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Turbulence structure resulting from multi-fluid or multi-species, variable-density
isotropic turbulence interaction with a Mach 2 shock is studied using turbulence-
resolving shock-capturing simulations and Eulerian (grid) and Lagrangian (particle)
methods. The complex roles that density plays in the modification of turbulence
by the shock wave are identified. Statistical analyses of the velocity gradient tensor
(VGT) show that density variations significantly change the turbulence structure and
flow topology. Specifically, a stronger symmetrization of the joint probability density
function (PDF) of second and third invariants of the anisotropic VGT, PDF(Q∗, R∗),
as well as the PDF of the vortex stretching contribution to the enstrophy equation, are
observed in the multi-species case. Furthermore, subsequent to the interaction with
the shock, turbulent statistics also acquire a differential distribution in regions having
different densities. This results in a nearly symmetric PDF(Q∗, R∗) in heavy-fluid
regions, while the light-fluid regions retain the characteristic tear-drop shape. To
understand this behaviour and the return to ‘standard’ turbulence structure as the flow
evolves away from the shock, Lagrangian dynamics of the VGT and its invariants
is studied by considering particle residence times and conditional particle variables
in different flow regions. The pressure Hessian contributions to the VGT invariants
transport equations are shown to be not only affected by the shock wave, but also
by the density in the multi-fluid case, making them critically important to the flow
dynamics and turbulence structure.

Key words: compressible turbulence, shock waves, turbulence simulation

1. Introduction
The interaction of a normal shock wave with multi-fluid or multi-species isotropic

turbulence is an extension of the canonical shock–turbulence interaction (STI) problem
which includes strong variable-density effects. This extended configuration can
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enhance our understanding of more complex flow problems such as fuel–air mixing
in supersonic combustion, the interaction of supernova remnants with interstellar
clouds, shock propagation through foams and bubbly liquids, inertial confinement
fusion and re-shock problem in Richtmyer–Meshkov instability. Most of the previous
theoretical, numerical and experimental studies of STI have been dedicated to the
original canonical problem.

The early theoretical study by Ribner (1954) restricted the STI to the linear
interaction regime with a large-scale separation between the shock and turbulence,
so that the nonlinear and viscous effects are assumed to be negligible during the
interaction. By decomposing the pre-shock turbulence into independent modes
(acoustic, vortical and entropy) using Kovasznay decomposition (Kovasznay 1953),
the post-shock turbulence statistics can be theoretically derived from the linearized
Rankine–Hugoniot jump conditions. This approach is referred to as the linear
interaction approximation (LIA) and represents an important limiting case, since
it provides analytical predictions for the jumps of fluctuating quantities across the
shock.

Due to the challenges of accurate experimental measurements of the smallest time
and length scales around the shock wave, numerical simulations have been widely
employed to investigate this interaction. Researchers have used both shock-capturing
and shock-resolving simulations to understand the post-shock amplification of
Reynolds stress, vorticity variance and turbulent length scales (Lee, Lele & Moin
1993; Hannappel & Friedrich 1995; Mahesh et al. 1995; Lee, Lele & Moin 1997;
Mahesh, Lele & Moin 1997; Jamme et al. 2002; Larsson & Lele 2009; Larsson,
Bermejo-Moreno & Lele 2013). Earlier numerical studies showed limited agreement
with the LIA predictions because the parameter range was outside the linear regime.
More recently, Ryu & Livescu (2014) have considered a wide range of parameters
in their shock-resolving direct numerical simulations (DNS) to show that the DNS
results converge to the LIA solutions when the ratio of the shock thickness (δ) to the
pre-shock Kolmogorov length scale (η) becomes small. Replacing the actual shock
interaction with the LIA relations can extend the reach of DNS to arbitrarily high
shock Mach numbers and much larger Taylor Reynolds number (Reλ) than otherwise
computationally feasible, provided that the interaction parameters correspond to the
linear regime. This method (named Shock-LIA by the authors) was used for detailed
studies of post-shock turbulent energy flux and vorticity dynamics (Livescu & Ryu
2016; Quadros, Sinha & Larsson 2016). Sethuraman, Sinha & Larsson (2018) used
shock-capturing simulation and LIA to study the thermodynamic field generated
by STI. In a recent study (Tian et al. 2017a), we showed, using shock-capturing
turbulence-resolving simulations, that the LIA predictions for the Reynolds stresses
can be approached provided that the scale separation between numerical shock
thickness (δn) and Kolmogorov length scale is sufficient. Thus, when the ratio of
turbulent to shock scales is large enough, so that the numerical artifacts near the
shock do not influence the flow, the shock-capturing method can correctly simulate
the STI.

As mentioned above, in many practical applications, STI may occur in a mixture of
fluids of very different densities. This motivated our extension of the canonical STI
problem to include variable-density effects (Tian et al. 2017a,c) by considering
the pre-shock turbulence as an isotropic mixture of two fluids (species) with
different molecular weights, as encountered in non-premixed combustion. Using
turbulence-resolving shock-capturing simulations, we have examined the turbulence
statistics, turbulence budgets, conditional statistics and energy spectrum in multi-fluid
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STI and found that the nonlinear effects from the density variations significantly
change the turbulence properties in both physical and spectral spaces. The relation
between velocity and a passive scalar field has also been studied by Buttay, Lehnasch
& Mura (2016) and Boukharfane, Bouali & Mura (2018). Other studies (Jin et al.
2015; Huete et al. 2017) used LIA and shock-capturing simulations to investigate the
interaction of a reactive premixed mixture with shock and turbulence. These studies
help in better understanding of complex STI problem. However, there still exist many
gaps in our knowledge of the variable-density effects on the post-shock turbulence
structure and flow topology.

In this study, we focus on the density effects on the post-shock turbulence structure
by examining the velocity field. The properties of the velocity gradient tensor (VGT)
determine a wide variety of turbulence characteristics, such as the flow topology,
deformation of material volume, energy cascade and intermittency. Understanding
both the VGT field immediately after the shock wave and its dynamics as the flow
evolves away from the shock wave is also crucial to the development of subgrid-scale
models that can accurately describe the shock interaction and return-to-isotropy effects.
Perry & Chong (1987) and Chong, Perry & Cantwell (1990) proposed an approach
to classify the local flow topology and structure using the invariants of the VGT. The
dynamical behaviour of the VGT has been studied for incompressible flows using the
Lagrangian evolution of the invariants along conditional mean trajectories (Meneveau
2011). The statistics regarding the invariants of the VGT and their Lagrangian
dynamics have been used to understand the structure of turbulence in many canonical
flows, such as isotropic turbulence, turbulent boundary layers and mixing layers (e.g.
Chong et al. 1998; Ooi et al. 1999; Wang & Lu 2012; Bechlars & Sandberg 2017).
Previous studies on single-fluid STI have examined the probability density function
(PDF) of the VGT. Ryu & Livescu (2014) and Livescu & Ryu (2016) took a step
further to investigate the turbulence structure and vorticity dynamics based on the
examination of VGT invariants. By taking advantage of the Shock-LIA method, they
extracted the statistics of the VGT and its invariants for a wide range of shock
Mach numbers, even though the dynamics of the VGT as the turbulence evolves
away from the shock wave could not be examined with the Shock-LIA method.
Our earlier numerical studies of variable-density STI have revealed some important
new features of velocity and scalar statistics in this set-up (Tian et al. 2017b; Tian,
Jaberi & Livescu 2018). However, these studies have not yet fully identified the
variable-density effects on the post-shock turbulence/scalar structure.

This study uses the recently generated database of turbulence-resolving shock-
capturing simulations of multi- and single-fluid STI to: (1) develop a better
understanding of variable-density and shock effects on the turbulence structure
immediately after the shock wave and (2) perform the first Lagrangian analysis
of this flow configuration for better understanding of the dynamical behaviour of
the VGT as the turbulence evolves away from the shock. While the compressibility
effects are weak for the current parameter range and not discussed, variable-density
effects are very significant and the focus of this study. The paper is organized as
follows. Details of the simulations and the testing conducted to assess the accuracy
of the Lagrangian and Eulerian analysis are discussed in § 2. Results are presented
in § 3 and concluding remarks are made in § 4.

2. Numerical method and accuracy
In this section, we first briefly discuss the numerical approach used for shock-

capturing turbulence-resolving simulations in our previous study (Tian et al. 2017a),
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FIGURE 1. (Colour online) Instantaneous contours of vorticity and shock surface in
isotropic turbulence interacting with a Mach 2 shock. (a) Vortex structures are identified
by the Q criterion (i.e. iso-surface of the second invariant of VGT: Q = 2〈Qw〉, where
〈Qw〉 is the averaged magnitude of the rotation tensor), coloured by the mole fraction of
the heavy fluid. Fluid particles are initialized as a sheet that spans over the homogeneous
directions at a given post-shock streamwise position and allowed to develop with the flow.
(b) Visualized particle sheet, convected and distorted by the post-shock turbulence.

from which we have extracted the VGT statistics addressed in this paper. The extended
variable-density STI configuration is described next, followed by a discussion of the
new Lagrangian simulations used to examine the VGT dynamics away from the
shock.

2.1. Governing equations and numerical approach
The conservative form of the dimensionless compressible Navier–Stokes equations
for flows with two miscible species (i.e. continuity, momentum, energy and species
mass fraction transport equations) has been solved numerically together with the
perfect gas law using a high-order hybrid numerical method (Tian et al. 2017a). The
inviscid fluxes for the transport equations have been computed using the fifth-order
monotonicity-preserving scheme, as described in Li & Jaberi (2012). The molecular
transport terms have been calculated using the sixth-order compact scheme (Lele
1992). The third-order Runge–Kutta scheme has been used for time advancement.

2.2. Numerical set-up
The physical domain for the simulations considered in this paper is a box that has
a dimension of 4π in the streamwise direction (denoted as x) and (2π, 2π) in the
transverse directions (denoted as y and z), as shown in figure 1(a). The flow in
this figure is visualized using the iso-surface of Q, the second invariant of the VGT
Aij = ∂ui/∂xj. The normal shock is located at x = 2π. A buffer layer is used at the
end of the computational domain from 4π to 6π to eliminate reflecting waves. In the
transverse directions, periodic boundary conditions are used as the flow is assumed
to be periodic and homogeneous in these directions. To provide inflow turbulence,
pre-generated decaying isotropic turbulence is superposed on the uniform mean flow
with Mach number of 2.0 and convected into the domain using Taylor’s hypothesis.
The inflow turbulent Mach number, Reynolds number and peak wavenumber are
Mt ≈ 0.1, Reλ ≈ 45 and k0 = 4, respectively. For this Mt value, Taylor’s hypothesis
is appropriate for approximating spatially developing turbulence with temporally
developing turbulence (Lee, Lele & Moin 1992). The variable-density (multi-fluid)
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effects arise from compositional variations of a binary mixture of miscible fluids
with different molar masses, which is generated by correlating the density to an
isotropic scalar field representing the mole fraction of the heavy fluid. The scalar
field is generated as a random field following a Gaussian spectrum with a peak at
ks = 8.0 and has double-delta PDF distribution so that the scalar value initially is
either 1.0 or 0. The initial scalar field is smoothed by solving a diffusion equation so
that the scalar field can be fully resolved by the chosen mesh. The resulting scalar
field is then allowed to decay in the fully developed isotropic turbulence set-up for
one eddy turnover time as a passive scalar. The density field is then calculated by
imposing X = φ (where X is the mole fraction of the heavy fluid). The generated
variable-density isotropic turbulence is then superposed onto the mean flow and
allowed to develop into a more realistic state before reaching the shock wave. The
Atwood number, At= (MW2−MW1)/(MW2+MW1), calculated from the molar masses
of the two fluids, MW1 and MW2, is 0.28. This value of the Atwood number was
chosen such that the variable-density effects are non-negligible, yet the interaction
with the shock wave is still in the wrinkled-shock regime. At larger Atwood numbers,
the interaction enters the broken-shock regime, where more complicated dynamics
exists. The extension of the current study to this regime poses significant challenges,
which are beyond the goals of the current study. The Prandtl number, Pr, and Schmidt
number, Sc, are the same and equal to 0.75. Immediately before the shock wave, Mt
and Reλ reach around 0.09 and 42 due to turbulence decay. For these values, the
nonlinear and viscous effects on turbulence passing through the shock wave are weak
based on the results of LIA convergence tests done in our previous study Tian et al.
(2017a).

2.3. Numerical method for the Lagrangian study
For the current study, we have tracked more than 4.5 million particles that are
initialized uniformly at various streamwise positions x0, and calculated various
turbulence statistics following their trajectories. The aim is to understand the evolution
of flow structures following fluid particles as the turbulence develops downstream
of the shock. Figure 1(a) marks with red lines a typical streamwise plane where
particles are initialized. Each set of particles is initialized uniformly in the spanwise
directions at the same streamwise location, corresponding to a planar sheet. The
spacing between the neighbouring particles in the spanwise directions is the same as
the grid size (2π/512). We have uniformly sampled around 20 particle sets (sheets)
for each cycle of the inflow turbulence box. The particles are then convected by
the instantaneous turbulent velocity obtained by turbulence-resolving shock-capturing
simulations and moved to a region marked by the blue lines. At this stage, the
initially flat particle sheet is distorted by the turbulence as shown in figure 1(b).

The fluid particles are non-inertial and follow the local flow velocity. The
corresponding transport equations for particle positions x+i are

dx+i (t | x0, t0)

dt
= u+i (t | x0, t0), (2.1a)

u+i (t | x0, t0)= ui(x+i , t), (2.1b)

where x+i (t | x0, t0) represents the positions of the particles at time t that are initialized
at x0 and time t0. The particle velocity u+i (t | x0, t0) can be obtained from the Eulerian
velocity field ui(x+i , t) by interpolation. The interpolation is based on the cubic
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spline scheme, whose accuracy in predicting particle positions has been studied in
Yeung & Pope (1988). The time-stepping scheme for Lagrangian particles is also
the third-order Runge–Kutta scheme. Therefore, at each sub-time step, the particle
velocity is interpolated from the Eulerian velocity field with the same sub-time step.
In the STI configuration, there is a sharp change of the flow velocity at the shock,
which reduces the interpolation accuracy. To achieve accurate interpolation of the
particle velocity, the domain is partitioned into three different regions as shown
in figure 1(a): pre-shock, shock and post-shock regions. The instantaneous shock
surface is identified using the sensor: s = −θ/(|θ | + 〈ωiωi〉

0.5
yz ) > 0.5 (Larsson &

Lele 2009), where θ = ∂ui/∂xi is the dilatation, ωi = εijk∂uk/∂xj is the vorticity and
〈〉yz represents the instantaneous average over the homogeneous directions. After the
instantaneous shock region is identified, the pre- and post-shock turbulence fields can
be separated for interpolation. Note that the cubic spline interpolation scheme requires
information from neighbouring cells, so a buffer region (around three grid points) is
added between the shock region and the post-shock region. Lagrangian dynamics of
particles across the shock wave is not considered in this study because the shock
profile is numerical and its thickness depends on the grid size. This introduces
numerical artifacts when considering the particle dynamics across the shock wave.

2.4. Grid and statistical convergence
The accuracy of the numerical results is addressed in this subsection through a
series of convergence tests. To ensure that all the turbulence length scales are well
resolved, a grid convergence test was conducted in Tian et al. (2017a). Here, we
summarize these results for completeness, together with additional convergence
results for small-scale quantities. Figure 2 shows the turbulence dissipation rate
ε=−σij(∂ui/∂xj), where σij is the viscous stress tensor, and scalar (mass fraction for
the multi-fluid STI) dissipation rate εφ = (µ/(Re0Sc))(∂φ/∂xj)(∂φ/∂xj) as a function
of the normalized streamwise direction k0x for a series of meshes. The grey regions
in the following figures indicate the unsteady shock region, inside which the results
are affected by the shock wrinkling and unsteady shock movement. As the grid
is refined in all three directions, both quantities display convergence, proving the
accuracy of the turbulence database. Another issue that needs to be considered is
the scale separation between the numerical shock thickness δn and the Kolmogorov
length scale η as suggested in our previous study (Tian et al. 2017a). Thickness δn
is calculated as (u1,u − u1,d)/|∂u1/∂x1|max, where |∂u1/∂x1|max denotes the maximum
magnitude of streamwise velocity gradient. Grid numbers for grids 1 to 5 shown in
figure 2 are 256× 256× 1024, 384× 384× 1024, 384× 384× 1536, 512× 512× 1536
and 512× 512× 2048. With the finest mesh (512× 512× 2048), the scale separation
ratio η/δn is around 1.9, which is sufficient for resolving the interaction between the
numerical shock wave and small-scale turbulent motions. Therefore, in the current
study, we have obtained all the statistics from the turbulence field based on the finest
grid to ensure accuracy. Finally, LIA convergence tests were conducted in Tian et al.
(2017a) following Ryu & Livescu (2014) to show that the shock-capturing simulations
can capture the correct limits. Turbulent Mach number Mt and Taylor Reynolds
number Reλ were varied for the canonical single-fluid simulations, covering a wide
range of parameter space. The shock-capturing simulation results do converge to LIA
predictions for individual Reynolds stress components as long as certain conditions
are satisfied (Tian et al. 2017a). This was the first time that the asymptotic values for
individual Reynolds stresses were approximated using shock-capturing simulations.
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FIGURE 2. (Colour online) Results of multi-fluid grid convergence tests at Reλ = 45 and
Mt= 0.1. Streamwise development of (a) turbulent dissipation rate ε and (b) mass fraction
dissipation rate εφ . The region of unsteady shock movement is marked in grey.

Statistical convergence is another important factor that needs to be examined. To
reduce the statistical variability, all the results that are based on the Eulerian data are
space-averaged over homogeneous directions and time-averaged for around two flow-
through times. The averaging is performed after the flow has reached a statistically
steady state to eliminate the effects of transient processes (Larsson et al. 2013). For
the Lagrangian statistics, the number of fluid particles needs to be large enough for
statistical convergence, especially for conditional averaged statistics. The conditional
averaged value of X, conditioned on the variables A and B, is defined as

〈X | (A= A0, B= B0)〉 = 〈X | (A0 −
1
21A)6 A< (A0 +

1
21A),

(B0 −
1
21B)6 B< (B0 +

1
21B)〉, (2.2)

where 1A and 1B are the bin sizes. The conditional statistics are obtained by
ensemble averaging (denoted by 〈〉) over all the fluid particles that fall into the bins.
Figures 3 and 4 show the convergence of two important conditional Lagrangian
statistics 〈DQ/Dt〉/〈Qw〉

3/2 and 〈DR/Dt〉/〈Qw〉
2, and their standard deviation,

depending on the number of particles in each bin. Here, DQ/Dt and DR/Dt represent
the material derivative of the second invariant (Q) and third invariant (R) of the VGT.
For the multi-fluid case, we note that the convergence of both conditional means and
standard deviations can be achieved when using around 10 000 particles, larger than
that needed for the canonical single-fluid case as shown in figure 4. This suggests that
the variable-density effects make the simulations more computationally demanding.
The effects of the bin sizes are also examined by comparing three different sets of bin
numbers, 30× 30 (solid), 40× 40 (dashed) and 60× 60 (dotted), in the (Q, R) phase
plane at the same point (3.0, 3.0). These bin numbers correspond to the following bin
sizes: (1.3, 1.3), (1.0, 1.0) and (0.67, 0.67). Our analysis indicates that the statistics
converge to almost the same values when the sample size is large enough. In the
present study, we uniformly sampled more than 4.5 million particles and made sure
that there are at least 10 000 particles in each sample bin with the number of bins
being 40× 40 ((1Q, 1R)= (1.0, 1.0)).
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FIGURE 3. (Colour online) The statistical convergence for (a) (DQ/Dt)/〈Qw〉
3/2 and

(DR/Dt)/〈Qw〉
2 and (b) their standard deviations conditioned at point (3.0, 3.0) in the

(Q, R) phase plane for the multi-fluid case.
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FIGURE 4. (Colour online) The statistical convergence for (a) (DQ/Dt)/〈Qw〉
3/2 and

(DR/Dt)/〈Qw〉
2 and (b) their standard deviations conditioned at point (3.0, 3.0) in the

(Q, R) phase plane for the single-fluid case.

3. Results and discussion
The variable-density effects on the post-shock turbulence structure and dynamics are

examined in this section. The results obtained from the multi-fluid STI simulation are
compared with those of a reference single-fluid case and standard isotropic turbulence.
First, the post-shock turbulence state and its evolution away from the shock wave
are examined to identify the variable-density effects. The results are based on time-
and space-averaged statistics obtained from the Eulerian data. The flow topology is
studied next to further understand the post-shock turbulence evolution. The dynamics
that dominates the transient evolution of post-shock turbulence structure is examined
using the Lagrangian equation of the VGT and Lagrangian data collected for sample
fluid particles.

3.1. Density effects on post-shock turbulence
3.1.1. Turbulence state immediately after the shock

In this subsection, the turbulence structure immediately after the shock wave is
analysed to identify the different roles that density plays through the shock wave.
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FIGURE 5. (Colour online) Comparison of the PDFs of the normalized post-shock velocity
derivatives with a Gaussian distribution. Comparison of (a) multi-fluid pre-shock with post-
shock results and (b) multi-fluid with single-fluid post-shock results.

The PDFs of streamwise and spanwise longitudinal velocity derivatives for pre-
and post-shock (k0x = 0.5) multi-fluid turbulence are shown in figure 5(a) alongside
the Gaussian distribution as a reference. The non-Gaussian nature of the velocity
gradient PDFs and their connection to the energy cascade and intermittency are
well documented in the turbulence literature. The PDFs of the pre-shock velocity
derivatives are negatively skewed as expected. After passing the shock wave, they
become closer to the Gaussian distribution, especially for the streamwise component.
The PDFs for both single-fluid and multi-fluid post-shock turbulence are shown in
figure 5(b). Here, we note that immediately after the shock wave, the PDF of the
spanwise velocity gradient for both cases remains negatively skewed, as in isotropic
turbulence. The streamwise component, however, becomes more symmetric and
Gaussian-like due to the interaction with the shock wave. This indicates that the
energy transfer to small scales is suppressed in the streamwise direction. We also
note that the density has a relatively weak effect on the velocity derivative PDFs
since the single-fluid and multi-fluid cases have similar PDFs.

The preferential amplification of the transverse components of the rotation and
strain rate tensors is an important effect in STI and has been extensively studied for
the canonical single-fluid flows (Mahesh et al. 1997; Ryu & Livescu 2014; Livescu
& Ryu 2016). This amplification can lead to an increase in the correlation between
the two quantities. To better understand the variable-density effects on post-shock
turbulence, the PDF of the strain-enstrophy angle, Ψ , is considered in figure 6.
Angle Ψ is calculated using Ψ =tan−1(SijSij/(W ijW ij)), where Sij= 1/2(Aij+ Aji) and
W ij= 1/2(Aij−Aji) are the strain and rotation tensors. In isotropic turbulence, the PDF
of Ψ peaks near 90◦ (Jaberi, Livescu & Madnia 2000), indicating a strain-dominated
flow. In single-fluid post-shock turbulence, the PDF of Ψ exhibits a shift of the peak
from 90◦ to around 45◦, as the shock Mach number increases. This has been observed
by Livescu & Ryu (2016) and is interpreted as the increase in correlation of strain
and rotation. However, in the multi-fluid case, the peak still occurs at relatively large
angles and the increase in correlation is not as pronounced as that in the single-fluid
case, at the same shock Mach number. Figure 6 implies that the rotation and strain
are amplified differently by the shock when large density variations are present, which
compromises the correlation between the two quantities.

The variable-density effects on strain and rotation tensors can be studied by
examining the conditional expectations of their magnitudes as a function of density.
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FIGURE 6. (Colour online) The PDF of the strain-enstrophy angle Ψ in radians for post-
shock turbulence.
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FIGURE 7. (Colour online) Conditional expectation of the magnitude of strain rate tensor
as a function of density after the shock wave.

It was shown in Tian et al. (2017a) that through the shock wave, the amplification
of vorticity is stronger in the mixed-fluid regions with near-average density, but
weaker in the pure-fluid regions. This is not observed in the single-fluid simulation.
One mechanism that might be responsible for this behaviour is the baroclinic torque
(∇ρ × ∇p)/ρ2 in the vorticity transport equation. A strong pressure gradient ∇p
exists through the shock wave; at the same time, large density gradients ∇ρ also
exist, especially in the mixed-fluid regions. Since the pre-shock density field is
isotropic, ∇ρ and ∇p can be locally misaligned, especially when the spanwise
component of ∇ρ is large, becoming a source of vorticity generation through the
baroclinic torque. In addition, the generated vorticity field should be perpendicular
to the spanwise density gradient. In the pure-fluid regions or single-fluid simulation,
however, the density gradients are much smaller, so that the cross-product of ∇p
and ∇ρ is also small. Note that the density gradient in the streamwise direction has
no contribution, because it is aligned with the pressure gradient. To confirm this,
the PDF of the angle between the spanwise component of density gradient and the
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FIGURE 8. (Colour online) The PDF of the orientation between the vorticity vector and
density gradient in y–z direction immediately after the shock wave.

vorticity vector is plotted in figure 8. After the shock wave, the multi-fluid case
exhibits a stronger tendency of the vorticity vector being perpendicular to the density
gradient. In contrast, this tendency is not observed in the single-fluid case. This
provides evidence that density gradient and baroclinic torque play important roles in
establishing the preferential deposition of vorticity across the shock wave.

Figure 9 can help visualize the changes in the flow structure across the shock wave.
The vortex tubes are captured using the Q-criterion and are coloured by their local
density. Figure 9(a) shows the vortex structures for pre-shock multi-fluid isotropic
turbulence. For the visualized vortex tubes, there are no identifiable effects from the
density variations; the vortex tubes are not preferentially distributed due to the density
effects. However, the interaction with the shock has a clear effect on the post-shock
vortical structures (figure 9b). Immediately behind the shock wave, vortex tubes are
aligned in the spanwise direction, which has been observed in previous STI studies
(Larsson et al. 2013; Boukharfane et al. 2018). More importantly, the vortex tubes
also become aligned with the density iso-surfaces, meaning that the vorticity becomes
perpendicular to the density gradient. This is consistent with the earlier analysis of
the baroclinic torque. As a consequence, the post-shock vorticity field enhances the
mixing between adjacent density regions. This coupling is further explored in the next
section.

For the strain rate tensor, figure 7 shows that its magnitude tends to be stronger in
the heavy-fluid region and weaker in the light-fluid region. This trend is hypothesized
to be related to the dependence of shock strength on the pre-shock density. Tian
et al. (2017a) showed that shock compression is stronger in the heavy-fluid region,
while it is weaker in the smallest-density region, leading to the observed trend in the
amplification of the magnitude of the strain rate tensor. This trend is different from
that observed for the vorticity, which is explained above. As a result, the trend of the
strain-enstrophy angle PDF peaking at around 45◦, observed in the single-fluid case
at higher shock Mach numbers, is weakened in the multi-fluid case. Identifying the
specific mechanisms behind variable-density turbulence interactions with shock waves,
such as shock intensity dependence on density, density gradient effects, inertial effects
and so on, can potentially be beneficial for modelling variable-density STI.
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FIGURE 9. (Colour online) Vortex structures captured using the Q-criterion, coloured by
density, for multi-fluid (a) pre-shock turbulence and (b) post-shock turbulence.

3.1.2. Evolution of turbulence state downstream of the shock
The evolution of variable-density turbulence away from the shock wave involves

many coupled nonlinear processes. In this subsection, the focus is on the evolution of
turbulence structures.

Figure 10 shows the development of some of the fundamental turbulence statistics.
The study of the evolution of these statistics helps in the understanding of the
general characteristics of single- and multi-fluid STI. Figure 10(a) shows that with
the introduction of strong density variations, the shock amplification of dissipation
rate is stronger. Figure 10(b) shows the fluctuating pressure variance as a function
of the streamwise position to highlight the development of the acoustic field. The
amplification of the pressure fluctuations across the shock wave is noted, agreeing
with Sethuraman et al. (2018). The acoustic wave is stronger in the multi-fluid case
immediately after the shock wave. This is related to the shock intensity fluctuations
induced by the strong density variations. As a result, the decay of the acoustic field
is also faster for the multi-fluid case, causing a faster increase in turbulence kinetic
energy (TKE). After the post-shock transient pressure adjustment, the multi-fluid case
still exhibits larger absolute pressure fluctuations. However, after normalizing with
ρu′u′, the pressure fluctuations become somewhat similar in magnitude in these two
cases. In figure 10(c), the vortex stretching term Σ = ωiωj(∂ui/∂xj) is decomposed
into its streamwise Σx=ω1ωj(∂u1/∂xj) and spanwise Σyz=ω2ωj(∂u2/∂xj) components
to explore the axisymmetric state and return-to-isotropy of post-shock turbulence.
Previous studies (Livescu & Ryu 2016) have demonstrated that the normalized vortex
stretching term reaches a low value after passing through the shock wave, indicating
a tendency towards an axisymmetric state. Without normalization, figure 10(c) shows
that the absolute values of the vortex stretching terms are magnified in both single-
and multi-fluid cases, more so for the spanwise component. The two components then
undergo a transient process, where they first increase and cross each other, before the
flow returns to an isotropic state.

In order to quantitatively study the evolution of turbulence anisotropy, we consider
here the Reynolds stress anisotropy tensor defined as bij = u′iu′j/u′ku

′

k − δij/3.
A similar anisotropy tensor, d ij, can also be defined for the vorticity field, as
d ij = ω′iω

′
j/ω
′

kω
′

k − (δij/3). Due to the homogeneity in spanwise directions, the
diagonal components of the anisotropy tensor are related by b22 = b33 = −0.5b11,
so only b11 is discussed. The near-zero value of b11 ≈ 0 is an indication that flow
has reached an isotropic state, while b11 ≈ −1/3 means that the turbulent field has
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FIGURE 10. (Colour online) Development of (a) turbulence dissipation rate, (b) pressure
variance, (c) vortex stretching and (d) anisotropy (b11) of Reynolds stress and vorticity.

a tendency towards a two-dimensional axisymmetric state. Figure 10(d) shows that
d11, a small-scale turbulent variable, attains a value near −0.3 in the multi-fluid case,
which is lower than that observed for the single-fluid case. This indicates that density
intensifies the trend towards an axisymmetric state for small-scale turbulence. On the
other hand, the stronger turbulent stretching mechanism as observed in figure 10(c)
makes the return to isotropy much faster in the multi-fluid case as compared to
that in the single-fluid case. For Reynolds stresses, large-scale turbulent variables,
the multi-fluid flow reaches a quasi-isotropic state immediately after the shock wave
(b11 ≈ 0), while single-fluid turbulence exhibits a tendency towards an axisymmetric
state. This is in good agreement with Boukharfane et al. (2018). Evidently, the
variable-density effects on the post-shock turbulence appear differently at small and
large scales. Additionally, the quasi-isotropic state of the multi-fluid turbulence is not
stable and is modified in the post-shock transition. Due to the energy transfer between
the acoustic field and solenoidal turbulence field, R11 quickly increases, causing b11
to become larger than zero. The anisotropy reaches its maximum value at around the
peak TKE position (k0x ≈ 2.0) and then slowly decreases. For the single-fluid case,
b11 keeps increasing until k0x≈ 13.0, even though the acoustic effects almost vanish
after peak TKE location of k0x≈π.

In figure 11, the developments of skewness and flatness of the longitudinal velocity
gradients are examined before and after the flow interaction with the shock wave.
They show how the non-Gaussian behaviours of the velocity field and specifically
the VGT are affected by the combined shock and density effects. For isotropic
turbulence, the skewness of the longitudinal velocity gradient should be around −0.5,
which is observed to be true in the pre-shock region for both single- and multi-fluid
cases for both streamwise as well as spanwise components (figure 11a). Immediately

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.707


948 Y. Tian, F. A. Jaberi and D. Livescu

1.0

0.5

0

-0.5

-1.0 0 5 10 15

™u/™x (m)
™√/™y (m)
™u/™x (s)
™√/™y (s)

Sk
ew

ne
ss

Fl
at

ne
ss

k0x
0 5 10 15

k0x

7

6

5

4

3

(a) (b)

FIGURE 11. (Colour online) Development of (a) skewness and (b) flatness of the
streamwise and transverse components of velocity derivatives.

after the shock, different components of the derivative skewness tensor are shown
to be modified in different ways. The streamwise component for both single-fluid
and multi-fluid cases approaches values very close to 0, which is consistent with
the tendency towards a two-dimensional axisymmetric state observed above. As the
turbulence evolves away from the shock wave, the streamwise velocity derivative
skewness decreases rapidly. Due to the strong density variations, the multi-fluid case
exhibits a faster decrease in skewness before k0x= 5.0, after which it slowly increases
towards a value of −0.54. The shock modification of the skewness of the transverse
derivative is relatively small for the single-fluid case. For the multi-fluid case, the
longitudinal transverse velocity derivative becomes less negatively skewed, with a
value of around −0.25. This difference can be attributed to stronger shock intensity
variations and shock wrinkling in the multi-fluid case. Away from the shock wave,
for both cases, the skewness of ∂v/∂y increases first until it reaches a peak and
then slowly decreases. Comparably, the multi-fluid case exhibits a shorter but more
intensified transition. At the end of the domain, however, the spanwise derivative
skewness is still larger than −0.5, as the flow is still anisotropic. Figure 11(b) shows
the development of longitudinal velocity derivative flatness factor across and after the
shock wave. Immediately after the shock, the flatness of the streamwise component
decreases in value while that of the spanwise component increases. Similar to the
skewness, the effect of density variations is relatively small on the flatness of the
streamwise component for the Atwood number considered in this study. On the other
hand, the density variations in the multi-fluid case make the increase in flatness
of the transverse component less significant, with the pre- and post-shock values
being almost the same. Away from the shock wave, the flatness of the longitudinal
streamwise velocity derivative increases, returning to its pre-shock value, while the
growth is much faster in the multi-fluid case. For the transverse longitudinal derivative
component, the flatness slowly decreases after a small change.

From the results above, it can be stated that the variable-density effects are not
strongly manifested immediately after the shock wave for some of the statistics, but
they play an important role in the post-shock adjustment. It is possible for these
statistics that the dominating effect across the shock is the shock compression.
However, the density variations cause differences in the post-shock turbulence
structure, which affect the turbulence development away from the shock wave.
To get an insight into this behaviour, density gradient PDFs are examined at various
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FIGURE 12. (Colour online) The PDF of the density gradient at different streamwise
locations for (a) single-fluid case and (b) multi-fluid case.

streamwise positions in figure 12. Before the shock wave, the PDFs of the density
gradients are symmetric in all three directions for both single- and multi-fluid cases
(not shown). For the single-fluid case, after passing through the shock wave, the
density gradient PDFs remain symmetric, but the streamwise component PDF becomes
wider due to the shock compression (Boukharfane et al. 2018). As the turbulence
develops away from the shock wave towards the peak TKE position, the density
gradient PDFs still remain symmetric and become narrower, which is related to
the fast decay of the acoustic field. For the multi-fluid case, the density gradient
PDFs are strongly amplified through the shock wave, but the changes are relatively
small far from the shock, because the density variations are controlled by the mixture
composition instead of the acoustic field. More importantly, the streamwise component
becomes negatively skewed.

To identify the mechanisms responsible for the skewness of the streamwise density
gradient, we examine the orientation of the eigenvectors of strain rate tensor Sij. The
PDFs of the cosines of the angles between the three eigenvectors and the streamwise
direction, conditioned on regions with positive or negative density gradients, are
plotted in figure 13. The eigenvalues of the strain rate tensor are γ1, γ2 and γ3,
where γ1 < γ2 < γ3. The angles between these eigenvectors and the streamwise
direction are denoted by χ1, χ2 and χ3. For the multi-fluid case, in the positive
density gradient regions, the extensive (γ3) eigenvector is more likely to be aligned
with the streamwise direction (figure 13a). The intermediate (γ2) eigenvector is
misaligned with the streamwise direction and the compressive (γ1) eigenvector has
no preferential alignment. This implies that the density field is generally being
stretched in the streamwise direction, making the magnitude of the density gradient
smaller. On the other hand, the alignment of the γ1 and γ3 eigenvectors with the
streamwise directions is reversed in the negative density gradient regions as shown
in figure 13(b). The density field is then compressed so that the magnitude of the
density gradient is increased. This asymmetry in the alignment is caused by the
nonlinear variable-density effects when the flow passes through the shock wave and
explains the negatively skewed PDF of density gradient in the multi-fluid case. It
is also interesting to note the different roles of density gradient across the shock
wave: spanwise density gradients contribute to the generation of the vorticity field,
while the streamwise component affects the strain field. For the single-fluid case, the
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FIGURE 13. (Colour online) The PDFs of the cosine angle between eigenvectors of the
strain rate tensor and streamwise (x) axis for regions with (a) dρ/dx> 0 and (b) dρ/dx< 0
and for multi-fluid (solid lines) and single-fluid (dashed lines) cases.

asymmetry in the eigenvector behaviour is small and vanishes quickly away from the
shock wave. This implies that even though density variations may not affect some of
the turbulence statistics directly, they modify the topology and structure of turbulence
immediately after the shock and continue to manifest their effects in the post-shock
turbulence evolution.

3.2. Topological analysis of the post-shock turbulence
To further characterize the turbulence structure behind the shock wave, we have
analysed the invariant space of the VGT. The second and third invariants (denoted
by Q∗ and R∗) of the anisotropic/deviatoric part of the VGT can reveal important
features of the flow topology (Pirozzoli & Grasso 2004). In highly compressible
turbulence, there exits a richer set of flow topologies due to the dilatational part of
the VGT (Suman & Girimaji 2010). For the parameter range considered in this study,
however, the compressibility effects are weak. This is demonstrated in figure 14,
where the normalized PDFs of the dilatation and vorticity for pre-shock isotropic
turbulence, single-fluid post-shock turbulence and multi-fluid post-shock turbulence
are shown. The pre-shock isotropic turbulence has a very low magnitude of dilatation.
The shock wave expectedly amplifies the dilatation magnitude, and more so when
variable-density effects exist, but the dilatation values are still considerably lower than
those studied in Suman & Girimaji (2010), Chu & Lu (2013) and Vaghefi & Madnia
(2015). Considering that the focus of this study is on the variable-density effects, here
we only present the topological structure of the anisotropic VGT. The anisotropic
part of the VGT is calculated using the formula A∗ij= Aij− θ/3I. Correspondingly, the
second and third invariants can be calculated from

Q∗ =− 1
2 A∗ijA

∗

ji, (3.1a)

R∗ =− 1
3 A∗ijA

∗

jkA
∗

ki. (3.1b)

Similarly, the invariants of the symmetric and skew-symmetric parts of the
anisotropic VGT, S∗ij and W ∗ij, can also be calculated using the corresponding form
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FIGURE 14. (Colour online) The PDFs of the normalized dilatation and vorticity for
isotropic turbulence (IT), single-fluid post-shock turbulence (s) and multi-fluid post-shock
turbulence (m).

of (3.1). They are denoted here as (Q∗s , R∗s ) and (Q∗w, R∗w). The following equations
relate the above variables for the anisotropic part of the VGT (Ooi et al. 1999):

Q∗ =Q∗s +Q∗w, (3.2a)
R∗ = R∗s −ω

∗

i S∗ijω
∗

j , (3.2b)

where ω∗i =ωi is the vorticity vector. The scalar variables Q∗s and Q∗w are related to the
local dissipation rate (−Q∗s = 1/2S∗ijS

∗

ij) and enstrophy (Q∗w = 1/2W ∗ijW
∗

ij), respectively.
For constant viscosity, Q∗ represents the difference between enstrophy and dissipation
(Chu & Lu 2013). Similarly, R∗s = −1/3S∗ijS

∗

jkS
∗

ki is related to the production of
dissipation due to strain field and ω∗i S∗ijω

∗

j is the vortex stretching contribution to
the enstrophy. Therefore, for constant viscosity, R∗ represents the difference between
enstrophy production and dissipation production. Based on the local values of Q∗
and R∗, four types of local flow topologies can be identified: stable-focus/stretching
(SFS), unstable-focus/contracting (UFC), stable-node/saddle/saddle (SN/S/S) and
unstable-node/saddle/saddle (UN/S/S). For isotropic turbulence, the joint PDF of
(Q∗,R∗) has a tear-drop shape. This has been further observed in other fully developed
turbulent flows, such as boundary layers, mixing layers and channel flows (Pirozzoli &
Grasso 2004; Wang et al. 2012). This type of distribution of Q∗ and R∗ is an indicator
that the turbulence is more likely to have a local topology of SFS or UN/S/S. In
figure 15(a), it is shown that the joint PDF of normalized second and third invariants,
Q∗/〈Qw〉 and R∗/〈Qw〉

3/2, has the same tear-drop shape in the pre-shock flow. Using
Shock-LIA and DNS data, Ryu & Livescu (2014) showed that for single-fluid STI,
the (Q∗, R∗) distribution is significantly modified by the shock wave, with a tendency
towards symmetrization of the joint PDF. This indicates that the regions with UFC
and SN/S/S (first and third quadrants) are more likely to occur as turbulence develops
a two-dimensional axisymmetric flow structure. To understand the variable-density
effects on this shock-induced symmetrization, the joint PDFs of (Q∗, R∗) for both
single-fluid and multi-fluid post-shock turbulence are compared in figure 15(b,c).

Figure 15(b) shows the joint distribution for the single-fluid post-shock turbulence.
The dashed lines denote the locus of zero discriminant of A∗, where Q∗ and R∗ satisfy
27R∗2/4+Q∗3= 0. Compared to the pre-shock joint PDF, there is a tendency towards
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FIGURE 15. (Colour online) Iso-contour lines of joint PDFs of normalized second
and third invariants of the anisotropic part of the VGT, (Q∗, R∗), for (a) pre-shock,
(b) single-fluid post-shock turbulence and (c) multi-fluid post-shock turbulence. The lateral
lines denote the locus of zero discriminant.

symmetrization, with more points located in the first and third quadrants. Similar
to single-fluid STI, multi-fluid STI demonstrates a tendency towards symmetrization
of the (Q∗, R∗) distribution. However, the multi-fluid distribution is slightly more
symmetric and has a larger variance, with more points away from the axes. This
implies that more extreme ‘events’ exist in the post-shock multi-fluid turbulence.

The density effects on the post-shock joint PDF of second and third invariants are
further explored by comparing the conditional distribution, conditioned on regions
with different densities, in figure 16(a–c). Figure 16(a) corresponds to regions
with relatively high density (ρ > (ρ + 90 %ρ ′rms)), figure 16(b) to regions with
density around the post-shock mean value and figure 16(c) to low-density regions
(ρ < (ρ − 90 %ρ ′rms)). For consistency check, the joint PDFs corresponding to these
regions are also computed for the pre-shock flow (not shown) and found to be close
to the single-fluid PDFs. After the shock wave, the joint PDFs demonstrate significant
differences between regions with different densities. In regions with density closer
to that of the post-shock mean density, the distribution of invariants appears to
be very similar to that shown in figure 15(c). But for regions with higher density
(figure 16a), the joint PDF becomes more symmetric compared to the overall flow
for both the single-fluid and multi-fluid cases. There is a much larger portion of data
points having a local topology of SN/S/S, and fewer data points fall into the first
and second quadrants, indicating larger strain-dominated regions. On the other hand,
the post-shock regions with low density values (figure 16c) exhibit features similar
to that of isotropic turbulence, with almost the same tear-drop shape, only with a
larger variance or a wider distribution. The quantitative difference is hypothesized
to be related to the higher shock strength variation in the multi-fluid case. It was
observed in our previous studies (Tian, Jaberi & Livescu 2019) that the local shock
strength is positively correlated with the pre-shock density. With a stronger shock,
the two-dimensionalization effect on the post-shock turbulence should also appear
stronger in the high-density regions (Livescu & Ryu 2016). For low-density regions,
the smaller two-dimensionalization effect reduces the symmetrization trend. Moreover,
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FIGURE 16. (Colour online) Iso-contour lines of post-shock (k0x ≈ 0.44) joint PDF of
second and third invariants of the anisotropic part of the VGT, (Q∗, R∗), in regions with
different densities. (a) Regions with high density values, ρ > (ρ + 90 %ρ ′rms), (b) regions
with density around the post-shock mean value and (c) regions with low density values,
ρ < (ρ − 90 %ρ ′rms).

the relatively lower inertia in these regions leads to a faster response to the local
strain field (Livescu et al. 2010), which could make a faster return to isotropic
turbulence. The different characteristics of the (Q∗, R∗) joint PDF in regions with
different densities provide additional evidence for the previous argument made about
the role of density in the preferential amplification of the strain and rotation tensors.

In figure 17, the planar distributions of the flow topologies are shown. Here,
Qi refers to the quadrants on the joint PDF of (Q∗, R∗), which amounts to a
representation of the local flow topology. Figure 17(a) presents the two-dimensional
visualization of the flow topology in a typical x–z plane. The regions occupied
by different quadrants are marked using different colours. Evidently, the vorticity-
dominated regions (Q1 and Q2) cover a large portion of the flow and have more
compact shapes. These regions are connected by UN/S/S areas (Q4), which are more
elongated. The SN/S/S (Q3) areas can be located either at the edge of Q4 regions
or between different Q4 regions. These strain-dominated regions seem to be more
fragmented than the compact vorticity-dominated regions. Figure 17(b–d) shows
the two-dimensional contours of Qi in the homogeneous (y–z) planes at different
streamwise locations after the shock. These locations are also marked on figure 17(a).
Immediately after passing through the shock wave, the volume fractions of different
quadrants are calculated to be Q1 : Q2 : Q3 : Q4 = 28.7 % : 34.4 % : 14.3 % : 22.6 %,
indicating a trend towards symmetrization in the joint PDF. This can also be observed
in the two-dimensional contours in figure 17(b). Moreover, the characteristic length
scales associated with the regions occupied by different quadrants are decreased across
the shock wave. As the flow evolves away from the shock wave, the distribution
slowly changes back to the pre-shock shape but still with smaller turbulence length
scales. Most of fluid in different quadrants returns to the pre-shock values at k0x= 4.0.
The reorientation of the flow structures into the streamwise direction is also noted in
figure 17(a), consistent with the return to isotropy of the flow. However, the rates at
which different flow features return to an isotropic state are slightly different. The
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FIGURE 17. (Colour online) Colour illustration of the flow topology for multi-fluid STI.
The flow topology is represented by the quadrants (denoted as Qi) of the joint PDF
of (Q∗, R∗). (a) Two-dimensional colour contours in the x–z plane at y = 3.14 (half
y-domain). The shock wave is located in the middle of the domain at k0x≈ 0. The ratio
of the fluid volume in different quadrants in the pre-shock region is Q1 : Q2 : Q3 : Q4 =

26.7 % : 38.7 % : 7.8 % : 26.8 %. The two-dimensional colour contours in the homogeneous
y–z plane at streamwise locations of (b) k0x ≈ 0.2 (28.7 % : 34.4 % : 14.3 % : 22.6 %),
(c) k0x ≈ 2.0, peak TKE location (26.7 % : 36.9 % : 11.2 % : 25.2 %) and (d) k0x ≈ 4.0
(26.3 % : 37.9 % : 9.3 % : 26.2 %).

dynamics of flow and the return-to-isotropic turbulence process are examined in detail
in the next section using Lagrangian statistics.

The quasi-axisymmetric state immediately after the shock wave, identified above
based on the joint PDF of (Q∗, R∗), is further explored below by considering the
vortex stretching rate and other flow topological features.

The rate at which the vorticity is stretched or contracted, i.e. the normalized vortex
stretching rate, can be calculated based on the VGT invariants using the formula Σ∗=
w∗i S∗ijw

∗

j = (R
∗

s − R∗)/Q∗w (Ooi et al. 1999). In figure 18, the joint PDF of (−Q∗s , Σ∗)
is plotted to investigate the effects of the strain field on the vortex stretching rate.
Positive and negative Σ∗ values correspond to the vortex being stretched or contracted.
Figure 18(a) shows the joint PDF of (−Q∗s , Σ∗) for the isotropic turbulence. The
results agree very well with those of Ooi et al. (1999), which indicates that the flow
favours positive Σ∗ values or an overall vortex stretching, especially in the strong
strain-dominated regions. Here, we compare the results from isotropic turbulence to
those from single-fluid and multi-fluid post-shock turbulence to understand the shock
and variable-density effects. We note that in figure 18(b), the joint PDF becomes
more symmetric around Σ∗ = 0 after passing through the shock wave. For the multi-
fluid case, as shown in figure 18(c), the joint PDF becomes almost fully symmetric,
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FIGURE 18. (Colour online) Iso-contour lines of joint PDF of (−Q∗s , Σ∗) for (a) isotropic
box turbulence and (b) single-fluid and (c) multi-fluid turbulence at post-shock position of
k0x≈ 0.44.

especially at lower −Q∗s values. This symmetry has a strong effect on the overall
vortex stretching rate for the multi-fluid post-shock turbulence because the positive
and negative Σ∗ values tend to cancel each other through averaging. Moreover, the
variances of the stretching term are almost the same for single- and multi-fluid cases,
meaning that the lower stretching rate is mainly due to changes in the turbulence
structure (especially in more negative Σ∗ regions), and not simply to the decrease
in the magnitude of Σ∗.

To understand the contribution from different topological states to the vortex
stretching, the joint PDF of (−Q∗s , Σ∗) is conditioned on different quadrants for
the multi-fluid case. Figure 19(a,b) shows the joint PDF for Q1 and Q2 regions,
or areas with a local topology of SFS and UFC. It can be observed that in these
rotation-dominated regions, the magnitude of the vortex stretching rate Σ∗ is relatively
small. Moreover, Q1 is dominated by areas with negative Σ∗ and Q2 is dominated
by positive Σ∗ areas, which can be inferred from their corresponding topologies.
However, for Q3 and Q4 (figure 19c,d), the magnitude of the vortex stretching rate
is larger than that in the rotation-dominated regions (figure 19a,b). In Q3, the joint
PDF is relatively symmetric and seems to be slightly biased towards negative vortex
stretching rate values. Quadrant Q4, on the other hand, is dominated by positive
vortex stretching. Overall, the results explain the lower averaged vortex stretching
rate values in the multi-fluid case caused by the enhancement of Q1 and Q3 regions.

3.3. Lagrangian dynamics of VGT
In this section, we use non-inertial Lagrangian particles/tracers that move with the
local flow velocity because their statistics can reflect important transient turbulent
dynamics, which is difficult to study using Eulerian data (Yeung 2002). More
importantly, in the context of variable-density flows, the Lagrangian statistics enable
us to differentiate among particles with different densities and investigate their
dynamics separately. Lagrangian data are used here to perform an analysis of the
post-shock turbulence structure and VGT dynamics with and without significant
density fluctuations.

The first result considered is the time scale of particle motions related to different
flow topologies. In figure 20, the percentages of fluid particles that remain in their
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FIGURE 19. (Colour online) Iso-contour lines of joint PDF of (−Q∗s , Σ∗) for different
quadrants right after the shock wave: (a) Q2, (b) Q1, (c) Q3 and (d) Q4.

starting quadrants are plotted over time so that we can identify the residence time
of particles for different turbulence structures. In figure 20(a), the percentages of
fluid particles are plotted for decaying isotropic turbulence as a reference. It is noted
that Q3 and Q4, which are the strain-dominated regions, have the smallest associated
residence times among the four quadrants, with Q3 time being the smaller of the
two. For the rotation-dominated regions, the residence times are expectedly longer,
especially for Q2. The residence times for single-fluid and multi-fluid simulations can
be inferred from figure 20(b,c). For both cases, Q3 always has the least residence
time and Q2 has the largest one. Comparing all three cases, the particles in the
multi-fluid and single-fluid post-shock turbulence are shown to evolve faster away
from the original quadrant than particles in isotropic turbulence, indicating smaller
time scales of the flow topologies. Between the two post-shock turbulence fields, the
multi-fluid case presents shorter residence times.

Figure 21 presents an example of the temporal development of the above-mentioned
structures. The evolution of a vortex tube in the post-shock turbulence is tracked and
visualized as it moves away from the shock wave in figure 21(a). As expected, the
depicted vortical structure maintains its shape, except that it is being stretched and
reoriented by the local flow field. Moreover, the vortex tube surface is almost parallel
with the iso-surface of the density field, i.e. perpendicular to the density gradient. This
is consistent with the discussion in § 3.1.1 regarding the bulk of vorticity generation
across the shock wave. As the vortex tube evolves away from the shock wave, the
reorientation of the density gradient by the vortex is also observed. In figure 21(b), a
strain-dominated structure is visualized using the iso-surface of negative Q∗. It can be
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FIGURE 20. (Colour online) Percentage of fluid particles that stay in each quadrant
following particles initialized uniformly in (a) isotropic turbulence and (b) single-fluid and
(c) multi-fluid turbulence at post-shock position of k0x= 0.44.

6.4 6.6 6.8 7.0 7.2 7.4

3.8
3.4

3.6

3.8

4.0

4.1

2.1 2.4 2.6 2.9

4.0
3.5

6.5 7.0 7.5 8.0 8.5

5.0

4.8

4.6

4.4

4.2

z-axisz-axis

y-axis

y-axis

x-axisx-axis

Density

(a) (b)

FIGURE 21. (Colour online) Visualization of the temporal development (left to right)
of the turbulence structure using iso-surfaces of Q∗ coloured by density for multi-fluid
post-shock turbulence. These structures are captured immediately after the shock wave.
(a) Vorticity-dominated structure and (b) strain-dominated structure.

clearly seen that such structures lack temporal coherency since they tend to be become
fragmented as they evolve.

In figure 22, the contributions to the normalized vortex stretching rate from particles
that are initialized in each of the four quadrants are plotted following these particles.
As expected, at t= 0, particles from Q2 and Q4 add positively to the vortex stretching
rate, while those from Q1 have a negative vortex stretching rate contribution on
average. This is in good agreement with the joint PDFs of (−Q∗s , Σ∗), shown in
figure 19. For Q3, the initial contribution is close to zero. As the fluid particles move
with the turbulent flow, their contributions to the vortex stretching also change. It
can be seen that the fast increase in vortex stretching can be mainly attributed to the
particles originating in Q1 and Q3. Particles starting in Q4 have an increasing vortex
stretching contribution for a short period before their combined/average contributed
value starts to decrease. The behaviour is qualitatively similar for the single-fluid
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FIGURE 22. (Colour online) Contributions to the vortex stretching rate from particles
starting in each quadrant. The particles are initialized uniformly at the post-shock position
k0x ≈ 0.44 and traced downstream until the vorticity returns to an isotropic state.
(a) Single-fluid case and (b) multi-fluid case.

case, but the changes are smaller in this case. For both cases, the vortex stretching
contribution from the initial Q2 particles decreases in time.

To further understand this behaviour, the Lagrangian equations of the VGT and its
invariants are considered. The time evolution of Aij for fluid particles can be obtained
by taking the spatial derivatives of the Navier–Stokes equations. In dimensionless
form, it can be written as (Chu & Lu 2013)

∂Aij

∂t
+ uk

∂Aij

∂xk
+ AikAkj =−Hij + Tij, (3.3a)

DAij

Dt
=−AikAkj −Hij + Tij, (3.3b)

with

Hij =
∂

∂xj

(
1
ρ

∂p
∂xi

)
=−

1
ρ2

∂ρ

∂xj

∂p
∂xi
+

1
ρ

∂p2

∂xi∂xj
=Hb

ij +Hp
ij, (3.4a)

Tij =
∂

∂xj

(
1
ρ

∂σik

∂xk

)
, (3.4b)

σij =
µ

Re0

(
∂ui

∂xj
+
∂uj

∂xi
−

2
3
∂uk

∂xk
δij

)
, (3.4c)

where Re0 is the reference Reynolds number. From here, the dynamic equations for
the three invariants of the VGT, P, Q and R, can be derived in the following form
(Chu & Lu 2013):

DP
Dt
= (P2

− 2Q)+Hp
ii +Hb

ii − Tii, (3.5a)

DQ
Dt
= (PQ− 3R)+ (PHp

ii + AijH
p
ji)+ (PHb

ii + AijHb
ji)+ (−PTii − AijTji), (3.5b)
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FIGURE 23. (Colour online) The PDFs of (a) (DQ/Dt)/〈Qw〉
3/2 and (b) (DR/Dt)/〈Qw〉

2

for fluid particles with different densities at streamwise location of k0x≈ 0.5.

DR
Dt
= PR+ (QHp

ii + PAijH
p
ji + AijAjkH

p
ki)

+ (QHb
ii + PAijHb

ji + AijAjkHb
ki)+ (−QTii − PAijTji − AijAjkTki), (3.5c)

where the three invariants of the VGT are defined as

P=−tr(Aij), (3.6a)

Q= 1
2(tr(Aij)

2
− tr(AijAjk)), (3.6b)

R=−det(Aij). (3.6c)

Here, tr(Aij) and det(Aij) denote the trace and determinant of a tensor. Note that
instead of the deviatoric part of the VGT, the dynamic equations for the full VGT
are considered. The reason is that due to the variable-density effects and shock
compression, the incompressibility condition is not satisfied, especially when Mt and
At become large. Even though Mt and At in this study are small, we still consider the
full equations for any future comparisons. The contributions from the dilatational part
of the VGT and their coupling with the variable-density effects in highly compressible
turbulence are still unknown and need to be explored for STI in future studies.

The dynamical equations can be divided into contributions of four different parts:
(1) mutual interaction among invariants, (2) pressure Hessian Hp

ij, (3) baroclinic Hb
ij

and (4) viscous term Tij. The statistics regarding these terms can be extracted from
the Lagrangian data.

Some general features of the Lagrangian dynamics of the VGT invariants are
examined through the PDFs of their material derivatives. The variable-density effects
can be identified by comparing the PDFs corresponding to regions with different
densities (figure 23). In the light-fluid regions, the PDFs of DQ/Dt and DR/Dt
have narrower tails, while the tails are wider in the heavy-fluid regions. Another
important observation is that the skewness of DQ/Dt is different in the light- and
heavy-fluid regions. Heavy-fluid particles have a positively skewed PDF, similar to
the overall flow. On the other hand, the DQ/Dt skewness resulting from light-fluid
particles is negative. This implies that heavy-fluid particles are more likely to move
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FIGURE 24. Conditional mean rate of change vectors of (DQ/Dt/〈Qw〉
3/2, DR/Dt/〈Qw〉

2)
in the (Q,R) plane for (a) isotropic turbulence, (b) single-fluid post-shock turbulence and
(c) multi-fluid post-shock turbulence at streamwise location of k0x≈0.5. To ensure that the
vectors can be properly visualized, their sizes are re-scaled by multiplying by a constant
of 0.3. This applies to all the following vector plots.

towards rotation-dominated regions and vice versa. These differences can be attributed
to differences in the return-to-isotropy, experienced by fluid particles with different
densities.

The Lagrangian dynamics of the turbulence and the evolution of flow topology
are further examined here by considering the conditional mean rate of change of
Q and R in the invariants plane (Ooi et al. 1999). The rates of change are used
to form a vector at each point in the invariants plane. The trajectories implied by
these vectors can be followed to understand the return-to-isotropy process. In fully
compressible turbulence, the (P, Q, R) invariant space becomes three-dimensional
(Suman & Girimaji 2010; Chu & Lu 2013; Vaghefi & Madnia 2015) and there exists
an out-of-plane (Q, R) component of the trajectory due to the contribution from the
compressibility (P) effect. Due to the low compressibility effect in this work, however,
it would be more appropriate to consider only the in-plane (Q,R) dynamics and leave
the compressibility effects for future study. Therefore, the results presented below
correspond to the data points with small magnitude of P (P/〈Qw〉

0.5 < 0.1) for the
relatively ‘incompressible’ region of the flow. These points comprise approximately
60 % of the flow.

The procedure used to obtain the conditional mean vectors (CMVs) in this study
is similar to that in Ooi et al. (1999). Based on the conditional averages introduced
in (2.2), X(Q,R) represents a statistical quantity that is conditioned on Q and R. The
statistical convergence concerning the bin sizes and the number of samples in each
bin has been discussed in § 2.4.

The normalized CMVs (DQ/Dt/〈Qw〉
3/2, DR/Dt/〈Qw〉

2) for different flows are
shown in figure 24. The vectors obtained from isotropic turbulence data are shown
in figure 24(a) for reference. It can be seen that the CMVs exhibit a circulating
behaviour in the (Q, R) plot around the origin in the clockwise direction, indicating
that the flow evolves from SFS to UFC, UN/S/S, SN/S/S then back to SFS on average.
This circulating behaviour represents the Lagrangian dynamics in fully developed
turbulence that maintains the tear-drop shape of the (Q, R) distribution. This has
been observed in many incompressible/compressible canonical turbulent flows (Ooi
et al. 1999; Chu & Lu 2013). The CMVs for single-fluid and multi-fluid post-shock
turbulence are shown in figure 24(b,c). Evidently, the joint PDF of (Q, R) becomes
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FIGURE 25. The CMVs in the (Q, R) invariants plane for (a) light fluid, (b) medium-
density fluid and (c) heavy fluid at streamwise location of k0x≈ 0.5.

more symmetric due to shock compression. From the Lagrangian point of view, the
circulating behaviour as seen in figure 24(a) for isotropic turbulence is weakened.
The particles in Q2 tend to have an increasing Q and decreasing R, resulting in
an overall trend of getting away from the original point, instead of circulating and
then moving towards Q1. This trend in the second quadrant represents an increase
of enstrophy. The particles in Q1 have similar dynamics as in isotropic turbulence
and tend to move downward in the (Q, R) plane towards the zero discriminant curve.
The particles in Q3 are more likely to move straight up towards Q2, while those in
Q4 are likely to move away from the original point following the direction of the
zero discriminant line and then circulate back to Q3. The overall behaviour exhibited
by these particles demonstrates the return-to-isotropy process, with an enlarging head
in the second quadrant and elongating tail in the fourth quadrant, anticipating the
formation of the classic tear-drop shape.

The density effects can be further examined by conditioning the (DQ/Dt,DR/Dt)
vector field on the local density. Figure 25(a) shows the CMVs for the light-fluid
regions. The light-fluid particles retain the circulating motion, except that the particles
in Q3 and Q4 are likely to go straight left instead of following the zero discriminant
line. In general, the flow dynamics in the light-fluid regions is less affected by
the shock wave. For the medium-density-fluid regions (figure 25b), the circulating
motion disappears. On the right-hand side of the (Q, R) plane (R > 0), which is
the strong dissipation-production region based on (3.2), the fluid particles tend to
move downward, resulting in lower Q values. On the left-hand side of the (Q, R)
plane (R< 0), which is the enstrophy-production-dominated region, the fluid particles
tend to move to the left, indicating an increased enstrophy production. The overall
downward-moving behaviour of the medium-density-fluid particles is indicative of
decreasing vorticity. This is possibly due to the fact that vorticity is preferentially
amplified in the medium-density region across the shock wave. After passing the
shock wave, the vorticity will decrease as the correlation between density and vorticity
vanishes. Figure 25(c) shows the CMVs for the heavy-fluid regions. Interestingly, the
heavy-fluid particles exhibit counterclockwise motion. The heavy-fluid particles start
from Q3 and move to Q4, Q1, and finally to Q2. This implies that they become
vorticity-dominated due to the fast depletion of strain. Evidently, density plays an
important role in the development of the flow topology in the post-shock region, so
special attention should be paid to the modelling of variable-density STI.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.707


962 Y. Tian, F. A. Jaberi and D. Livescu

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

101

100

10-1

10-2

10-3

10-4

101

100

10-1

10-2

10-3

10-4

101

100

10-1

10-2

10-3

10-4

PDF

Mutual interaction
Pressure Hessian
Baroclinic term
Viscous term

(a) (b) (c)

FIGURE 26. (Colour online) The PDFs of the normalized magnitude of the different
contributions from Lagrangian dynamics for (a) isotropic turbulence, (b) single-fluid
post-shock turbulence and (c) multi-fluid post-shock turbulence.

To better understand the underlying mechanisms that cause the behaviour highlighted
above, the dynamic equations (3.5c) governing the vector (DQ/Dt, DR/Dt) are
examined. In figure 26, PDFs of the normalized magnitude of the different
contributions from Lagrangian equations are shown to study the relative importance
of different dynamics. The normalization used here for the vectors is the same
as that used in figure 24. Figure 26(a) shows that for isotropic turbulence, the
pressure Hessian term has the largest magnitude and the baroclinic contribution is the
smallest. Mutual interaction and viscous terms have almost the same magnitude and
distribution. After interacting with the shock wave, the magnitude of the baroclinic
term is amplified for both single- and multi-fluid turbulence, but still remains the
smallest comparing to the other contributions. The mutual interaction term becomes
less important due to its reduced magnitude for both cases. The viscous term,
however, exhibits different behaviour between single- and multi-fluid cases: it is
amplified in the single-fluid case and reduced in the multi-fluid case. The pressure
Hessian term is also amplified and remains the largest among all the terms. The
percentages of contributions, using the means, indicate that the percentage of pressure
Hessian contribution increases from 61.3 % to 74.9 % (single-fluid case) and to 73.9 %
(multi-fluid case) across the shock wave.

The Lagrangian dynamics of the flow can be understood better by considering
the CMVs of different terms in the (Q, R) plane. As a reference, these terms are
shown in figure 27 for isotropic turbulence. The variable Q tends to be amplified in
the enstrophy-production-dominated region due to the effects of the vortex stretching
mechanism and is decreased in the dissipation-production-dominated region due to
self-amplification of the strain rate tensor. On the other hand, the mutual effects
on R are small because the first invariant P is usually small and the positive and
negative values are likely to cancel each other. The contributions from the pressure
Hessian (figure 27b) tend to move the particles away from an asymptotic line,
ending up amplifying the magnitude of R. This result agrees well with that observed
in turbulent boundary layers (Chu & Lu 2013). For the current simulation, the
asymptotic line starts from Q2 and ends in Q4 with a slope of around −2.5. The
baroclinic contributions are very small in the post-shock turbulence as shown in
figure 27(c). The viscous effects as shown in figure 27(d) and as expected reduce
the magnitudes of Q and R and push the particles towards the origin. This has
been observed in various types of turbulence (Ooi et al. 1999; Chu & Lu 2013). The
combined effects from the four above mechanisms determine the circulating behaviour
of the conditional mean of (DQ/Dt,DR/Dt) vectors.
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FIGURE 27. Contributions to the transport equations of the VGT invariants by different
terms for isotropic turbulence. (a) Mutual interaction among invariants, (b) pressure
Hessian term, (c) baroclinic term and (d) viscous term.

After interaction with the shock wave, the CMVs in the (Q, R) plane are different
from those in the pre-shock isotropic turbulence. Figure 28 shows the results for
the single-fluid case. By comparing it with figure 27, we note that even though
the conditional means of (DQ/Dt, DR/Dt) vectors are different, the contributions
from mutual interaction (figure 28a), baroclinic term (figure 28c) and viscous term
(figure 28d) are very similar. The only term that is qualitatively different in post-shock
turbulence and isotropic turbulence is the pressure Hessian term (figure 28b).
The importance of the pressure Hessian term is also reflected in the dynamical
contributions in the (Q, R) plane. In the post-shock single-fluid turbulence, the
asymptotic line that separates the vectors into two regions with different behaviours
disappears. Instead, the pressure Hessian term tends to move the particles away from
the origin in Q1 and Q2, thus increasing Q and |R| values of the particles. In Q3

and Q4, the vectors are parallel to the left-hand zero discriminant line, making the
particles move from Q3 to Q4, and then to Q1.

For multi-fluid post-shock turbulence, the pressure Hessian term is also the only
term that is qualitatively different from that in isotropic turbulence (figure 29). Despite
the increased density and pressure gradient in the multi-fluid case, the baroclinic term
is still considerably smaller than all the other terms. In Q2 and Q3, an asymptotic line
similar to that in isotropic turbulence seems to exist, which ‘repels’ the vectors away
from it, causing an increase in |R| values. In Q1 and Q4, the magnitude of the pressure
Hessian term becomes much smaller. The further conditioned pressure Hessian term
based on the local densities in figure 30 indicates that fluid particles with different
densities have very different behaviours with respect to pressure Hessian dynamics.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.707


964 Y. Tian, F. A. Jaberi and D. Livescu

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

2.4

1.8

1.2

0.6

0

-0.6

-1.2

-1.8

-2.4

2.4

1.8

1.2

0.6

0

-0.6

-1.2

-1.8

-2.4

2.4

1.8

1.2

0.6

0

-0.6

-1.2

-1.8

-2.4

2.4

1.8

1.2

0.6

0

-0.6

-1.2

-1.8

-2.4

R/¯Qw˘3/2 R/¯Qw˘3/2

Q
/¯

Q
w˘

Q
/¯

Q
w˘

(a) (b)

(c) (d)

FIGURE 28. Contributions to the transport equations of the VGT invariants by different
terms for single-fluid post-shock turbulence. (a) Mutual interaction among invariants,
(b) pressure Hessian term, (c) baroclinic term and (d) viscous term.

Specifically, the pressure Hessian generally moves the heavy-fluid particles towards
the regions with larger Q values. In Q3 and Q4, it also moves the heavy-fluid particles
towards the R> 0 plane. For the light-fluid particles, the pressure Hessian term tends
to make them move towards regions with larger |R| values in the first and second
quadrants. In Q3 and Q4, the fluid particles move from Q4 to Q3. Last but not least, the
fluid particles with medium density seem to exhibit behaviour similar to that of light-
fluid particles, except in Q1, where the pressure Hessian contribution is moving the
fluid particles towards the regions with large Q values. Examining figures 25 and 30
together, we observe that the differences in particle dynamics in the (Q, R) plane in
regions with different densities are mainly due to differences in the pressure Hessian
contributions.

4. Conclusions
Accurate shock-capturing turbulence-resolving simulations are used together with

Eulerian and Lagrangian particle tracking post-processing methods to investigate
the interaction of an isotropic turbulence with a normal shock wave for both a
single fluid and a binary mixture of fluids (species) with different densities. The
main objective is to develop a better understanding of the variable-density effects
on the post-shock turbulence structure and its evolution away from the shock. Grid
convergence tests are conducted to establish the numerical accuracy of the simulated
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FIGURE 29. Contributions to the dynamics of the VGT invariants by different terms for
multi-fluid post-shock turbulence. (a) Mutual interaction among invariants, (b) pressure
Hessian term, (c) baroclinic term and (d) viscous term.
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FIGURE 30. Contributions from pressure Hessian to the dynamics of the VGT invariants
in (a) light-fluid region, (b) medium-density-fluid region and (c) heavy-fluid region.

data. The results show that the turbulence statistics are grid-converged, indicating
good accuracy of the current computational method. Statistical convergence is also
conducted for Lagrangian data.

The analysis is restricted here to an Atwood number of 0.28, based on the molar
masses of the two fluids. At this Atwood number value, the variable-density effects
introduce important changes in the turbulence structure, while the shock remains in
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the wrinkled regime for the shock Mach number considered. Similarly, the turbulent
Mach number is also small enough that the multi-fluid case does not transition to
the broken shock regime and the post-shock compressibility effects are weak. On the
other hand, the Reynolds number is large enough so that the viscous effects stay small
through the interaction with the shock and the corresponding single-fluid simulation
satisfies the LIA limit. As the flow transitions to the broken shock regime due to larger
turbulent Mach number and/or Atwood number, additional effects appear. These are
left for future studies.

The density effects on the post-shock turbulence structure are first studied using
Eulerian data. The different roles that the variable-density field could play through the
shock interaction are identified for some of important statistics. The non-Gaussianity
of the VGT is studied by examining the PDFs of velocity gradient components. The
preferential amplification of rotation and strain rate tensors is found to be affected by
the density variations, leading to a weaker correlation between the two tensors in the
multi-fluid case. This is shown to be caused by different roles that density plays in the
modification of rotation and strain rate tensors across the shock wave. The skewness
and flatness of VGT components before and after the shock wave are then examined
to study the evolution of the VGT. It is shown that density effects are weak across the
shock, but are stronger in the post-shock development. The density variations are also
shown to cause preferential alignment between eigenvectors of the strain rate tensor
and density gradient vector, which then modifies the skewness of the velocity gradient
and density gradient PDFs.

The density effects on the flow topology are then examined by first comparing the
joint PDF of the second and third invariants of the deviatoric part of the VGT. The
pre-shock joint PDF has the classic tear-drop shape. However, after the shock wave, a
tendency towards symmetrization of the joint PDF, as in single-fluid STI, is observed
for the multi-fluid case, with more data points falling into the first and third quadrants.
After conditioning the joint PDFs based on fluid density, large differences among
heavy-, medium- and light-fluid regions are observed. In the heavy-fluid regions, the
joint PDF becomes almost completely symmetric with an increasing portion of data
falling in the third quadrant. In contrast, the majority of the light-fluid data points have
a similar distribution to that of isotropic turbulence. A connection between low vortex
stretching and the joint Q∗, R∗ statistics is established for the post-shock turbulence,
by considering the contribution to vortex stretching rate from each quadrant.

Furthermore, Lagrangian fluid particles are used to track the development of the
turbulence and VGT after the interaction with the shock. The Lagrangian dynamics
of the VGT is also examined by using the conditional mean rate of change of the
invariants of the VGT. For the parameter range considered, the results show that
particles in Q3 have the least residence times, while those in Q2 have the longest
residence times. The residence times are smaller than those in isotropic turbulence,
especially in the multi-fluid case. It is also shown that particles starting in quadrants
Q1 and Q3 play an important role in recovery of the vortex stretching term. After
interacting with the shock wave, the ‘clockwise circulating’ behaviour (as observed
in isotropic turbulence) disappears in both single- and multi-fluid cases. Our analysis
highlights the mechanisms through which post-shock turbulence recovers the classical
tear-drop shape, with an enlarging head in the second quadrant and elongating tail in
the fourth quadrant. The contributions from different terms in the dynamic equations
of VGT invariants, compared with isotropic turbulence, show that the pressure Hessian
term is critical to the topological evolution of turbulence. The relative magnitude of
the pressure Hessian term is increased and its dynamical contributions in the (Q, R)
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plane are modified across the shock wave. The pressure Hessian term is also shown
to be strongly dependent on the local density in the multi-fluid case, resulting in
completely different dynamics in regions with different densities. In this work, the
out-of-plane (Q,R) compressibility effects are not considered due to the relatively low
Mt and At. The compressibility effects and their coupling with the variable density
effects will be investigated in more detail in future studies.
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