft Production, Vol. 3, No. 34, Aug., 1941, p. 272.)
78/271	Great Britain	Production of Hydromatic Airscrews. (Aircraft Produc- tion, Vol. 3, No. 34, Aug., 1941, pp. 273-280.)
78/272	Great Britain	Tolerance of Aircraft Parts. (H. G. Conway, Aircraft Production, Vol. 3, No. 34, Aug., 1941, pp. 281-283.)
78/273	Great Britain	The Lockheed Aircraft Plant. (H. W. Perry, Aircraft Production, Vol. 3, No. 34, Aug., 1941, pp. 285-289.)
78/274	Great Britain	Ocean Air Transport. (J. T. Trippe, Engineering, Vol. 152, No. 3,940, 29/7/41, pp. 45-46.)
78/275	U.S.S.R	A Turning Device for Airscrews. (Y. S. Malikov, Air- craft Industry, Vol. 1, No. 15, April, 1941, p. 21.)

78/276	U.S.S.R	Causes of Ground Looping During Take-off. (G. V. Kazanski, Air Fleet News, U.S.S.R., Vol .23, No. 4,
78/277	U.S.S.R	April, 1941, pp. 331-332.) Airscrews for High Speed Aircraft with High Power Engines. (B. N. Egorov, Aeron. Eng., U.S.S.R.,
78/278	U.S.S.R	Vol. 15, No. 3, March, 1941, pp. 11-24.) A Means of Improving Control and Longitudinal Stability of an Aircraft with a Free Elevator. (M. L. Mill and D. I. Savelyev, Aeron. Eng., U.S.S.R.,
78/279	U.S.S.R	Vol. 15, No. 3, March, 1941, pp. 42-49.) Kinematics of the Retractable Undercarriage. (D. I. Kostyuk, Aeron. Eng., U.S.S.R., Vol. 15, No. 3,
78/280	Great Britain	March, 1941, pp. 42-49.) Airscrew Weight (11). (K. B. Gillmore and A. V. Cleaver, Aeroplane, Vol. 61, No. 1,574, 25/7/41, pp. 105-116.)
78/281	Switzerland	The Dynamic Balancing of Airscrews by the Esher-Wyss Method. (E. Kronauer, Flugwehr und Technik, Vol. 3, No. 6, June, 1941, pp. 141-144.) (R.T.P. Transla-
78/282	U.S.A	tion No. 1,247.) Sub-Contracting Problems. (L. B. Coon, Mech. Eng., Vol. 63, No. 7, July, 1941, pp. 514-516.)
78/283	Great Britain	Discussion on P.B. Slip Wing Aircraft. (Aeronautics, Vol. 5, No. 1, Aug., 1941, pp. 59-60.)
78/284	Great Britain	Tricycle Undercarriage for Ship Borne Fighters. (G. White, Aeronautics, Vol. 5, No. 1, Aug., 1941,
78/285	U.S.A	 pp. 72-79.) Automobile Methods Applied to Aircraft Production. (D. R. Berlin and P. Rossman, Transactions, J. of S.A.E., Vol. 48, No. 6, June, 1941, pp. 218-233.)
78/286	U.S.A	Altitude Conditioning of Aircraft Cabins. (J. S. Cooper, Transactions, J. of S.A.E., Vol. 48, No. 6, June, 1941, pp. 240-248.)
	×.	Engines and Accessories.
78/287	Great Britain	The Dynamic Absorber and its Application to Multi- Throw Crankshafts. (Bailey and Bullied, J. Inst. Mech. Engrs., May, 1941, pp. 73-82.) (Abstract available.)
78/288	Great Britain	Vis-a-Vis Internal Combustion Engines. (W. A. Tookey, Engineering, Vol. 151, No. 3,933, 10/6/41, pp. 423-425.)
7 8/28 9	Great Britain	Recent Applications of Fluid Couplings. (Engineering, Vol. 151, No. 3,933, 10/6/41, pp. 426-427.)
78/290	Germany	New Engine for Do. 18 (B.M.W. 132). (Dornier Works, W.R.H., Vol. 22, No. 1, 1/1/41, pp. 6-7.)
78/291	Germany	The History of the Diesel Engine as Applied to Ship Propulsion. (F. Sass, W.R.H., Vol. 22, No. 3, 1/2/41, pp. 26-40.)
78/292	U.S.A	Bibliography of Aeronautics, Supplement to Part 17- Diesel Aircraft Engines. (Compiled from the Index of Aeronautics of the Institute of the Aeronautical Sciences.)
78/293	Great Britain	Unsoundness in Gravity Die Cast Si-Al Alloy Pistons. (R. T. Parker, J. Inst. Metals, Vol. 67, March, 1941, pp. 101-114.)

		· · · ·
78/294	U.S.A	Method of Computing the Dimensions of Airplane Engine Coolers. (J. K. Thornton and J. G. Beever, J. Aeron. Science, Vol. 8, No. 7, May, 1941, pp.
78/295	Germany	292-299.) (Abstract available.) Aero Engine Starters. (Motor Schau, Vol. 5, No. 2, Feb 2041 pp 265 168.)
78/296	Germany	Feb., 1941, pp. 165-168.) The Development of the Argus Aero Engine since 1906.
78/297	Switzerland	(Motor Schau, Vol. 5, No. 2, Feb., 1941, pp. 182-187.) Steam Cooling in Combination with Steam and Exhaust Gas Turbine for I.C. Piston Engines. (B. Klompus, Flugwehr und Technik, Vol. 2, No. 10, Oct., 1940,
78/298	Italy	pp. 231-233.) Aerodynamic Installation of the Aircraft Power Plant (from the Italian). (C. Mazzuchelli, Flugwehr und Technik, Vol. 2, No. 10, Oct., 1940, pp. 233-234.)
78/299	U.S.A	Wright Double Cyclone G.R. 2,600 B. 5 (14-Cylinder Radial 1,350 h.p., at 15,000 ft.). (Inter. Avia., No. 760, 16/4/41, p. 8.)
78/300	U.S.A	Ryan Ball and Socket, Universal Joint Exhaust Manifold. (Inter. Avia., No. 760, 16/4/41, p. 8.)
78/301	U.S.A	Allison Engine Installation in Bell Caribou Fighter (V. 1,710 E. 4 Engine with Shaft Drive). (Flight,
78/302	Switzerland	Vol. 39, No. 1,695, 19/6/41, pp. 419-420.) The Design of Ducted Cooling Installations in Aircraft. (H. L. Studer, Flugwehr und Technik, Vol. 1, No. 3, March, 1939, pp. 78-81.)
78/303	Switzerland	Brown-Boveri Exhaust Turbo Supercharger. (E. Klingel- fuss, Flugwehr und Technik, Vol. 1, No. 4, April, 1939, pp. 107-110.)
78/304	Switzerland	The Nitriding of Aero Engine Cylinder Liners. (G. Mazzuchelli, Flugwehr und Technik, Vol. 1, No. 4, April, 1939, p. 110.)
78/305	Germany	The Closed Circuit Hot Air Turbine. (J. Ackeret and D. C. Keller, Z.V.D.I., Vol. 85, No. 22, 31/5/41, pp. 491-500. (Abstract available.)
78/306	Germany	Protective Deposits on Piston Rings to Facilitate Running in Process. (R. Poppinga, Z.V.D.I., Vol. 85, No. 22, 31/5/41, pp. 505-506.) (Abstract available.)
78/307	U.S.A	Air-Cooled v. Liquid-Cooled Engines. (J. G. Lee, Canadian Aviation, Vol. 14, No. 5, May, 1941, pp. 24-28 and 41-42.)
78/308	U.S.A	Ce Co. (Chandler Groves) Carburettor (Freedom from Icing). (Canadian Aviation, Vol. 14, No. 5, May, 1941, pp. 31-32.)
78/309	U.S.A	Engine Design v. Lubrication (with Discussion). (R. G. S. Pigott, S.A.E. Journal, Vol. 48, No. 5, May, 1941, pp. 165-176.) (Abstract available.)
78/310	Great Britain	The Kadenacy Engine. (Autom. Eng., Vol. 31, No. 411, June, 1941, pp. 189-191.)
78/311	Great Britain	Aero Engine Pyrometer Thermocouples. (F. G. Spread- bury, Aircraft Engineering, Vol. 13, No. 148, pp. 156-160.)
78/312	U.S.A	48 Ordinate Harmonic Analysis of Torque Curves. (F. L. Schwartz, J. App. Mech., Vol. 8, No. 2, June, 1941, p. 93.,
		* · · · · · · · · · · · · · · · · · · ·

302

78/313	Germany	Experimental Investigations on Freely Exposed Ducted Radiators. (W. Linke, Jahrbuck, D.L.L.F., Vol. 2,
78/314	France	pp. 381-386.) (R.T.P. Translation, T.M. 970.) Drag and Cooling of Air-Cooled Engines (I) (from the French). (P. E. Mercier, Aeroplane, Vol. 60, No.
78/315	U.S.A	1,571, 4/7/41, pp. 21-24.) Steam Engines for Aircraft. (L. Handel, Aviation, Vol. 40, No. 5, May, 1941, pp. 107.)
78/316	U.S.A	Cooling Characteristics of Submerged Light Aircraft Engines (Digest). (H. H. Ellerbrock, Aviation, Vol.
78/317	U.S.A	40, No. 5, May, 1941, p. 119.) Design of Airscoops for Aircraft Carburettors. (M. J. Kittler, Aviation, Vol. 40, No. 5, May, 1941, pp.
78/318	Great Britain	119-138.) Aero Engine Cooling. (E. A. Smith, Aeronautics, Vol. 4,
78/319	Great Britain	No. 5, June, 1941, pp. 51-53.) Self-Sealing Tanks. (Aeronautics, Vol. 4, No. 5, June,
78/320	Great Britain	1941, p. 67.) Major Tendencies in Aero Engine Design. (F. Halford,
78/321	U.S.S.R	Aeronautics, Vol. 4, No. 5, June, 1941, pp. 74-76.) Calculation of the Resonance Vibrations of an Elastically Supported Engine. (E. V. Ananev and others, Aeron. Eng., U.S.S.R., Vol. 15, No. 4, April, 1941, pp. 21-40.) (Abstract available.)
78/322	U.S.S.R	Effect of Pressure and Temperature of the Intake Air on the Performance of Aero Diesels. (A. E. Tolstov and D. A. Portnov, Aeron. Eng., U.S.S.R., Vol. 15, No. 4,
78/323	U.S.S.R	April, 1941, pp. 41-53.) (Abstract available.) Heat Removed by the Oil and Oil Consumption as Related to Régimé of Engine Operation. (M. E.
78/324	U,S.S.R	Gerasinov, Aeron. Eng., U.S.S.R., Vol. 15, No. 4, April, 1941, pp. 54-56.) Effect of Technical Methods of Repair on the Duration of Service of Aero Engines and Other Parts. (A. L. Epstein, Civil Aviation, U.S.S.R., Vol. 2, No. 5, May,
78/325	Great Britain	
78/326	Great Britain	Vol. 172, No. 4,461, 11/7/41, pp. 29-30.) A Theory of the Kadenacy System. (E. W. Geyer, Engineering, Vol. 151, No. 3,935, 3/6/1941, pp.
78/327	U.S.A.	463-464.) Design Features of D.B. 601A Aircraft Engine. (Autom. Ind., Vol. 84, No. 12, 15/6/41, pp. 616-617.) (Abstract available.)
78/328	U.S.A	Aviation Spark Plug Design as Embodied in AC. Plug L.S85. (Autom. Ind., Vol. 84, No. 12, 15/6/41, pp. 618, 658.)
78/329	U.S.A	The Stromberg Injection Type Carburettor. (Autom. Ind., Vol. 84, No. 12, 15/6/41, pp. 620-624.)
78/330	U.S.A.	Ford 12-Cylinder Engine Rated at 2,000 h.p. (Inter. Avia., No. 764-765, 19/5/41, p. 15.)
78/331	Great Britain	A Smoke Meter for Diesel Exhaust. (K. M. Brown, Autom. Eng., Vol. 31, No. 412, July, 1941, pp. 231-237.)
78/332	Great Britain	Supercharger Air Intakes. (Aircraft Production, Vol. 3, No. 34, Aug., 1941, pp. 269-271.)

. .

304	ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/333	Great Britain	Determination of Water Vapour in Flue and Exhaust Gases. (R. H. Parsons, Engineering, Vol. 152, No.
78/334	Great Britain	3,940, 29/7/41, p. 54.) Theory of the Kadenacy System. (F. K. Bannister,
	U.S.S.R	Engineering, Vol. 152, No. 3,940, 29/7/41, p. 54.) The Shape of Piston Rings. (V. P. Grechin, Aircraft Industry, U.S.S.R., Vol. 1, No. 13, April, 1941,
78/336	U.S.S.R	pp. 5-7.) G.E.A. 50 Gas Analysis Equipment. (V. E. Germanenko, Civil Aviation, U.S.S.R., Vol. 2, No. 3, March, 1941,
78/337	U.S.S.R	pp. 7-8.) Operation of the Cooling System of a High Altitude Aircraft. (D. Novak, Air Fleet News, U.S.S.R.,
78/338	U.S.S.R	Vol. 23, No. 4, April, 1941, pp. 340-344.) Oil Filter for High Power Aircraft Engines. (E. R. Tereshcheenko and A. A. Daryabin, Aeron. Eng.,
78/339	U.S.S.R	U.S.S.R., Vol. 15, No. 2, Feb., 1941, pp. 36-43.) Determination of the Loads on the Crankshaft Bearings of Radial Engines. (R. S. Kinassashuili, Aeron. Eng., U.S.S.R., Vol. 15, No. 2, Feb., 1941, pp. 44-50.)
78/340	U.S.S.R	Forced Vibrations of Crankshafts in Resonance. (V. Y. Nathanson, Aeron. Eng., U.S.S.R., Vol. 15, No. 2,
78/341	U.S.S.R	Feb., 1941, pp. 51-55.) On the Design of Oil Circulation Systems for Aircraft Engines. (S. K. Tumansky, Aeron. Eng., U.S.S.R., Vol. 15, No. 3, March, 1941, pp. 24-39.)
78/342	U.S.S.R	Increasing the Altitude Performance of Aircraft Engines. (V. A. Dollezhal, Aeron. Eng., U.S.S.R., Vol. 15, No. 3, March, 1941, pp. 39-42.)
78/343	U.S.S.R	The Work of the Radiator when Starting-up Under Winter Conditions. (M. I. Gerasimov, Aeron. Eng., U.S.S.R., Vol. 15, No. 3, March, 1941, pp. 49-52.)
78/344	U.S.A	
	•	June, 1941, pp. 234-239.7
	•	FUELS AND LUBRICANTS.
78/345	Germany	Gaseous Fuels for Diesel Engines. (W.R.H., Vol. 22, No. 3, 1/2/41, pp. 41-43.)
78/346	Germany	High Compression Gas Engine Using Pilot Fuel Oil Injection. (K. Schmidt, W.R.H., Vol. 22, No. 5,
78/347	U.S.A	 1/3/41, pp. 75-76.) Bibliography of Aeronautics, Supplement to Part 29- Lubricants. (Compiled from the Index of Aeronautics of the Institute of the Aeronautical Sciences.)
78/348	Germany	Modern Air Fuel and Gil Filters. (Motor Schau, Vol. 5, No. 1, Jan., 1941, pp. 64-68.)
78/349	Germany	The Thermal Stability of Various Lubricating Oils. (M. Richter, L.F.F., Vol. 18, No. 5, 28/5/41, pp. 184-197.)
78/350	U.S.A	A Method of Measuring Diesel Fuel Ignition Lag by Means of an Electric Switch. (A. E. Traver and W. S. Mount, S.A.E. Journal, Vol. 48, No. 5, May, 1941, pp. 177-179.)
78/351	U.S.A	Improvement in Compounded Lubricants. (U. B. Bray, S.A.E. Journal, Vol. 48, No. 5, pp. 31-32.)

78/35 2	Great Britain	Deep Drawing Lubricants. (E. E. Hall, Autom. Eng., Vol. 31, No. 411, June, 1941, pp. 192-194.)
78/353	U.S.A	Natural Gas Hydrates. (W. I. Willcox and others, Ind. and Eng. Chem. (Industrial Edition), Vol. 33, No. 5, May, 1941, pp. 662-665.)
7 8 /354	U.S.A	Nomographs for Thermal Conductivities of Gases and Vapours. (D. S. Davis, Ind. and Eng. Chem. (Indus-
78/355	U.S.S.R	trial Edition), Vol. 33, No. 5, May, 1941, pp. 675-678.) Oil Situations in Russia. (Engineer, Vol. 171, No. 4,459, 27/6/41, pp. 413-414.)
78/356	Great Britain	Methane as a Motor Fuel. (Engineer, Vol. 171, No. 4,458, June 20th, 1941, pp. 396-397.)
78/357	Germany	Emergency Evacuation of Fuel Tanks on Dive Bombers. (La Science et la Vei, Vol. 59, No. 286, June, 1941, p. 517.) (Abstract available.)
7 8 /358	Germany	Improvements in Wood Gas Generators for Transport Purposes. (H. Lutz, A.T.Z., Vol. 44, No. 6, 25/2/41,
78/359	Germany	pp. 142-148.) Development in the Bulldog Tractor Operating on Wood Gas. (K. Kunzel, A.T.Z., Vol. 44, No. 6, 25/2/41,
78/360	U.S.A	pp. 149-155.) (Abstract available.) 1940 C.F.R. Road Detonation Tests. (J. M. Campbell and others, S.A.E. Journal, Vol. 48, No. 5, May, 1941,
78/361	U.S.S.R	 pp. 193-204.) (Abstract available.) Some Peculiarities in the Working of Aircraft Fuel Systems. (G. K. Volkov, Air Fleet News, Vol. 23, No. 5, May, 1941, pp. 442-444.) (Abstract available.)
78/362	U.S.S.R	Operation of Aircraft Fuel Systems at High Altitudes. (M. P. Fokine, Air Fleet News, Vol. 23, No. 5, May, 1941, pp. 445-447.) (Abstract available.)
.78/363	U.S.A	Producer Gas for Motor Transport in Finland. (H. A. Branders, Autom. Ind., Vol. 84, No. 9, 1/5/41, pp. 482-485.)
78/364	U.S.A	Producer Gas Installations for Motor Transport in Finland. (Autom. Ind., Vol. 84, No. 10, 15/5/41, pp. 522-523.)
78/366	U.S.S.R	Running High Speed Aircraft on Two Kinds of Fuel (for Take-off and Cruising). (E. A. Ivanov and Y. A. Bichevsky, Civil Aviation, U.S.S.R., Vol. 2, No. 4, April, 1941, pp. 15-16.)
78/367	Germany	Lubricants Problem of the Axis Powers. (A. W. Nash, Engineering, Vol. 171, No. 4,457, 13/6/41, p. 387.)
7 8/ 368	U.S.A	Fuel Problem of Light Aeroplane Engine. (Autom. Ind., Vol. 84, No. 12, 15/6/41, p. 619.)
78/369	U.S.A	Determination of the Heat of Combustion of Gasolines. (W. H. Jones and C. E. Start, Ind. and Eng. Chem. (Analytical Edition), Vol. 13, No. 5, 15/5/41, pp. 287-290.)
78/370	U.S.A	Calibration of Existing Gum Stability Test Bombs. (D. L. Yabroff and E. L. Walters, Ind. and Eng. Chem. (Analytical Edition), Vol. 13, No. 5, 15/5/41,
78/371	U.S.A	 pp. 353-355.) Consistence Test for Lubricating Greases. (H. Levin and E. J. Schlagel, Ind. and Eng. Chem. (Analytical Edition), Vol. 13, No. 5, 15/5/41, p. 295-297.)

,

ABSTRACTS	FROM	THE	SCIENTIFIC	AND	TECHNICAL	PRESS.	

78/372	U.S.A	Viscosity Measurement. (M. R. Cannon and M. R.
4)01		Finske, Ind. and Eng. Chem. (Analytical Edition), Vol. 13, No. 5, 15/5/41, pp. 299-300.)
78/373	U.S.A	
78/274	U.S.A	306-312.) Indiana Stirring Oxidation Test for Lubricating Oils.
<i>4~</i> /3/+		(G. G. Lamb and others, Ind. and Eng. Chem. (Analytical Edition), Vol. 13, No. 5, May 15th, 1941,
78/375	Great Britain	pp. 317-321.) Alternative Fuels. (Autom. Eng., Vol. 31, No. 412,
78/376	U.S.S.R	July, 1941, pp. 238-242.) Comparison of the Anti-Knock Properties of Fuels in
	-	Different Engines. (M. M. Maslenikov and B. D. Zalog, Aeron. Eng., U.S.S.R., Vol. 15, No. 2, Feb.,
78/277	U.S.A	1941, pp. 23-25.) C.F.R. Committee Report on Aviation Vapour Lock.
		(O. C. Bridgeman, Transactions, J. of S.A.E., Vol. 48, No. 6, June, 1941, pp. 213-217.)
		MATERIALS.
78/378	Great Britain	Casein Adhesives. (E. E. Halls, Plastics, Vol. 5, No. 49, June, 1941, pp. 123-124.)
78/379	Great Britain	Fabric Bearings. (Proctor, Mech. World, 30/5/41, pp.
78/380	Great Britain	369-370, 380.) (Abstract available.) Flexible Metal Tubing. (Metzler, Iron Age, 25/4/41, pp. 46-49.) (Abstract available.)
78/381	Great Britain	Fabric Bearings. (Proctor, Mech. World, 23/5/41, pp. 347-349.) (Abstract available.)
78/382	Germany	Improvements in Electric Arc Welding. (W.R.H., Vol. 22, No. 4, 15/2/41, pp. 68-69.)
78/385	Great Britain	Notes on an Extended Test of Creosote Mixture in Com-
14 A		pression Ignition Engines. • (W. Allen, J. Inst. Auto. Eng., Vol. 9, March, 1941, pp. 73-82.)
78/386	Great Britain	Quenching Stresses in Al. Alloys (and Their Elimination by Subsequent Cold Working). (A. von Zeerlaner,
78/387	Great Britain	J. Inst. Metals, Vol. 67, March, 1941, pp. 87-89.) Atmospheric Exposure Tests on Copper Bearing and
1-75-7		Other Irons and Steels in the U.S. (E. S. Taylorson,
		Paper at May Meeting of Iron and Steel Inst., 12 Q.p.) (Science, Abs. B, Vol. 44, No. 521, p. 74.)
78/388	U.S.A	Permanent Buckling Stress of Thin Sheet Panels Under Compression. (W. L. Howland and P. E. Sandorff,
		J. Aeron. Sci., Vol. 8, No. 7, May, 1941, pp. 261-269.) (Abstract available.)
78/389		Least Work Solution of Shear Lag Problems. (E. Reissner, J. Aeron. Sci., Vol. 8, No. 7, May, 1941,
•	ta de la	pp. 284-291.) (Abstract available.)
78/390	Germany	The Stressing of Circular Frames in Shell Structures. (H. Fahlbusch and W. Wegner, L.F.F., Vol. 18, No. 4, 22/4/41, pp. 122-127.) (Abstract available.)
78/391	Germany	Pilot Balloons Made Out of Transparent Plastic Film. (K. Eisele, L.F.F., Vol. 18, No. 4, 22/4/41, pp.
		147-154.) (Abstract available.)

78/392	Germany	The Resistance Co-efficient of Commercial Types of Wire Grids. (B. Eckert and F. Pfluger, L.F.F., Vol. 18,
78/393	Switzerland	No. 4, 22/4/41, pp. 142-146.) (Abstract available.) The Present State in the U.S.A. of Welding Technique for Aircraft Construction. (L. P. Wood, Flugwehr und
78/394	Germany	Technik, Vol. 2, No. 10, Oct., 1940, pp. 234-236.) The Stability of Thin Walled U Section of Constant Thickness in the Elastic Region. (G. Kimm, L.F.F.,
78/395	U.S.A	Vol. 18, No. 5, 28/5/41, pp. 155-168.) Nylon Fibre for the Air Force. (Inter. Avia., No. 760, 16/4/41, p. 9.)
78/396	Germany	German Machine Tool Industry. (Inter. Avia., No. 761, 24/4/41, pp. 16-17.)
78/397	Germany	Replacement Materials in Optical Instruments. (K. Sporkert, Z.V.D.I., Vol. 85, No. 22, 31/5/41, pp.
78/398	Germany	501-504.) Comparison of Fatigue Strength of Steel and Bolts and Studs Fitted with Mg. Alloy Nuts or Inserts. (F.
	n na star Line star	Kaufmann and W. Janicke, Z.V.D.I., Vol. 85, No. 22,
78/399	U.S.A	31/5/41, pp. 504-505.) (Abstract available.) Bell Aircraft Material Testing Laboratory. (Canadian
78/400	U.S.A	Aviation, Vol. 14, No. 5, May, 1941, pp. 50-51.) Kirksite Zinc Alloy for Metal Stamping Dies. (Canadian Aviation, Vol. 14, No. 5, May, 1941, pp. 56-58.)
78/401	U.S.A	Automatic. Rivet Sorter of the G. L. Martin Co. (Canadian Aviation, Vol. 14, No. 5, May, 1941, p. 58.)
78/402	Switzerland	The Utilisation of Light Alloys in Aero Engine Design, with Special Reference to Al. Alloys. (H. Varrone, Flugwehr und Technik, Vol. 2, No. 7, July, 1940,
		pp. 151-154.)
78/403	Great Britain	The Welding of Mg. Alloys (Oxy-acetylene Process). (T. Jefferson, Metal Industry, Vol. 58, No. 22, 30/5/41,
78/404	Great Britain	pp. 467-468.) Anodic Treatment of Aluminium. (J. D. Edwards, Metal
78/405	Canada	Industry, Vol. 58, No. 22, 30/5/41, pp. 473-476.) Canadian Practice in Light Alloy Castings. (A. E.
•		Cartwright, Metal Industry, Vol. 58, No. 23, 6/6/41, pp. 492-495.)
78/406	Great Britain	Flow Properties of Thermo-Plastic (1). (W. G. Wear- mouth, British Plastics, Vol. 12, No. 144, May, 1941,
78/407	Great Britain	PP. 377-379.) Special Coating and Lacquers from Urea Resins. (British
78/408	Germany	Plastics, Vol. 12, No. 144, May, 1941, p. 394.) Anti-Rust Protection of Iron and Steel by Means of Phosphate Deposits. (Z.G.S.S., Vol. 36, No. 4, April,
78/400	and the second second	1941, pp. 86-87.) Modern Spring Materials. (S.A.E. Journal, Vol. 48,
78/410		No. 5, May, 1941, p. 204.) Chromium Plating for Tools and Machines. (R. F. Yates,
78/411		Sci. Am., Vol. 164, No. 6, June, 1941, pp. 330-332.) High Speed Spot Welding of Al. Alloy Sheet. (Sci. Am.,
		Vol. 164, No. 6, June, 1941, pp. 335-336.)
78/412	U.S.A	New Polariser Made of Stressed Polyvinel Alcohol. (Sci. Am., Vol. 164, No. 6, June, 1941, p. 353.)
78/413	U.S.A	

308	ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/414.	U.S.A	Seamless Tapered Steel Tubing for Welded Aircraft Structures. (Sci. Am., Vol. 164, No. 6, June, 1941,
78/415	Great Britain	p. 365.) Bearing Metals Rich in Tin. (Autom. Eng., Vol. 31, No. 411, June, 1941, p. 208.)
78/416	Great Britain	Increasing Hardness of Value Springs by Shot Blasting. (F. P. Zimmerli, Autom. Eng., Vol. 31, No. 411, June,
78/417	Great Britain	1941, p. 182.) Rubber Road Springs. (E. Macbeth, Autom. Eng., Vol. 31, No. 411, June, 1941, pp. 195-199.)
78/418	Great Britain	Semi-Automatic Transmission Gears Fitted to Chrysler Cars. (Autom. Eng., Vol. 31, No. 411, June, 1941,
78/419	Great Britain	pp. 203-206.) Bearing Failures. (Autom. Eng., Vol. 31, No. 411, June, 1941, pp. 203-206.)
78/420	Great Britain	Synthetic Rubbers. (Autom. Eng., Vol. 31, No. 411, June, 1941, pp. 207-208.)
78/421	Great Britain	Two-Spar Wing Stress Analysis. (W. J. Goodey, Air- craft Engineering, Vol. 13, No. 148, June, 1941, pp. 150-153.)
78/422	Great Britain	The Practical Application of Aluminium Bronze (Book Review). (C. H. Meigh (McGraw Hill), Aircraft Engineering, Vol. 13, No. 148, June, 1941, p. 160.)
78/423	Great Britain	Relaxation Methods in Engineering Science (Book Review). (R. V. Southwell (Humphrey Milford), Aircraft Engineering, Vol. 13, No. 148, June, 1941, p. 162.)
78/424	Great Britain	Applications of Urea-Formaldehyde Resin Glues. (R. Maskew, Aircraft Engineering, Vol. 13, No. 148, June, 1941, pp. 171-172.)
78/425	Great Britain	Corrosion of Fuel Tanks. (Aircraft Engineering, Vol. 13, No. 148, June, 1941, pp. 173-174.)
78/42 6	Great Britain	Welding of Stainless Aircraft Steels. (Aircraft Engineering, Vol. 13, No. 148, p. 176.)
78/427	U.S.A,	Effect of Surface Finish. (J. T. Burwell and others, J. App. Mech., Vol. 8, No. 2, June, 1941, pp. 49-58.)
78/428	U.S.A	High Speed Tension Tests at Elevated Temperatures. (A. Nadai and M. J. Maryvine, J. App. Mech., Vol. 8, No. 2, June, 1941, pp. 77-91.)
78/429	U.S.A	A Rational Definition of Yield Strength. (L. H. Fry, J. App. Mech., Vol. 8, No. 2, June, 1941, pp. 93-94.)
78/430	U.S.A	Analysis of Spoked Rings. (L. H. Donnell and others, J. App. Mech., Vol. 8, No. 2, June, 1941, pp. 67-73.)
78/431	U.S.A	Note on the Calculation of Influence Surfaces in Plates. (N. M. Newmark, J. App. Mech., Vol. 8, No. 2, June, 1941, p. 92.)
78/432	U.S.A	Equiareal Pattern of Stress Trajectories in Plane Plastic Strain. (M. A. Sadowsky, J. App. Mech., Vol. 8, No. 2, June, 1941, pp. 74-76.)
78/433	U.S.A	

78/434.	U.S.A	Oil Resistant Synthetic Rubber "Hycar Or." (B. J. Jarvey and others, Ind. and Eng. Chem. (Indust.
78/435	U.S.A	Edition), Vol. 33, No. 5, May, 1941, pp. 602-606.) Elastic and Thermoelastic Properties of Rubberlike Materials. (E. Guth and M. James, Ind. and Eng. Chem. (Indust. Edition), Vol. 33, No. 5, May, 1941,
78/436	U.S.A	pp. 624-629.) Chemical Seasoning of Wood. (E. C. Peck, Ind. and Eng. Chem. (Indust. Edition), Vol. 33, No. 5, pp. 653-655.)
78/437	Germany	German Standard Al. Alloys Specification Number, Composition and Employment. (Aluminium, Vol. 23, No. 1, Jan., 1941, p. 4.)
78/438	Germany	Stability and Strength Characteristics of Designs Carried Out in Alternative Materials. (P. Schwerbet,
78/439	Germany	Aluminium, Vol. 23, No. 1, Jan., 1941, pp. 5/3.) Recuperation Recrystallisation and Softening of Cold Rolled Dural Strip After Annealing (X-Ray Diffrac- tion). (M. Hansen and G. Moritz, Aluminium, Vol. 23, No. 1, Jan., 1941, pp. 14-27.)
78/440	Germany	Stress Measurements in Aircraft Structure Based on X-Ray Diffraction Patterns. (A. Hentsch, Aluminium, Vol. 23, Jan., 1941, pp. 27-33.)
78/441	Germany	The Effect of the Addition of Small per cent. of Heavy Metals on the Corrosion Resistance of AlMgSi. Alloys. (H. Hug, Aluminium, Vol. 23, No. 1, Jan., 1941, pp. 33-36.)
78/442	Germany	Shear Strength of Stabilised Pure Al. and Wrought Al. Alloy at Room and Elevated Temperatures. (R. Irmann, Aluminium, Vol. 23, No. 1, Jan., 1941, pp. 36-39.)
78/443	Germany	Joints in Electric Al. Cables. (W. V. Zwehl, Aluminium, Vol. 23, No. 1, Jan., 1941, pp. 41-46.)
78/444	Great Britain	Continuous Beams. (W. L. Marce, Flight, Vol. 40, No. 1,697, 4/7/41, pp. 7-10.)
78/445	Great Britain	The Fetish of Finish (a Plea for Casting and Welding). (Aeroplane, Vol. 60, No. 1,571, 4/7/41, p. 13.)
78 /446	U.S.A	Plastics in Aircraft. (J. E. Simonds, Aviation, Vol. 40, No. 5, May, 1941, pp. 38, 124 and 128.)
78/447	U.S.A	Moulding Plastics in Aircraft. (R. Decat, Aviation, Vol. 40, No. 5, May, 1941, pp. 41, 126 and 128.)
78/448	U.S.A	Pexiglass for Aircraft. (Aviation, Vol. 40, No. 5, May, 1941, pp. 42-43.)
78/449	U.S.A	A Simplified Method for Solving Shear Lag Problems. (E. Reissner, Aviation, Vol. 40, No. 5, May, 1941, pp. 48-49, 140.)
78/450	Great Britain	
78/451	Great Britain	Variable Distributed Loads in the Theorem of Three Moments. (F. J. Turtan, J. Roy. Aeron. Soc., Vol. 45, No. 366, June, 1941, pp. 218-224.)
78/452	Great Britain	Note on Biot's Dynamic Modulus. (W. J. Duncan, J. Roy. Aeron. Soc., Vol. 45, No. 366, June, 1941, pp. 225-227.)

310	ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/453	U.S.A	Eng. Chem. (News Edition), Vol. 19, No. 8, 25/4/41,
78/454	Great Britain	· p. 493.) The Mechanical Properties of Solids. (E. N. C. Andrade, Engineer, Vol. 171, No. 4,458, June 20th, 1941,
78/455	U.S.A	pp. 394-395.) Welding in the Machine Tool Industry. (E. B. Powers, Scientific American, Vol. 164, No. 7, July, 1941, pp. 8-11.)
78/456	U.S.A	Goodrich "Slosh" Tester for Self-Sealing Fuel Tanks. (Scientific American, Vol. 164, No. 7, July, 1941,
78/457	Great Britain	 p. 35.) Electro Deposition of Aluminium. (Light Metals, Vol. 4, No. 42, July, 1941, pp. 134-136.)
78/458	Great Britain	Beryllium Economics and Technology. (W. F. Chubb, Light Metals, Vol. 4, No. 142, July, 1941, pp. 144-148.)
78/459	U.S.A	On the Internal Resistance of Solid Bodies. (S. Higuchi, J. of Frank. Inst., Vol. 231, No. 5, May, 1941, pp. 421-445.) (Abstract available.)
78/460	U.S.A.	Freezing Temperatures of Iron and Steels. (J. of Franklin Inst., Vol. 231, No. 5, May, 1941, p. 475.)
78/461	Great Britain	Resistance to Furnace Atmosphere of Heat Resisting Steels. (A. G. Quarrell, Engineering, Vol. 151,
78/462	Great Britain	No. 3,937, 27/6/41, pp. 505-506.) Bullard-Dunn Electrolytic Pickling Process (Deposit of Tin Film). (Engineering, Vol. 151, No. 3,937, 27/6/41,
78/463	Great Britain	p. 510.) Detection of Flows in Non-Magnetic Metals by Eddy Currents. (Engineering, Vol. 151, No. 3,937, 27/6/41, pp. 518-519.)
78/464	Great Britain	The Production of Metal Powders. (C. C. Balke, Metal Industry, Vol. 158, No. 24, 13/6/41, pp. 502-504.)
78/465	Canada	Canadian Practice in Light Alloy Castings. (A. E. Cartwright, Metal Industry, Vol. 158, No. 24, 13/6/41, pp. 511-512.)
78/466	Great Britain	Adhesion of Nickel Deposits. (E. T. Rochl, Metal Industry, Vol. 158, No. 24, 13/6/41, pp. 513-516.)
78/467	Great Britain	Aircraft Materials. (J. C. Trewin, Aeronautics, Vol. 4, No. 6, July, 1941, pp. 56-59.)
78/468	Germany	Packings and Glands Using Buna Synthetic Rubber. (Der Flieger, Vol. 20, No. 3, March, 1941, pp. 70 and 76.)
78/469	Great Britain	Surface Hardening by Induction. (Osborn, Engineer, 6/6/41, pp. 372-373.) (Abstract available.)
78/470	Great Britain	An Inside Look at Welds. (Baldwin, Machinist, 7/6/41, pp. 149-152.) (Abstract available.)
78/471	Great Britain	A New Process for Shaping Tubing to any Desired Contour. (Machy., 12/6/41, pp. 287-290.) (Abstract available.)
78/472	Great Britain.	Rubber Road Springs. (Macbeth, Auto. Engr., June, 1941, pp. 195-199.) (Abstract available.)
78/473	Ģreat Britain	Liquid Crystals. (J. M. Bennett, Chem. and Ind., Vol. 60, No. 25, 21/6/41, pp. 465-466.)
78/474	U.S.A	High Permeability Silicon Steel "Hipersil" for Trans- former Core. (Autom. Ind., Vol. 84, No. 9, May 1st, 1941, p. 505.)

78/475	U.S.A.	•••	Aircraft Structure Laminated with Plastics. (H. Chase, Autom. Ind., Vol. 84, No. 10, 15/5/41, pp. 512-514
78/476	U.S.A.	•••	and 515.) Douglas Method of Flush Riveting for Aircraft. (Autom. Ind., Vol. 84, No. 10, 15/5/41, p. 518.) (Abstract available.)
78/477	U.S.A.	•••	Cemented Carbide Tools. (Autom. Ind., Vol. 84, No. 10,
78/478	U.S.S.R.	•••	15/5/41, pp. 526-527 and 550.) Rational Method for Cutting Wood. (M. A. Ruaine,
78/47 9	U.S.S.R.	•••	Aviation Industry, No. 16, April, 1941, pp. 2-8.) Pneumatic Press for Sticking Aircraft Plywood. (M. S. Karilin, Aviation Industry, No. 16, April, 1941,
78/481	Great Bri	tain	pp. 8-10.) Thermal Effects in Transformation in Metals. (C. Sykes,
78/482	U.S.A.		Nature, Vol. 148, No. 3,741, 12/7/41, pp. 58-59.) The Buckling of Thin Cylindrical Shells Under Axial Compression. (T. von Kármán and H. S. Tsien, J. Aeron. Sci., Vol. 8, No. 8, June, 1941, pp. 303-312.) (Abstract available.)
78/483	U.S.S.R.		Heat Treatment of Alloy M.A. 5 (7.9 per cent. Al., 0.3-0.7 per cent. up to 0.5 per cent. Mn.—remainder Mg.). (S. N. Spekjorova and S. A. Yudina, Aviation
78/484	U.S.S.R.		Industry, U.S.S.R., No. 16, April, 1941, pp. 10-11.) Mechanical and Hydraulic Jacks. (B. A. Masterman, Aviation Industry, U.S.S.R., No. 16, April, 1941, pp. 12-14.)
78/485	U.S.S.R.	•••	New Standard Tests for Wire Cables Used in Aircraft. (E. A. Karyakine, Aviation Industry, U.S.S.R., No. 16, April, 1941, pp. 14-16.)
78/486	U.S.S.R.	•••	Template Cutting Machines. (D. A. Poneja, Aviation Industry, U.S.S.R., No. 16, April, 1941, pp. 17-18.)
78/487	U.S.S.R.		Circuit Breakers for Automatic Control and Regulation of Contact Welding Machines. (F. E. Kilesluke, Aviation Industry, U.S.S.R., No. 17, May, 1941, pp. 13-17.)
78/488	U.S.S.R.		Recovery of Shaving of Aluminium Alloys. (Aviation Industry, U.S.S.R., No. 17, May, 1941, pp. 20-21.)
78/489	U.S.S.R.	•••	Oven for Nitriding and Hardening. (Aviation Industry, U.S.S.R., No. 17, May, 1941, p. 21.)
78/490	U.S.S.R.		Defects in Nitro-Cellulose Lacquer Coatings on Non- Metallic Surfaces. (E. A. Goubanov, Civil Aviation, U.S.S.R., Vol. 2, No. 5, May, 1941, p. 21.)
78/491	Great Bri	tain	The Technology of Mg. and its Alloys (Book Review). (A. Beck, E. A. Hughes and Co., Ltd., 1940. 30/) (Nature, Vol. 148, No. 3,742, 19/7/41, pp. 67-68.)
78/492	Germany		Temperature Distribution in Light Alloy Billets during Heating and Cooling. (W. Roth, Z. f. Mettallkunde, Vol. 33, No. 1, Jan., 1941, pp. 13-15.) (Abstract available.)
78/493	Germany	•••	Recrystallisation Theory on an Atomistic Basis. (V. Dehlinger, Z. f. Metallkunde, Vol. 33, No. 1, Jan., 1941, pp. 16-20.) (Abstract available.)
78/494	Germany	•••	Scratch Hardness in C.g.S. Units. (W. Ehrenberg, Z. f. Mettallkunde, Vol. 33, No. 1, Jan., 1941, pp. 22-23.) (Abstract available.)

312	ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/495	Germany	Quantitative Relationship between Scratch and Pressure Hardness. (W. Ehrenberg, Z. f. Metallkunde, Vol. 33,
78 /496	Germany	No. 1, Jan., 1941, pp. 23-24.) (Abstract available.) Surface Cracks of Cladded AlCuMg. Alloys Under- going Reversed Bending. (H. Burnheim and R.
	•	Mechel, Z. f. Metallkunde, Vol. 33, No. 1, Jan., 1941, pp. 25-27.) (Abstract available.)
78/497	Germany	The Influence of Impurities on the Corrosion Resistance of Mg. and its Alloys with Mu. and Al. (A. Beerwald, Z. f. Metallkunde, Vol. 33, No. 1, Jan., 1941, pp. 28-31.) (Abstract available.)
78/498	Germany	Kinematics of Linkages (11). M. Capellan, Z. f. Instrum., Vol. 61, No. 1, Jan., 1941, pp. 1-14.)
78/499	Great Britain	The Mechanical Properties of Solids. (E. N. Andrade, J. Inst. Civil Engrs., Vol. 16, No. 7, June, 1941,
78/500	Germany	pp. 287-308.) (Abstract available.) Analytical Derivation of Cooling Curves from the Phase Diagram. (G. Masing, Z. fur Metallkunde, Vol. 33, No. 1, Jan., 1941, pp. 36-37.)
78/501	Germany	The Welding of Mg. Alloy Castings. (K. Grassman and J. Brandis, Z. fur Metallkunde, Vol. 33, No. 1, Jan.,
78/502	Germany	1941, pp. 38-43.) Spectro Analysis of Al. Alloys. (A. Beerwald and W. Brauer, Z. fur Metallkunde, Vol. 33, No. 1, Jan., 1941,
78/503	Great Britain	pp. 44-45.) The Gas Welding of Al. (E. G. West, Metal Industry, Val. 78 No. of a 76/14, 22 Jun 147
78/504	Great Britain	Vol. 58, No. 26, $27/6/41$, pp. $542-547$.) The Production of Mg. Alloys. (F. A. Fox, Metal Inductry Vol. 58, No. 26, $27/6/41$, pp. $547-570$.)
	Great Britain	Industry, Vol. 58, No. 26, 27/6/41, pp. 547-550.) Molybdenum Steels in Aircraft Construction. (Climax Molybdenum Company.)
78/506	Great Britain	Some Flame Hardening Machines. (Engineer, Vol. 171, No. 4,460, 4/7/41, pp. 6-7.)
	U.S.A	Hipereil Transformer Steel. (Ind. and Eng. Chem. (News Edition), Vol. 19, No. 10, 25/5/41, p. 610.)
78/508	Great Britain	Theory of Plates and Shells. (S. Timoshenko. McGraw Hill. 42/) (Book Review.) (The Engineer, Vol. 172, No. 4,462, 18th July, 1941, p. 41.)
78/509	Great Britain	Corrosion of Surfaces in Contact. (Engineering, Vol. 151, No. 3,935, 13/6/41, p. 474.)
78/510-	Great Britain	The Mechanical Properties of Solids. (E. N. Andrade, Engineering, Vol. 171, No. 4,457, 13/6/41, pp. 380-383.)
78/511	Great Britain	The Damping Capacity of Steels and its Measurement. (G. P. Contractor and F. C. Thompson, Engineering, Vol. 171, No. 4,457, 13/6/41, pp. 384, 388-389.)
78/512	Great Britain	Mechanical Properties of Materials and Failure in Service. (L. W. Schuster, Engineering, Vol. 171, No. 4,457, 13/6/41, pp. 389-390.)
78/513	Great Britain	Annealing of High Nickel Alloys. (Engineer, Vol. 152, No. 3,938, 4/7/41, p. 17.)
78/514	Great Britain	Plastic and Metal Powders (Effect of Nature, Size and Shape of Constituent Particles). (H. W. Greenwood, Plastics, Vol. 5, No. 50, July, 1941, pp. 136-137.)
78/515	Great Britain	Plywood Water Tank. (Plastics, Vol. 5, No. 50, July, 1941, p. 137.)

78/516	Great · Britain	Screw Threads in Plastics. (Plastics, Vol. 5, No. 50, July, 1941, pp. 144-146.)
78/517	Great Britain	Surface Quality of a Medium Carbon Steel. (O. W. Boston and W. W. Gilbert, Engineering, Vol. 152, No. 3,939, 11/7/41, p. 35.) (Abstract available.)
78/518	Great Britain	Recent Developments in Metal Extrusion. (A. B. Cudabee, Metal Industry, Vol. 59, No. 1, 4/7/41, pp. 10-11.)
78/519	Great Britain	Rubber Road Springs. (C. Macbeth, Autom. Eng., Vol. 31, No. 412, July, 1941; pp. 221-226.)
78/520	Great Britain	Induction Heating. (Autom. Eng., Vol. 31, No. 412, July, 1941, p. 226.)
78/521	Great Britain	Recent Developments in Solders and Soldered Joints. (Autom. Eng., Vol. 31, No. 412, July, 1941, pp. 227-230.)
78/522	Great Britain	Mg. Alloys—Physical Characteristics. (F. A. Fox, Metal Industry, Vol. 59, No. 1, 4/7/41, pp. 2-7.)
78/523	Great Britain	Gas Welding of Al. (E. G. West, Metal Industry, Vol. 59, No. 1, 4/7/41, pp. 7-9.)
78/524	Great Britain	Reducing Wastage of Timber by Use of Veneers. (R. Maskew, Aircraft Engineering, Vol. 13, No. 149, July, 1941, p. 206.)
78/525	Great Britain	A Six Station Rubber Die Sheet Metal Press. (Aircraft Production, Vol. 111, No. 34, Aug., 1941, p. 283.)
78/526	Great Britain	A New Spot Welder for Al. Alloy Sheets. (Aircraft Production, Vol. 111, No. 34, Aug., 1941, p. 295.)
78/527	Great Britain	Molybdenum in Iron and Steel. (Engineering, Vol. 152, No. 3,940, 29/7/41, p. 60.)
78/528	Great Britain	Graphical Method of Designing Right Angle Helical Gearing. (P. Grodzinski, Engineering, Vol. 152, No. 3,941, pp. 61-62.)
78/529 .	Great Britain	Corrosion of Copper Alloys. (S. C. Britton, Engineering, Vol. 152, No. 3,941, July 25th, 1941, pp. 78-80.)
78/530	U.S.S.R	Standardised Assembly Jigs. (V. V. Litvinov and B. I. Guttman, Aviation Industry, U.S.S.R., Vol. 1, No. 9, March, 1941, pp. 3-6.)
78/531	U.S.S.R	Brazing with High Frequency Currents in Vacuum. (V. P. Vologdin, Aviation Industry, U.S.S.R., Vol. 1, No. 10, March, 1941, pp. 10-12.)
78/532	U.S.S.R	Investigation of the Properties of Metals by Supersonic Vibrations. (S. Y. Sokolov, Aviation Industry, Vol. 1, No. 11, March, 1941, pp. 11-15.)
78/533	U.S.S.R	Anodizing Electron Metals. (V. O. Kranich and B. I. Rybak, Aviation Industry, U.S.S.R., Vol. 1, No. 12, March, 1941, pp. 11-14.)
78/534	U.S.S.R	Drop Forging with Cast Iron Dies. (A. M. Kitaev, Aircraft Industry, U.S.S.R., Vol. 1, No. 13, April, 1941, pp. 2-4.)
78/535	U.S.A	Plexiglass Nose Section of B. 26. (American Chem. Soc. (News Edition), Vol. 19, No. 12, 25/6/41, pp. 700-701.)
78/536	U.S.A	Development in Continuous Annealing of Steel Strip. (J. D. Keller, Mech. Eng., Vol. 63, No. 7, July, 1937, pp. 507-513.)
78/537	U.S.A	Administrative Organisation for a Small Manufasturing Firm. (W. Rabbe, Mech. Eng., Vol. 63, No. 7, July,
	-	1941, pp. 517-520.)

314	ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/538	U.S.A	The Chrome Hardening of Cylinder Bores. (H. Van der Houst, Mech. Eng., Vol. 63, No. 7, July, 1941,
78/539	U.S.A	pp. 536-539, 542.) Automatic Induction Heat Treatment of Cylinder Bore by the "Budd" Process. (Mech. Eng., Vol. 63,
78/540	U.S.A	No. 7, July, 1941, p. 545.) High Permeability Silicon Steel "Hipersil." (Mech. Eng., Vol. 63, No. 7, July, 1941, pp. 546-547.)
78/541	U.S.A	A Micro Hardness Tester (Zeiss). (Mech. Eng., Vol. 63,
78/542	U.S.A	No. 7, July, 1941, pp. 547-548.) Discussion on "Solving Pipe Problems." (Mech. Eng., Jan., 1941, pp. 19-22.) Expansion Force in Pipe Circuits. (Mech. Eng., Vol. 63, No. 7, July, 1941,
78/543	U.S.A	PP. 55 ^{2-555.}) Revision of Chemical Composition of S.A.E. Steels.
78/544	U.S.A	(J. of S.A.E., Vol. 48, No. 6, June, 1941, pp. 18-19.) Strategic Materials of the U.S.A. (Tungsten, Antimony, Chromium, Tin, Manganese). (H. W. Gillett, Trans- actions, J. of S.A.E., Vol. 48, No. 6, June, 1941, pp. 205-212.)
78/545	U.S.A	Application of Spot Welding to Aircraft Production (Digest). (M. Rockwell, J. of S.A.E., Vol. 48, No. 6, June, 1941, p. 26.)
78/546	U.S.A	S.A.E. Handbook for 1941 (Review). J. of S.A.E., Vol. 48, No. 6, June, 1941, pp. 29-33.)
		INSTRUMENTS.
78/547	Great Britain	The Dekkar Universal Measuring Projector. (Engineering Vol. 151, No. 3,934, 6/6/41, pp. 446-447.)
78/548	Great Britain	An Electro Optic Pressure Indicator. (Robertson, Rev. Sci. Instr., March, 1941, pp. 142-148.) (Abstract available.)
78/549	Great Britain	A Ballistic Meter for Measuring Time and Speed. (Reich and Toomin, Rev. Sci. Instr., Feb., 1941, pp. 96-99.) (Abstract available.).
78/550	Great Britain	Temperature Measuring and Control Equipment (Multi- Point Temperature Indicator, Pyrometer Controller and Recording Pyrometer made by Messers. Negretti and Zambra). (J. Sci. Instrs., Vol. 18, No. 2, Feb.,
78/551	Switzerland	 and Zamora). (J. Sci. Instis., Vol. 18, No. 2, Feb., 1941, pp. 25-26.) The Preparation of True Scale Photographic Surveys by Means of the Odeucrants — Wild Rectifier. (D. Wieland, Flugwehr und Technik, Vol. 1, No. 3, March, 1939, pp. 71-73 (1).)
. 78/552	Switzerland	"Peravia' Engine Load Recorder. (Flugwehr und Technik, Vol. 2, No. 7, July, 1940, p. 155.) (Abstract available.)
78/553	U.S.A	Requirements of a Smoke Meter. (K. M. Brown, S.A.E. Journal, Vol. 48, No. 5, May, 1941, pp. 188-192.) (Abstract available.)
78/554	U.S.A	A New High Speed Indicator System (Digest). (E. E. Simmons, S.A.E. Journal, Vol. 48, No. 5, pp. 23-24.) (Abstract available.)
78/555	Great Britain	Drift of the Se-Layer Photo-Cell. (R. A. Houston, Phil. Mag., Vol. 31, No. 209, June, 1941, pp. 498-506.)

· ·

78/556	Germany	Experiences with Flow Direction Instruments. (B. Eckert, Jahrbuck D.L.F.F., 1938, Vol. 2, pp. 381-386.) (R.T.P. Translation, T.M. 969.) (Abstract available.)
78/557	U.S.A	Lear A.D.F. 8 Direction Finder. (Aviation, Vol. 40, No. 5, May, 1941, p. 77.)
78/558	Great Britain	The Testing of Dust Extraction Plant (II). (Engineering, Vol. 151, No. 3,937, 27/6/41, pp. 501-502.)
78/559	Great Britain	Instrument Panels with Special Reference to Switches. (E. B. Moss, Aeronautics, Vol. 4, No. 6, July, 1941, p. 61.)
78/560	U.S.S.R	Determination of Sighting Angles when Using Sights of Type OBP1. (V. A. Smirnov, Air Fleet News, Vol. 23, No. 5, May, 1941, pp. 430-435.)
78/561	U.S.S.R	Apparatus for Instruction in Navigation. (P. P. Ostanine, Air Fleet News, Vol. 23, No. 5, May, 1941, pp.
78/562	Great Britain	439-441.) The Stereographic Projection (Book Review). (F. W. Sohan, Chemical Publishing Co. Inc., Brooklyn. \$4.) (Nature Val. 448, No. 6 544, 50/2/47, 2007)
78/563	U.S.S.R	(Nature, Vol. 148, No. 3,741, 12/7/41, p. 37.) Repair of Aircraft Instruments. (S. A. Mayorov, Civil Aviation, U.S.S.R., Vol. 2, No. 4, April, 1941,
78/564	Germany	pp. 23-24.) Elastic Mounting of Quartz Crystal to Eliminate Inertia Effect in Piezo Electric Pressure Indicators. (J. Kluge and others, Z. fur Instrumentenkunde, Vol. 61, No. 2, Ech. 2010, 2016, 61, 00.
78/565	Germany	 Feb., 1941, pp. 65-66.) Measurement of Internal Diameters with Two and Three Point Calipers (I). (G. Berndt, Z. fur Instrum., Vol. 61, No. 1, Jan., 1941, pp. 14-25.)
78/566	Germany	Harmann Calculating Machines. (P. Werkmeister, Z. fur Instrum., Vol. 61, No. 1, Jan., 1941, pp. 31-32.)
78/567	Germany	Measurement of Internal Diameters with Two and Three Point Calipers (II). (G. Berndt, Z. f. Instrum., Vol. 61, No. 2, Feb., 1941, pp. 37-54.)
78/568	Germany	Measurement of Internal Diameters with Two and Three Point Calipers (III). (G. Berndt, Z. fur Instrum., Vol. 61, No. 3, March, 1941, pp. 69-82.)
78/569	Germany	The Performance of Telescopes as Affected by Image Contrast and Internal Blackening of Telescope Tube. (M. Nagel and A. Klughardt, Z. fur Instrum., Vol. 61, No. 4, April, 1941, pp. 124-129.)
78/570	Germany	A Photometric Sight. (R. Sewig, Z. fur Instrum., Vol. 61, No. 4, April, 1941, pp. 130-132.)
78/571	Germany	A Method of Synchronising Clock Mechanism Fitted with Hipp Spring Control. (H. Wetzer, Z. fur Instrum., Vol. 61, No. 4, April, 1941, p. 135.)
78/572	Great Britain	 The Annis Intake Flow Meter for Propeller Pumps. (M. B. Macneille and R. R. Annis, Engineering, Vol. 151, No. 3,935, 13/6/41, pp. 478-480.)
78/573	U.S.A	Ring Method for Determination of Interfacial Tension. (H. H. Zuidema and G. W. Waters, Ind. and Eng. Chem. (Analytical Edition), Vol. 13, No. 5, pp.
78/574	U.S.A.	312-313.) Measuring Smokes and Rating Efficiencies of Industrial Air Filters. (A. C. Robertson and others, Ind. and Eng. Chem. (Analytical Edition), Vol. 13, No. 5 15/5/41, pp. 331-334.)

316	ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/575	U. S.A.	Particle Size Determination by Sedimentation. (K. Kammereyer and J. L. Binder, Ind. and Eng. Chem. (Analytical Edition), Vol. 13, No. 5, 15/5/41, pp.
78/576	Great Britain	Projection. (Autom. Eng., Vol. 31, No. 412, July,
78/577	Great Britain	1941, pp. 219-220.) Condenser Type Electric Indicator. (Autom. Eng.,
78/578	Great Britain	Vol. 31, No. 412, July, 1941, p. 220.) Aircraft Instrument Pumps and Compressors. (F. G. Spreadbury, Aircraft Production, Vol. 111, No. 34,
78/579	U.S.S.R	Aug., 1941, pp. 296-298.) Altimeters for Blind Flying. (V. G. Nemchinov, Civil Aviation, U.S.S.R., Vol. 11, No. 3, March, 1941, pp. 17-19.)
78/580	U.S.S.R	Methods of Checking Variometers. (A. A. Varfolomeev, Air Fleet News, U.S.S.R., Vol. 23, No. 4, April, 1941,
78/581	U.S.S.R	pp. 345-351.) Librascope Balance Computer (U.S.S.R. Model) its Operation and Construction. (V. S. Gurevick, Air Fleet News, U.S.S.R., Vol. 23, No. 4, April, 1941,
78/582	U.S.A	pp. 352-356.) Oblique Cylindrical Projection for Maps Covering Long Distance Flights. (B. Jones, U.S. Air Services, Vol. 26, No. 6, June, 1941, pp. 16-18.)
		WIRELESS AND ELECTRICITY.
78/583	Great Britain	80 Watt Tubular Fluorescent Lamp. (Davies, Ruff and Scott, B.T.H. Act., April, 1941, pp. 37-42.) (Abstract available.)
78/584	Great Britain	X-Ray Analysis in Industry. (J. Sci. I., May, 1941, pp. 69-102.) (Abstract available.)
78/585	Great Britain	Radiolocation. (Flight, Vol. 39, No. 1,696, 26/6/41, pp. 430-430a.)
78/586	Great Britain	Radiolocation. (Aeroplane, Vol. 60, No. 1,570, 27/6/41, p. 708.)
78/587	Great Britain	Design of Wire Networks Carrying Radio Programmes. (Nature, Vol. 147, No. 3,739, 28/6/41, pp. 802-803.)
78/588	U.S.A	Radio Acoustic Triangulation at Sea. (G. T. Rude, Scientific American, Vol. 164, No. 7, July, 1941, pp. 16-18.)
78/589	Great Britain	Reading List on Radio Power Supply, Especially for Aircraft (1930 Onwards). (Sci. Lib. Biblog., Series No. 552.)
78/590	U.S.S.R	Determination of Wind in Absence of Ground Visibility by Means of the Radio Compass. (Air Fleet News,
78/591	Great Britain	Vol. 23, No. 5, May, 1941, pp. 436-439.) Applied X-Rays (Book Review). (G. L. Clark, Inter- national Series of Physics. McGraw Hill, Inc., New York. 1940. 42/) (Nature, Vol. 148, No. 3,741, 12/7/41, p. 36.)
78/592	Great Britain	An Electric Machine for Multiplying Matrices. (Nature, Vol. 148, No. 3,742, 19/7/41, p. 83.)
78/593	Germany	New Apparatus for Accurate Thermo Electric Tempera- ture measurement and Controls. (E. Weisse, Z. f. Metallkunde, Vol. 33, No. 1, Jan., 1941, pp. 1-13.)

78/594	Germany	Mercury Vapour Lamps for Electric "Flashlight" Stroboscopes. (P. Drewell, Z. fur Instrum., Vol. 61,
78/595	U.S.A	No. 3, March, 1941, pp. 99-100.) (Abstract available.) Electrical Contact Resistance. (G. Windred, J. of Frank.
78/596	Great Britain	Inst., Vol. 231, No. 6, June, 1941, pp. 547-585.) X-Raying Circumferential Seams. (R. C. Woods, The Engineer, Vol. 172, No. 4,461, 11/7/41, pp. 22-23.)
78/597	Great Britain	Applied X-Rays. (G. L. Clark. McGraw Hill. $42/-$.) (Book Review.) (Engineering, Vol. 151, No. 3,935, 13/6/41, p. 463.)
78/598	Great Britain	Broadcast Receivers—A Review (with Discussion). (H. M. Rust and others, J. Inst. of Elect. Eng., Vol. 88, Part 3, June, 1941, pp. 59-96.)
78/599	Great Britain	The Application and Use of Quartz Crystals in Tele- communications (with Discussions). (C. F. Booth, J. Inst. of Elect. Eng., Vol. 88, Part 3, June, 1941, pp. 97-144.)
78/600	Great Britain	Television Film Transmitters Using Aperture Scanning Discs. (D. C. Espley, J. Inst. of Elect. Eng., Vol. 88, Part 3, June, 1941, p. 145.)
78/601	U.S.S.R	Blind Landing by Wireless. (M. I. Kokonin, Civil Avia- tion, U.S.S.R., Vol. 2, No. 3, March, 1941, pp. 10-15.)
78/602 ´	U.S.S.R	Radio Position Finding Over Short and Long Distances. (A. V. Vorobiev and E. E. Verecotsky, Civil Aviation,
78/603	U.S.S.R	U.S.S.R., Vol. 2, No. 3, March, 1941, pp. 15-16.) Radio Interference on Aircraft. (E. E. Trefsek, Air Fleet News, U.S.S.R., Vol. 23, No. 4, April, 1941, pp. 357-360.)
		METEOROLOGY AND PHYSIOLOGY.
78/604	Great Britain	Fatigue following Highly Skilled Work. (F. C. Bartlett,
	Gicat Britani	
	Great Britain	Nature, Vol. 147, No. 3,736, 7/6/41, pp. 717-718.) The Co-ordination of Hand and Eye. (Engineering,
78/605	•	 Nature, Vol. 147, No. 3,736, 7/6/41, pp. 717-718.) The Co-ordination of Hand and Eye. (Engineering, Vol. 151, No. 3,933, p. 432.) Examples and Outline of Certain Modifications in Upper Air Analysis. (R. E. Montgomery and A. F. Spilhaus, J. Aeron. Sci., Vol. 8, No. 7, May, 1941, pp. 276-283.)
78/605 78/606	Great Britain	 Nature, Vol. 147, No. 3,736, 7/6/41, pp. 717-718.) The Co-ordination of Hand and Eye. (Engineering, Vol. 151, No. 3,933, p. 432.) Examples and Outline of Certain Modifications in Upper Air Analysis. (R. E. Montgomery and A. F. Spilhaus, J. Aeron. Sci., Vol. 8, No. 7, May, 1941, pp. 276-283.) (Abstract available.) Medical Precautions Against Aero Embolism (Reduction of N₂ Content in Blood Stream before High Altitude
78/605 78/606 78/607	Great Britain U.S.A	 Nature, Vol. 147, No. 3,736, 7/6/41, pp. 717-718.) The Co-ordination of Hand and Eye. (Engineering, Vol. 151, No. 3,933, p. 432.) Examples and Outline of Certain Modifications in Upper Air Analysis. (R. E. Montgomery and A. F. Spilhaus, J. Aeron. Sci., Vol. 8, No. 7, May, 1941, pp. 276-283.) (Abstract available.) Medical Precautions Against Aero Embolism (Reduction of N₂ Content in Blood Stream before High Altitude Ascent). (Inter. Avia., No. 763, 9/5/41, pp. 10-11.) Medical Physiological Factors of High Altitude Flight (I). H. Meier-Muller, Flugwehr und Technik, Vol. 1,
78/605 78/606 78/607 78/608	Great Britain U.S.A U.S.A	 Nature, Vol. 147, No. 3,736, 7/6/41, pp. 717-718.) The Co-ordination of Hand and Eye. (Engineering, Vol. 151, No. 3,933, p. 432.) Examples and Outline of Certain Modifications in Upper Air Analysis. (R. E. Montgomery and A. F. Spilhaus, J. Aeron. Sci., Vol. 8, No. 7, May, 1941, pp. 276-283.) (Abstract available.) Medical Precautions Against Aero Embolism (Reduction of N₂ Content in Blood Stream before High Altitude Ascent). (Inter. Avia., No. 763, 9/5/41, pp. 10-11.) Medical Physiological Factors of High Altitude Flight (I). H. Meier-Muller, Flugwehr und Technik, Vol. 1, No. 3, March, 1939, pp. 73-75.) Medical Physiological Factors of High Altitude Flight (II). (H. Meier-Muller, Flugwehr und Technik, Vol. 1, No. 3, March, 1939, pp. 73-75.)
78/605 78/606 78/607 78/608 78/609	Great Britain U.S.A U.S.A Switzerland	 Nature, Vol. 147, No. 3,736, 7/6/41, pp. 717-718.) The Co-ordination of Hand and Eye. (Engineering, Vol. 151, No. 3,933, p. 432.) Examples and Outline of Certain Modifications in Upper Air Analysis. (R. E. Montgomery and A. F. Spilhaus, J. Aeron. Sci., Vol. 8, No. 7, May, 1941, pp. 276-283.) (Abstract available.) Medical Precautions Against Aero Embolism (Reduction of N₂ Content in Blood Stream before High Altitude Ascent). (Inter. Avia., No. 763, 9/5/41, pp. 10-11.) Medical Physiological Factors of High Altitude Flight (I). H. Meier-Muller, Flugwehr und Technik, Vol. 1, No. 3, March, 1939, pp. 73-75.) Medical Physiological Factors of High Altitude Flight (II). (H. Meier-Muller, Flugwehr und Technik, Vol. 1, No. 4, April, 1939, pp. 101-102.) Adaptation of Organism during Short Exposures to High Altitude Conditions—Low Pressure Chamber Experiments. (F. V. Favel, Flugwehr und Technik, Vol. 1, No. 1,
78/605 78/606 78/607 78/608 78/609 78/610	Great Britain U.S.A U.S.A Switzerland Switzerland	 Nature, Vol. 147, No. 3,736, 7/6/41, pp. 717-718.) The Co-ordination of Hand and Eye. (Engineering, Vol. 151, No. 3,933, p. 432.) Examples and Outline of Certain Modifications in Upper Air Analysis. (R. E. Montgomery and A. F. Spilhaus, J. Aeron. Sci., Vol. 8, No. 7, May, 1941, pp. 276-283.) (Abstract available.) Medical Precautions Against Aero Embolism (Reduction of N₂ Content in Blood Stream before High Altitude Ascent). (Inter. Avia., No. 763, 9/5/41, pp. 10-11.) Medical Physiological Factors of High Altitude Flight (I). H. Meier-Muller, Flugwehr und Technik, Vol. 1, No. 3, March, 1939, pp. 73-75.) Medical Physiological Factors of High Altitude Flight (II). (H. Meier-Muller, Flugwehr und Technik, Vol. 1, No. 4, April, 1939, pp. 101-102.) Adaptation of Organism during Short Exposures to High Altitude Conditions—Low Pressure Chamber Experi-

318	ABSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/613	U.S.S.R	Effect of Helium on Human Beings during Rapid Changes in Atmospheric Pressure. (B. V. Tolokon- nikov, Civil Aviation, U.S.S.R., Vol. 2, No. 4, April,
78/614	Ù.S.S.R	1941, pp. 27-28.) Use of Carbogen (5.7 per cent Carbon Dioxide and 95-93 per cent. Oxygen) for Breathing Purposes at High Altitude. (V. V. Streltsov, Civil Aviation, U.S.S.R., Vol. 2, No. 5, May, 1941, p. 29.)
78/615	U.S.A	Decompressing the Pilot for Test at High Altitude. (A. R. Boone, Air Services, U.S., Vol. 26, No. 5, May, 1941, pp. 32-35.)
		SOUND, LIGHT AND HEAT.
78/616	Great Britain	Portable Meters for the Measurement of Light and Ultra- Violet Energy. (Luckiesh and Taylor, G.E. Rev., April, 1941, pp. 217-221.) (Abstract available.)
78/617	Great Britain	Infra-Red Radiation. (Koller, G.E. Rev., March, 1941, pp. 167-173.) (Abstract available.)
78/618	Germany	Directed Transmission and Reception of Sound. (F. A. Fischer, Z.V.D.I., Vol. 85, No. 22, 31/5/41, p. 500.) (Abstract available.)
78/619	Great Britain	The Steady Flow of Heat from Certain Objects Buried Under Flat Air-Cooled Surfaces. (F. H. Schofield, Phil. Mag., Vol. 31, No. 209, June, 1941, pp. 471-497.)
78/620	Great Britain	(Abstract available.) Reading List on Solar Power Plants. (Sci. Lib. Biblog. Series, No. 553.)
78/621	Germany	The Propagation of Sound in the Free Atmosphere and its Dependence on Meteorological Conditions. (N. Seig, Elektrische Nachrichten Technik, Vol. 17, No. 9, Sept., 1941, pp. 193-208.) (Abstract available.)
78/622	Germany	A Flash Light Time Interval Recorder Suitable for Short and Medium Intervals. (K. Botz, Z. fur Instrum., Vol. 61, No. 4, April, 1941, pp. 135-136.) (Abstract available.)
78/623	Great Britain	An Objective Noise Meter Reading in Phones for Sus- tained Noises (with Special Reference to Engineering Plant) (with Discussion). (A. J. King and others, J. Inst. of Elect. Eng., Vol. 88, Part 2, June, 1941,
78/624	U.S.A	pp. 163-182.) (Abstract available.) Fluorescent Illumination for Instruments. (Inter. Avia.,
		No. 764-765, 19/3/41, p. 15.) Echo Sounder for Air Defence. (Inter. Avia., No.
- , -	U.S.A	764-765, 19/5/41, pp. 19-20.) (Abstract available.) Bell Sound Detector. (Inter. Avia., No. 764-765, 19/5/41, p. 20.) (Abstract available.)
0/5	0.1	Photography.
78/627	Switzerland	Theodoliten. Photograph of A.A. Shell Burst (Training). (Flugwehr und Technik, Vol. 1, No. 4,
78/628	Great Britain	April, 1939, pp. 98-99.) Photograph Reproduction by the Technaphot Camera. (Aircraft Production, Vol. 3, No. 34, Aug., 1941, p. 284.)

78/629 U.S.S.R. ... Aerial Photography in Colour. (N. P. Rozhdestuin, Air Fleet News, U.S.S.R., Vol. 23, No. 4, April, 1941, pp. 333-335.)

MISCELLANEOUS.

78/631	Great Britain	Some Temperature Effects with Compressed Air. (A. L. Egan, Engineering, Vol. 151, No. 3,934, 6/6/41,
78/632	Great Britain	pp. 444-451.) The Birth and Death of the Sun (Book Review). (G. Garratt. McMillan and Co., Ltd. 1941. 12/6.) (Nature, Vol. 147, No. 3,736, 7/6/41, pp. 689-690.)
78/633	Great Britain	The World and the Atom (Book Review). (C. Moller and E. Rasmussen. Allen and Unwin, Ltd. 1940. 10/6.) (Nature, Vol. 147, No. 3,736, 7/6/41, p. 690.)
78/634	Great Britain	The Testing of Dust Extraction Plant. (Engineering, Vol. 151, No. 3,933, 10/6/41, pp. 421-422.)
78/637	U.S.A	American Society of Aeronautical Weight Engineers. (Inter. Avia., No. 761, 24/4/41, p. 15.) (Abstract available.)
78/639	Great Britain	Surface Tension and the Spreading of Liquids (Book Review). (R. S. Burden, Phil. Mag., Vol. 31, No. 209, June, 1941, p. 511.)
78/640	U.S.A	Modern Passenger Car Ride Characteristics. (R. Schilling and others, J. App. Mech., Vol. 8, No. 2, June, 1941, pp. 59-66.)
78/641	Great Britain	Some Temperature Effects with Compressed Air. (J. Jennings, Engineering, Vol. 151, No. 3,933, 10/6/41, p. 494.)
78/642	Germany	Experiments with "Simplex" Balanced Rudders. (G. Lehmann, W.R.H., Vol. 22, No. 7, 1/4/41, pp. 105-112.)
78/645	U.S.A	Summary of Proceedings of Ninth Annual Meeting of Inst. Aero. Sciences (30/1/41). (A. Klemin, J. Aeron. Sci. (Review Sect.), Vol. 8, No. 5, March, 1941, pp. 45/59.)
78/649	Great Britain	The Purification of Air and Gases. (Metal Industry, Vol. 158, No. 24, 13/6/41, pp. 507-509.)
78/651	Great Britain	Adjustable Blade Turbines. (Terry, Power, May, 1941, pp. 76-78.) (Abstract available.)
78/653	U.S.A	Administrative Report for Fiscal Year ending June 30th, 1940. (26th Annual Report, N.A.C.A.) (Abstract available.)
78/654	Great Britain	A New Process for Liquifying Air (Expanding Gas doing Work in a Turbine). (J. H. Awbery, Nature, Vol. 18, No. 3,740, 5/7/41, p. 14.)
78/655	U.S.S.R	Spraying Beetroot Crops from the Air. (L. D. Lavrov and E. V. Sazonov, Civil Aviation, U.S.S.R., Vol. 2, No. 4, April, 1941, pp. 19-21.)
78/656	U.S.S.R	New Self-Priming Pumps. (A. E. Musienko, Civil Aviation, U.S.S.R., Vol. 2, No. 5, May, 1941, pp. 13-14.)
78/657	Germany/Italy	German and Italian Research Co-operation (Supersonics, Coupled Engine Installations, Timber). (Inter. Avia., No. 768-769, 16/6/41, pp. 10-11.)

3 20	A	BSTRACTS	FROM THE SCIENTIFIC AND TECHNICAL PRESS.
78/658	Great	Britain	Stresses between Tyre and Road. (A. N. Markwich and H. J. Starks, J. Inst. Civil Engineers, Vol. 16, No. 7,
78/659	Great	Britain	June, 1941, pp. 309-325.) Early Application of Engineering to the Warming of Buildings. (A. F. Dufton, Engineer, Vol. 171,
78/662	Great	Britain	No. 4,460, $4/7/41$, pp. 4-6.) 1,000 Kw. Windmill. (The Engineer, Vol. 172, No.
78/663	Great	Britain	4,462, 18/7/41, p. 43.) Compaction of Cohesionless Foundation Soil by Explo- sives. (A. K. B. Lyman, The Engineer, Vol. 172,
78/664	Great	Britain	No. 4,462, 18/7/41, pp. 45-46.) The "Airgraph" Letter Service. (Engineer, Vol. 152, No. 3,938, 4/7/41, pp. 7-8.)
78/665	Great	Britain	The Automatic Adjustable Blade Water Turbine. (R. V. Terry, Engineer, Vol. 152, No. 3,938, 4/7/41, pp.
78/666	Great	Britain	17-20.) Characteristic Design Factors for Propeller and Kaplan Turbines. (J. R. Finniecombe, Engineering, Vol. 152,
78/667	Great	Britain	No. 3,939, July 11th, 1941, pp. 21-24.) Temperature Tests on Motor Omnibus Brake Drums and Tyres. (Engineering, Vol. 152, No. 3,939, 11/7/41, pp. 38-40.)