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ON THE LOGARITHMIC DERIVATIVES

OF SUBORDINATE FUNCTIONS

M.M. ELHOSH

Coefficient and integral mean bounds are obtained for functions

subordinate to close-to-convex functions.

Let C denote the class of close-to-convex functions f(z)

normalised so that f(0) = f'(0) -1=0 and satisfying

Re zf'(z)/elCt^(z) > 0 (\o.\ <, TS/2) for some starlike function $(z)

normalized as above and satisfying Re z$'(z)/$(z) £ 0 in |s| < 1 ,

[6, p.17]. We denote the class of all $(z) by S* . It is well known

that S* is contained in C 16, pp. 11-18]. Now let S(C) = if : f < g

for some g in C) where / < g means / is subordinage to g . Such

a relation is usually written in the form f(z) = g(w(z)) , where

w(0) = 0 and \w(z)| < 1 in \z\ < 1 .

We define S(S*) similarly; clearly S(S*) £ S(C) 16, p.72].

We now apply the *-function and the extreme point theory arguments due

to Baernstein [7] (see also [2], [4], [5], [S]) and MacGregor [9] (see

also [6, Chapter 6], [5]) respectively to prove the following results.
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THEOREM 1. Let f e S(C) and p be a positive integer; then for

z = re1^', 0 < r < 1 , we have

[ *\zf'(z)/f(z)\2pd6 < I \(l+2z)/(l-z)\2pde = OtU-r)1'2?), (r •* 1) .

Also for -co < p < co we have

r2-n r2v
\f'(z)\PdQ <. \K'(z)\PdQ

'0 >0

where K(z) is the Koebe function.

Proof Of Theorem 1. We see from [6, Chapter 6] (see in particular

Theorems 6.11 and 6.12) that it suffices to prove the theorem for

functions of the form

CD f(z) =

where |w| = |x| = \y\ = 1 and x ̂  y .

Indeed we see from this that \zf'(z)/f(z) \ < 3/(l-r) which implies

that the family {zf'(z)/f(z) : f e S(C)} is compact and hence, as in

[9, pp. 361-365], has compact closed convex hull and consequently the

extreme points of the closed convex hull of this family are contained in

it.

Thus we deduce from the logarithmic derivative of (1) that

zf'(z) _ 1+yz Cx+y)z
fCz) 1-yz ~ 2-(x+y)z

where, as in [7, p.52], << means that if la z « ZC z then

\an\ < Cn, n=0,l,2,... .

Using this and [7, Lemma 2.4.1] we deduce that if p is a positive

integer then izf'(z)/f(z)HP « l(l+2z)/(l-z)f which means that if
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lzfl(z)/f(z)f = lC(p)zn and i(l+2z)/(l-z) f = W (p)zn then

\Cn(p)\ * Dn(p), 71=0,1,2,... .

Thus we see from Parseval's identity that

I "\zf'(z)/f(z)\2PdQ = 2TT I \C
>0 r\=0 n

r\=0

2TT
2TT I D2(p)r2n = f "\(l+2z)/(l-z)\2pde.

n=0 n h

This gives the first inequality of Theorem 1.

To prove the second inequality we apply the *-function argument as

in the proof of Theorem 1 of [8], (see also [/], [2], [4, Chapter 7 ) to

the derivative of (1), f'(z) = w(l-xz)/(l-yz)3. We deduce (in this

connection see the note about the rearrangement on page 84 of [6]) that

(±log\f'(z)\)* = (±log\w(l-xz)/(l-yz)3\)*

< (±log\w(l-X3)\)* + 3(±log\l/(l-yz)\)*

= (±log\l±z\)* + 3(±log\l/(l+z)\)*

= (±log\K'(z)\)* .

The second inequality of Theorem 1 now follows by applying

[I, Proposition 3] with <$(u) = exp[pw] just as in [7, Theorem 1],

[2, Theorem 1], [4, Theorem 7.2], [5] and [8].

THEOREM 2. Let f e S(S*); then for z = re16, 0 < r < 1 t and
-a, < p < oo we have

f2ir „ f2ir

\zf'(z)/f(z)\pde z \ \zK'(z)/K(z)\Pde.

h >o
The proof of Theorem 2 follows by applying the same method used in the

proof of the second inequality of Theorem 1 to the function

f(z) = xz/Cl-yz)Z where \x\ = \y\ = 1 16, Theorem 5.22].

https://doi.org/10.1017/S0004972700026368 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026368


130 M.M. Elhosh

THEOREM 3. Let f e S(C) and f(z) = z + \ anz
n ; then for

n > 1 we have

\Wn\ - I V j I l s l ,

\n\aj - (n-l)\an_2\\ z 2n-l,

9
S 5 .

PrOOf Of Theorem 3. We see from [6, p. 72] that we may consider

functions of the form (1) which have coefficients

(2) an = hu>l(n+l)y-(n-l)x]yn~Z

where as in (1) \w\ = \x\ = \y\ = 1 and x ̂  y .

From (2) we immediately see that

t3) l^-t/a^jl = k\x-y\ S 1 .

The first inequality of Theorem 3 now follows from (3) since

Ilanl~'an-iI I - \an~yan-l\ when ^ =1 "

Similarly, we prove the second inequality by using (2) .

To prove the second inequality we differentiate (1) and deduce that

(l-yz)2f'(z) =w(l-xz)/(l-yz)

This implies, in view of the definition of << above, that

(4) \nan-2(n-l)yan_1 + Cn-2)y2an_2\ <; 2 .

From C3) and (4) we deduce for some fixed y (\y\=l) satisfying (1),(2)

(3) and (4) that
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where we have used the inequali ty \a\ ^ n which follows from (2) .

This completes the proof of Theorem 3.

Remarks

1. We note that the first inequality of Theorem 3 is known where /

belongs to S* [3, p.537] while the second and third inequalities are

known where / belongs to C [3, p.537] and [10].

2. The second inequality of Theorem 1 extends Theorem 6.12 of [6] for

/' . However if f(z) = g(z) in Theorem 1, then the second inequality

is due to Leung [S] and the first is due to the author [5] when p = 2 .

3. The Koebe function and its rotations show that the second inequality

of Theorem 1 and Theorem 2 as well as the first two inequalities of

Theorem 3 are sharp. The first inequality of Theorem 1 is not sharp and

it is quite likely that Theorem 2 holds for the wider class S(C) . It

is also possible that \a a ,o-a ,| S 1 in Theorem 3. This is
n M r 2 n'f'J

certainly true for S(S*) as can be seen from the representation

f(z) = xz/Cl-yz) of Theorem 2.
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