A LEMMA ON PROJECTIVE GEOMETRIES AS MODULAR AND/OR ARGUESIAN LATTICES

BY
ALAN DAY ${ }^{(*)}$

Abstract

A projective geometry of dimension $(n-1)$ can be defined as modular lattice with a spanning n-diamond of atoms (i.e.: $n+1$ atoms in general position whose join is the unit of the lattice). The lemma we show is that one could equivalently define a projective geometry as a modular lattice with a spanning n-diamond that is (a) is generated (qua lattice) by this n-diamond and a coordinatizing diagonal and (b) every non-zero member of this coordinatizing diagonal is invertible. The lemma is applied to describe certain freely generated modular and Arguesian lattices.

§1. Introduction. A projective geometry of dimension ($n-1$) can be defined as a modular lattice with a spanning n-diamond of atoms (see Crawley and Dilworth [2] or Day [4]). In this note we provide another necessary and sufficient condition for a modular lattice with a spanning n-diamond to be a projective geometry of dimension $(n-1)$ and apply it to prove that projective geometries of prime order and dimension ≥ 3 (respectively $=2$) are projective modular (resp. Arguesian) lattices. The first aforementioned result is due to Freese [7].
Let M be a bounded modular lattice; a spanning n-diamond in M is a sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n+1}\right)$ in M satisfying for all $i \neq j=1, \ldots, n+1$, ($n D 1$) $\bigvee\left(d_{k}: k \neq i\right)=1$ and $(n D 2) d_{i} \wedge \bigvee\left(d_{k}: k \neq i, j\right)=0$. Although there is complete symmetry in the definition of a spanning n-diamond, we will write $\mathbf{d}=$ $\left(x_{1}, \ldots, x_{n-1}, z, t\right), h=\vee\left(x_{i} ; i=1, \ldots, n-1\right)$, the "hyperplane at infinity", $w=$ $h \wedge(z \vee t)$, the infinity point on the line $z \vee t ; A=\{p \in M: p \vee h=1$ and $p \wedge h=0\}$, the affine plane; and $D=\{a \in A: a \leq z \vee t\}=\{a \in L: a \vee w=z \vee t$ and $a \wedge w=0\}$, the coordinatizing diagonal which will become the (planar ternary) ring. The affine plane A can now be coordinatized by D in that there are inverse bijections between A and D^{n-1} viz: $p \mapsto\left((z \vee t) \wedge\left(\bar{x}_{i} \vee p\right)\right)$ and $\left(a_{i}\right) \mapsto \wedge\left(\bar{x}_{i} \vee a_{i}\right)$ where $\bar{x}_{i}=\bigvee\left(x_{j}: j \neq i\right)$.
We will need to examine the case where $n=2$ (i.e. the projective plane) more closely, so let (x, y, z, t) be a spanning 3-diamond in a modular lattice M.

[^0]We can visualize this as the affine plane A with $h=x \vee y$, the line at infinity as:

The projective isomorphism $[0, z \vee w] \stackrel{x}{=}[0, z \vee y]$ defines for each $b \in D$ a y-intercept point $b_{0}=(z \vee y) \wedge(x \vee b)$ satisfying for $p \leq z \vee y, p=b_{0}$ for some $b \in D$ if and only if $p \vee y=z \vee y$ and $p \wedge y=0$. Similarly the projective isomorphisms $[0, z \vee w] \stackrel{x}{=}[0, y \vee t] \stackrel{z}{=}[0, x \vee y]$ provide a "slope point at infinity" $b \stackrel{x}{=} b_{1} \stackrel{z}{=} b_{\infty}$ for each $b \in D$. Note that $z_{\infty}=x$ and $t_{\infty}=w$. Furthermore $q \leq x \vee y$ is such a slope point if and only if it is a complement of y (in $[0, x \vee y]$). We now can define the ternary operator on D by:

$$
T(a, m, b)=(z \vee t) \wedge\left\{x \vee\left[(y \vee a) \wedge\left(m_{\infty} \vee b_{0}\right)\right]\right\}, \quad a, b, c \in D .
$$

Easy (modular) calculations show that T is indeed a function from D into D. We now can define multiplication and addition on D by:

$$
\begin{aligned}
& a \otimes b=T(a, b, z) \\
& a \oplus b=T(a, t, b) .
\end{aligned}
$$

Left and right differences can now be defined by

$$
a \Delta_{l} c=(z \vee t) \wedge\{x \vee[(y \vee z) \wedge\{w \vee[(y \vee a) \wedge(x \vee c)]\}]\}
$$

and

$$
c \Delta_{r} b=(z \vee t) \wedge\left\{y \vee\left[(x \vee c) \wedge\left(w \vee b_{0}\right)\right]\right\} .
$$

These make $(D ; \oplus, z)$ into a loop since $c=a \oplus b$ iff $a=c \Delta_{r} b$ iff $b=a \Delta_{l} c$.
In general multiplication does not have left and right division as operations in D. One need only consider $\mathscr{L}\left({ }_{R} R^{3}\right)$, the lattice of left submodules of a given "bad" ring R. If $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the standard basis of $R, x=R \mathbf{e}_{1}, y=R \mathbf{e}_{2}$, $z=R \mathbf{e}_{3}$ and $t=R\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right)$, we obtain $D=\left\{\bar{a}=R\left(a \mathbf{e}_{1}+a \mathbf{e}_{2}+\mathbf{e}_{3}\right): a \in R\right\}$ with $T(\bar{a}, \bar{m}, \bar{b})=\overline{a m+b} \cdot a \in R$ is then invertible if and only if $z \wedge \bar{a}=0$ and
$z \vee \bar{a}=z \vee t$. In general we define $\operatorname{Inv}(D)=\{a \in D: z \vee a=z \vee t$ and $z \wedge a=0\}$ and can show $a \in \operatorname{Ind}(D)$ if and only if there exists $b, c \in D$ with $b \otimes a=t=$ $a \otimes c(t$ is the unit of $\otimes!)$.

Now if M is a projective plane then $\operatorname{Inv}(D)=D \backslash\{z\}$ since the meet of any two distinct points is 0 . Furthermore one can obtain every point of the geometry by lattice operations from the points $D \cup\left\{x_{1}, \ldots, x_{n-1}\right\}$. Our lemma is the converse.

Lemma. Let M be a modular lattice with spanning n-diamond $\left\langle x_{1}, \ldots, x_{n-1}, z, t\right\rangle$ and suppose $M=\left\langle D \cup\left\{x_{1}, \ldots, x_{n-1}\right\}\right\rangle$ the lattice generated by $D \cup\left\{x_{1}, \ldots, x_{n-1}\right\}$; then M is a projective geometry of dimension ($n-1$) if and only if $\operatorname{Inv}(D)=D \backslash\{z\}$.
§2. The case $n=3$
Claim 1. For $a, b \in D$, the following are equivalent:
(1) $a \wedge b=0$ and $a \vee b=z \vee t$
(2) $a \Delta_{l} b \in \operatorname{Inv}(D)$
(3) $b \Delta_{r} a \in \operatorname{Inv}(D)$.

Proof. Modular lattice calculations give $z \wedge\left(a \Delta_{l} b\right)=z \wedge\left(b \Delta_{r} a\right)=$ $z \wedge(w \vee(a \wedge b))$ and $z \vee\left(a \Delta_{l} b\right)=z \vee\left(b \Delta_{r} a\right)=z \vee(w \wedge(a \vee b))$. Therefore $a \Delta_{l} b$ (resp. $\left.b \Delta_{\mathrm{r}} a\right)$ is in $\operatorname{Inv}(D)$ if and only if $w \wedge(a \vee b) \leq w \leq w \vee(a \wedge b)$ are complements of z in $[0, z \vee t]$ if and only if $w \wedge(a \vee b)=w=w \vee(a \wedge b)$ by modularity if and only if $a \vee b=z \vee t$ and $a \wedge b=0$.

Corollary 1. If $D=\operatorname{Inv}(D) \cup\{z\}$, then $\{0, z \vee t, w\} \cup D$ is a sublattice of M isomorphic to M_{α} where $\alpha=1+|D|$.

Corollary 2. If $D=\operatorname{Inv}(D) \cup\{z\}$, then $\{0, y \vee z, y\} \cup D_{0}$ is a sublattice of M isomorphic to M_{α} where $\alpha=1+|D|$ and $D_{0}=\left\{a_{0}: a \in D\right\}$.

Corollary 3. If $D=\operatorname{Inv}(D) \cup\{z\}$, then $\{0, x \vee y, y\} \cup D_{\infty}$ is a sublattice of M isomorphic to M_{α} where $\alpha=1+|D|$ and $D_{\infty}=\left\{a_{\infty}: a \in D\right\}$.

We now need to represent M as a projective plane by defining points, lines and incidences. We let

$$
\begin{aligned}
& P=A \cup\{y\} \cup D_{\infty} \\
& L=\{h=x \vee y\} \cup\{y \vee a: a \in D\} \cup\left\{m_{\infty} \vee b_{0}: m, b \in D\right\}
\end{aligned}
$$

and p Il iff $p \leq l$. To complete the proof for $n=3$ we must show that (P, L, \leq) is a projective geometry and that $M=\{0,1\} \cup P \cup L$.

Claim 2. $p \leq h$ iff $p \in\{y\} \cup D_{\infty}$.
Proof. Trivial as $p \wedge h=0$ for all $p \in A$.

Claim 3. $p \leq y \vee a$ iff $p \in\{y\} \cup\{(y \vee a) \wedge(x \vee b): b \in D\}$.
Proof. Easy.
CLAIM 4. $p \leq m_{\infty} \vee b_{0}$ iff $p \in\left\{m_{\infty}\right\} \cup\{(y \vee a) \wedge(x \vee T(a, m, b)): a \in D\}$.
Proof. Clearly any point on $m_{\infty} \vee b_{0}$ besides m_{∞} must come from A, and for such a point

$$
\begin{array}{ll}
(y \vee a) \wedge(x \vee c) \leq m_{\infty} \vee b_{0} & \text { iff } \quad(y \vee a) \wedge(x \vee c) \leq(y \vee a) \wedge\left(m_{\infty} \vee b_{0}\right) \\
& \text { iff } \quad x \vee c \leq x \vee\left[(y \vee a) \wedge\left(m_{\infty} \vee b_{0}\right)\right] \\
\text { iff } \quad c \leq x \vee\left[(y \vee a) \wedge\left(m_{\infty} \vee b_{0}\right)\right] \\
\text { iff } \quad c \leq T(a, m, b) \\
\text { iff } \quad c=T(a, m, b) \quad \text { by modularity. }
\end{array}
$$

Claim 5. For any $p \in P$ and $l \in L$ either $p \leq l$, or $p \vee l=1$ and $p \wedge l=0$.
Proof. We will prove this claim only for $p=(y \vee a) \wedge(x \vee c)$ and $l=m_{\infty} \vee b_{0}$ where $c \neq T(a, m, b)$.

$$
\begin{aligned}
p \vee l & =p \vee\left[(y \vee a) \wedge\left(m_{\infty} \vee b_{0}\right)\right] \vee m_{\infty} \\
& =p \vee[(y \vee a) \wedge(x \vee T(a, m, b))] \vee m_{\infty} \\
& =[(y \vee a) \wedge(x \vee c \vee T(a, m, b))] \vee m_{\infty} \\
& =y \vee a \vee m_{\infty} \quad \text { since } c \neq T(a, m, b) \\
& =1 \\
p \wedge l & =(x \vee c) \wedge(y \vee a) \wedge\left(m_{\infty} \vee b_{0}\right) \\
& =(y \vee a) \wedge(x \vee c) \wedge(x \vee T(a, m, b)) \\
& =(y \vee a) \wedge x, \quad \text { since } c \neq T(a, m, b) \\
& =0
\end{aligned}
$$

Claim 6. The join (in M) of distinct points is a line.
Proof. We will consider the two non-trivial cases and leave the rest to the reader. If $p=(y \vee a) \wedge(x \vee b)$ and $q=(y \vee c) \wedge(x \vee d)$ are distinct then $(a, b) \neq(c, d)$. If $a=c, p \vee a=y \vee a \in L$ or if $b=d, p \vee q=x \vee b=z_{\infty} \vee b_{0} \in L$. Therefore we may assume $a \neq c$ and $b \neq d$. With these assumptions one can easily show that
(i) $(y \vee z) \wedge(p \vee q) \in D_{0}$, as a complement of y
(ii) $(y \vee x) \wedge(p \vee q) \in D_{\infty}$ and
(iii) $p \vee q=[(y \vee z) \wedge(p \vee q)] \vee[(y \vee x) \wedge(p \vee q)] \in L$.

If $p=(y \vee a) \wedge(x \vee b)$ and $q=m_{\infty}$ then easily $(y \vee z) \wedge(p \vee q) \in D_{0}$ and $p \vee q=$ $[(y \vee z) \wedge(p \vee q)] \vee q \in L$.

Claim 7. The meet (in M) of distinct lines is a point.

Proof. We have used already that $(y \vee a) \wedge\left(m_{\infty} \vee b_{0}\right)=(y \vee a) \wedge(x \vee T(a, m, b))$ and therefore are left with only one other non-trivial case: $m_{\infty} \vee b_{0}$ and $n_{\infty} \vee c_{0}$ with $(m, b) \neq(n, c)$. If however $m=n$, then the meet of the lines is m_{∞}. Therefore assume $m \neq n$. We complete the proof by showing that $\left(m_{\infty} \vee b_{0}\right) \wedge$ $\left(n_{\infty} \vee c_{0}\right) \in A \subseteq P$.

$$
\begin{aligned}
h \wedge\left(m_{\infty} \vee b_{0}\right) \wedge\left(n_{\infty} \vee c_{0}\right)= & {\left[m_{\infty} \vee\left(b_{0} \wedge h\right)\right] \wedge\left[n_{\infty} \vee\left(c_{0} \wedge h\right)\right] } \\
= & m_{\infty} \wedge n_{\infty} \\
= & 0 \quad \text { as } \quad m \neq n \\
h \vee\left[\left(m_{\infty} \vee b_{0}\right) \wedge\left(n_{\infty} \vee c_{0}\right)\right]= & \left(m_{\infty} \vee n_{\infty}\right) \vee\left[\left(m_{\infty} \vee b_{0}\right)\right. \\
& \left.\wedge\left(n_{\infty} \vee c_{0}\right)\right] \text { as } \quad m \neq n \\
= & {\left[m_{\infty} \vee n_{\infty} \vee b_{0}\right] \wedge\left[n_{\infty} \vee m_{\infty} \vee c_{0}\right] } \\
= & 1
\end{aligned}
$$

We have therefore that $\{0,1\} \cup P \cup L$ is a sublattice of M containing $D \cup$ $\{x, y\}$. Since M is assumed to be generated by $D \cup\{x, y\}, M=\{0,1\} \cup P \cup L$ and M is a projective plane.
$\S 3$. The case $n \geq 4$. The proof this case is by induction on the statement:
If $\mathbf{y}=\left(y_{2}, \ldots, y_{n}, z, t\right)$ is an n-diamond in a modular lattice M with
(1) $h_{\mathbf{y}}=\bigvee\left(y_{i}: 2 \leq i \leq n\right)$
(2) $w_{\mathbf{y}}=h_{\mathbf{y}} \wedge(z \vee t)$
(3) $A_{\mathbf{y}}=\left\{p \in M: p \vee h_{\mathbf{y}}=z \vee h_{\mathbf{y}}, p \wedge h_{\mathbf{y}}=0\right\}$
(4) $D_{\mathbf{y}}=\left\{p \in A_{\mathbf{y}}: p \leq z \vee t\right\}=\operatorname{Inv}\left(D_{\mathbf{y}}\right) \cup\{z\}$
then the sublattice of M generated by $D \cup\left\{y_{2}, \ldots, y_{n}\right\}$ is a projective geometry of dimension $(n-1)$ whose point (qua geometry) set includes $A_{\mathbf{y}} \cup$ $\left\{h_{\mathbf{y}} \wedge(p \vee q): p, q \in A_{\mathbf{y}}\right\}$.

This statement is true for $n=3$ so let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, z, t\right)$ be an $(n+1)$ diamond in a modular lattice M, and let $y_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{12} \vee z \vee t\right)$ and $y_{i}=x_{i}$ for $3 \leq i \leq n$.

The reader may easily verify that $\mathbf{y}=\left(y_{2}, \ldots, y_{n}, z, t\right)$ is an n-diamond in M with
(1) $h_{\mathbf{y}}=h_{\mathbf{x}} \wedge\left(\bar{x}_{12} \vee z \vee t\right)=h \wedge\left(\bar{x}_{12} \vee z \vee t\right)$
(2) $w_{\mathbf{y}}=w_{\mathbf{x}}(=w)$
(3) $A_{\mathbf{y}}=\left\{\left(\bar{x}_{12} \vee a_{2}\right) \wedge \wedge\left(\bar{x}_{i} \vee a_{i}: 3 \leq i \leq n\right): a_{2}, a_{i} \in D\right\}$
(4) $D_{\mathbf{y}}=\mathrm{D}_{\mathbf{x}}=D=\operatorname{Inv}(D) \cup\{z\}$

By induction hypothesis we have that $M_{12}=\left\langle D \cup\left\{y_{2}, \ldots, y_{n}\right\}\right\rangle$ is a projective geometry of dimension n. Also $M_{12} \leq\left[0, \bar{x}_{12} \vee z \vee t\right]$.

Now consider the projective isomorphism $\phi:\left[0, \bar{x}_{12} \vee z \vee t\right]{ }_{=}^{x_{1}}\left[0, \bar{x}_{1} \vee t\right]=$ $[0, h] \cdot \phi\left[M_{12}\right]=H$ is therefore a projective geometry of dimension $(n-\hat{1})$ generated by $\left\{h \wedge\left[z\left[\left(\bar{x}_{1} \vee t\right) \wedge\left(x_{1} \vee a\right)\right]\right]: a \in D\right\} \cup\left\{x_{2}, \ldots, x_{n}\right\}$. Note that this set includes $x_{1}=\phi(z)$ and $w=\phi(t)$. Moreover the set $A_{\mathbf{y}}$ is mapped precisely onto the complements of \bar{x}_{1} in $[0, h]$ since $\phi\left(h_{\mathbf{y}}\right)=\bar{x}_{1}$.

Claim 1. For $p, q \in A\left(=A_{\mathbf{x}}\right), h \wedge(p \vee q)$ is a point of H.
Proof. If $p, q \in A$ then there exists $\mathbf{a}, \mathbf{b} \in D^{n}$ with $p=\Lambda\left(\bar{x}_{i} \vee a_{i}\right)$ and $q=$ $\wedge\left(\bar{x}_{i} \vee b_{i}\right)$. Moreover if $a_{1} \neq b_{1} \bar{x}_{1} \vee[h \wedge(p \vee q)]=h$ and $\bar{x}_{1} \wedge(h \wedge(p \vee q))=0$. Therefore $h \wedge(p \vee q)$ is a point in H.

If $a_{1}=b_{1}=c$, then $p \vee q=\left[\bigwedge^{2, n}\left(\bar{x}_{i} \vee a_{i}\right) \vee \bigwedge^{2, n}\left(\bar{x}_{i} \vee b_{i}\right)\right] \wedge\left(\bar{x}_{1} \vee c\right)$ and $h \wedge$ $(p \vee q)=\bar{x}_{1} \wedge\left[\bigwedge^{2, n}\left(\bar{x}_{i} \vee a_{i}\right) \vee \bigwedge^{2, n}\left(\bar{x}_{i} \vee b_{i}\right)\right]=\left(h_{\mathbf{y}} \wedge\left(p_{\mathbf{y}} \vee q_{\mathbf{y}}\right)\right)$ where $\quad p_{\mathbf{y}}=\left(\bar{x}_{12} \vee a_{2}\right) \wedge$ $\Lambda^{3, n}\left(\bar{x}_{i} \vee a_{i}\right)$ and q_{y} is similarly defined. This proves the claim.

Now let $U=\{p \vee s: p \in A \cup\{0\}$ and $s \in H\} \subseteq M$. We want that U is a sublattice of M and in fact a projective geometry of dimension n.

CLaim 2. $p_{1} \vee s_{1} \leq p_{2} \vee s_{2}$ if and only if $s_{1} \leq s_{2}$ and $h \wedge\left(p_{1} \vee p_{2}\right) \leq s_{2}$ for $p_{1}, p_{2} \in$ A and $s_{1}, s_{2} \in H$.

Proof. If $p_{1} \vee s_{1} \leq p_{2} \vee s_{2}$ then meeting with h produces $s_{1} \leq s_{2}$ and meeting $p_{1} \vee p_{2} \leq p_{2} \vee s_{2}$ with h produces $h \wedge\left(p_{1} \vee p_{2}\right) \leq s_{2}$. Conversely $p_{2} \vee s_{2}=$ $p_{2} \vee\left[h \wedge\left(p_{1} \vee p_{2}\right)\right] \vee s_{2}=p_{1} \vee p_{2} \vee s_{2} \geq p_{1} \vee s_{1}$.

Corollary. For any $q \in\left\{x_{1}, \ldots, x_{n}, z, t\right\},[0, q] \cap U=\{0, q\}$.
Now since $\left(p_{1} \vee s_{1}\right) \vee\left(p_{2} \vee s_{2}\right)=p_{1} \vee\left(s_{1} \vee s_{2} \vee\left[h \wedge\left(p_{1} \vee p_{2}\right)\right]\right)$ when $p_{1} \neq 0, U$ is closed under joins (as H is).

Claim 3. For distinct $p, q \in A, p \wedge q=0$.
Proof. We have $\mathbf{a}, \mathbf{b} \in D^{n}$ with $p=\Lambda\left(\bar{x}_{i} \vee a_{i}\right)$ and $q=\bigwedge\left(\bar{x}_{i} \vee b_{i}\right)$, and

$$
\begin{aligned}
p \wedge q & =\bigwedge\left(\bar{x}_{i} \vee a_{i}\right) \wedge\left(\bar{x}_{i} \vee b_{i}\right) \\
& =\bigwedge\left(\bar{x}_{i} \vee\left(a_{i} \wedge b_{i}\right)\right) .
\end{aligned}
$$

Since $p \neq q, \mathbf{a} \neq \mathbf{b}$ and therefore $a_{i} \neq b_{i}$ for some i. For this i we obtain

$$
\begin{aligned}
p \wedge q & =\bar{x}_{i} \wedge \bigwedge_{j \neq i}\left(\bar{x}_{j} \vee\left(a_{j} \wedge b_{j}\right)\right) \\
& =0 .
\end{aligned}
$$

Claim 4. U is closed under meets.
Proof. Since $p_{1} \wedge\left(p_{2} \vee s_{2}\right)=p_{1} \wedge\left(p_{2} \vee\left(s_{2} \wedge h \wedge\left(p_{1} \vee p_{2}\right)\right)\right)=p_{1} \wedge p_{2}$ and $\left(p_{1} \vee s_{1}\right) \wedge$ $s_{2}=s_{1} \wedge s_{2}$ we may assume without loss of generality that we have $p_{i} \vee s_{i} \in U$, $i=1,2$ with $p_{j} \neq p_{i} \vee s_{i}$ for $i \neq j$. Since H is a projective geometry this is equivalent to $s_{1} \wedge\left(p_{1} \vee p_{2}\right)=s_{2} \wedge\left(p_{1} \vee p_{2}\right)=0$.

Now suppose there are points of $H, a_{i} \leq s_{i}$ such that $a_{1} \vee a_{2}=$ $a_{1} \vee\left[h \wedge\left(p_{1} \vee p_{2}\right)\right]=a_{2} \vee\left[h \wedge\left(p_{1} \vee p_{2}\right)\right]$. Clearly $p=\left(a_{1} \vee p_{1}\right) \wedge\left(a_{2} \vee p_{2}\right) \in A$ and $p \vee\left(s_{1} \wedge s_{2}\right) \leq\left(p_{1} \vee s_{1}\right) \wedge\left(p_{2} \vee s_{2}\right)$. However both of these expressions are complements of s_{1} in $\left[s_{1} \wedge s_{2}, s_{1} \vee p\right]$. Therefore we have equality and $\left(p_{1} \vee s_{1}\right) \wedge$ $\left(p_{2} \vee s_{2}\right) \in U$.

Now if no such $a_{i} \leq s_{i}$ exist, we can conclude, since H is a projective geometry, that $s_{i} \wedge\left(s_{i} \vee\left[h \wedge\left(p_{1} \vee p_{2}\right)\right]\right)=0, \quad i \neq j$. These simplify to $\mathrm{s}_{1} \wedge\left(\mathrm{~s}_{2} \vee p_{1} \vee p_{2}\right)=s_{2} \wedge\left(s_{1} \vee p_{1} \vee p_{2}\right)=0$, which give

$$
\begin{aligned}
\left(p_{1} \vee s_{1}\right) \wedge\left(p_{2} \vee s_{2}\right)= & \left(p_{1} \vee s_{1}\right) \wedge\left(p_{2} \vee s_{2}\right) \wedge\left(s_{1} \vee p_{1} \vee p_{2}\right) \\
& \wedge\left(s_{2} \vee p_{1} \vee p_{2}\right) \\
= & \left(p_{1} \vee\left[s_{1} \wedge\left(s_{2} \vee p_{1} \vee p_{2}\right)\right]\right) \\
& \wedge\left(p_{2} \vee\left[s_{2} \wedge\left(s_{1} \vee p_{1} \vee p_{2}\right)\right]\right) \\
= & p_{1} \wedge p_{2} .
\end{aligned}
$$

This completes the proof.
§5. Applications. Since the concept of an n-diamond is a projective configuration (Huhn [9], see also [3]) one can form "equations" of the form "If $\mathbf{d}=\left(d_{1}, \ldots, d_{n-1}\right)$ is an n-diamond then $p\left(d_{1}, \ldots, d_{n+1}\right)=q\left(d_{1}, \ldots, d_{n+1}\right)$," where p and q are lattice terms in $(n+1)$ variables. If $\left(x_{1}, \ldots, x_{n-1}, z, t\right)$ is an n-diamond in a modular lattice one can define the natural number terms:

$$
\begin{aligned}
\mathbf{0} & =z \\
\mathbf{k}+\mathbf{1} & =\mathbf{k} \oplus t
\end{aligned}
$$

This allows one to define (among other things) the characteristic of an n diamond by $\left(x_{1}, \ldots, x_{n-1}, z, t\right)$ is of characteristic k if $\mathbf{k}=\mathbf{0}$. Versions of these characteristic equations have been given in Herrmann and Huhn [8] and Freese [6]. Freese also showed in [7] that:
Theorem. For any $n, k \in \mathbb{N} F M(n D[k])$, the free modular lattice generated by an n-diamond of characteristic k, is a projective modular lattice.

Let M be a modular lattice with n-diamond $\mathbf{x}=\left(x_{1}, \ldots, x_{n-1}, z, t\right)$. If $n \geq 4$ we have from von Neumann that ($D ; \oplus, z, \otimes, t$) is a ring (cf. Artmann [1]). If $n \geq 3$ and M is Arguesian we also have from Day and Pickering [5] that $(D ; \oplus, z, \otimes, t)$ is a ring. If \mathbf{x} is an n-diamond of characteristic p, for prime p, then $\mathbb{Z}_{p} \leq D, \operatorname{Inv}\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{p} \backslash\{z\}$ and $T\left[\mathbb{Z}_{p}^{3}\right] \subseteq \mathbb{Z}_{p}$. We can now apply the lemma to obtain:

Theorem. For p prime $F M(n D[p])$ is a projective geometry for $n \geq 4$ and $F A(n D[p])$ is a projective geometry for $n \geq 3$.
$\operatorname{Corollary}([7]) . F M(n D[p]) \cong \mathscr{L}\left(\mathbb{Z}_{p}^{n}\right), n \geq 4$.
Corollary. $F A(n D[p]) \cong \mathscr{L}\left(\mathbb{Z}_{p}^{n}\right), n \geq 3$.

References

1. B. Artmann, On coordinates in modular lattices, Illinois J. Math. 12 (1968), 626-648.
2. P. Crawley and R. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, N. J. 1973.
3. A. Day, Equational theories of projective geometries, Colloq. Janos Bolyai (Szeged), 1980.
4. -_, Modular lattices and projective geometry, Lecture notes, Lakehead Univ., 1980.
5. - and D. Pickering, The coordinatization of Arguesian lattices. Trans. Amer. Math. Soc. (to appear).
6. R. Freese, The variety of modular lattices is not generated by its finite members, Trans. Amer. Math. Soc., 255 (1979), 277-300.
7. -_, Projective geometries as projective modular lattices, Trans. Amer. Math. Soc., 251 (1979), 329-342.
8. C. Herrmann and A. Huhn, Zum Begriff der Charakteristik modularer Verbande, Math. Z. 144 (1975), 185-194.
9. A. Huhn, Weakly distributive lattices, Doctoral dissertation Szeged 1972.

Lakehead University
Thunder Bay, Ontario.

[^0]: Received by the editors September 29, 1981 and, in revised form, August 14, 1982.
 ${ }^{(*)}$ This research was supported by an NSERC Operating Grant, A-8190.
 AMS Subject Codes: 06C05, 51A05
 Received by the editors September 29, 1981 and, in revised form, August 14, 1982.
 (C) 1983 Canadian Mathematical Society

