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Abstract

While philosophers have focused on epistemological and ethical challenges of using artificial
intelligence (AI) in science, scientists have focused largely on opportunities. I argue that this
disconnect between philosophical pessimism and scientific optimism is driven by failures to
critically examine the practice of AI-infused science. To appreciate the epistemic justification
for AI-powered breakthroughs, philosophers must analyze the role of AI as part of a wider
process of discovery. I demonstrate the importance of this with two cases from the scientific
literature, and show that epistemic opacity need not diminish AI’s capacity to lead scientists
to significant and justifiable breakthroughs.

1. Introduction
The recent boom in optimism for the use of deep learning (DL) and artificial intelligence
(AI) in science is due to the astonishing capacity of deep neural networks to facilitate
discovery (DeVries et al. 2018) and overcome the complexity of otherwise intractable
scientific problems (Senior et al. 2020), as well as to both emulate and outperform
experts on routine (Chen et al. 2014), complex, or even humanly impossible (Degrave
et al. 2022) tasks. In fact, nearly every empirical discipline has already undergone some
form of transformation as a result of developments in and implementation of deep
learning and artificial intelligence (Stevens et al. 2020). To scientists and science funding
agencies alike, artificial intelligence both promises and has already begun to
revolutionize not only our science but our society, and quality of life.

Yet, someone reading the recent philosophical literature on deep learning might
be forgiven for concluding that doing good science with deep neural networks (DNNs)
must be exceptionally challenging, if not impossible. This is because philosophers
have, of late, focused not on the enormous potential of DL and AI, but on a number of
important epistemological challenges that arise from the uninterpretability of DNNs.
Given that DNNs are epistemically opaque (Creel 2020; Humphreys 2009; Zerilli 2022;
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Lipton 2018), it is, in many instances, impossible to know the high-level logical rules
that govern how the network relates inputs to outputs. It is argued that this lack of
transparency severely limits the ability of scientists to form explanations for and
understanding of why neural networks make the suggestions that they do (Creel 2020;
Zerilli 2022; Sullivan 2019). For instance, Creel states that “access to only observable
inputs and outputs of a completely opaque black-box system is not a sufficient basis
for explanation[.]”(Creel 2020, 573). So, this presents an obvious epistemic challenge
when explanations of neural network logic are required to justify claims or decisions
made on the basis of their outputs.

As a result, reading the recent philosophical literature can leave one wondering on
what basis (beyond mere inductive considerations) neural network outputs can be
justified (Boge 2022). While lack of interpretability is of particular concern in high-
stakes decision-making settings where accountability and value alignment are salient
(e.g., medical diagnosis and criminal justice) (Falco et al. 2021; Hoffman 2017), the
opacity of deep learning models may also be of concern in basic research settings
where explanations and understanding represent central epistemic virtues and often
serve as justificatory credentials (Khalifa 2017). Even if inductive considerations such
as the past success of the model on out-of-sample data can help to raise confidence in
the scientific merit of its outputs, in general, without additional justification, it is
unclear how scientists can ensure that results are consistent with the epistemic
norms of a given discipline.1 Or, so we are led to conclude.

There is, then, a sharp contrast between the relative optimism of scientists and
policymakers on the one hand, and the pessimism of philosophers on the other,
concerning the use of deep learning methods in science. This disconnect is due, I
believe, to a failure on the part of philosophers to attend to the full range of ways that
deep learning is actually used in science.2 In particular, while philosophers are right
to examine and raise concern over epistemological issues that arise as a result of
neural network opacity, it is equally important to step back and analyze whether
these issues do, in fact, arise in practice and, if so, in what contexts and under what
conditions.

In this paper, I argue that epistemological concerns due to neural network
opacity will arise chiefly when network outputs are treated as scientific claims
that stand in need of justification (e.g., treated as candidates for scientific
knowledge, or treated as the basis for high-stakes decisions). It is reasonable to
think that this must happen quite a bit, particularly outside of scientific settings.
After all, the promise of deep learning is the rapid discovery of new knowledge. Of
course, philosophers are correct that, if neural network outputs are evaluated in
what has often been referred to as the “context of justification,” then access to the
high-level logic of the network (e.g., interpretability) will, in most cases, be
required for validation. While this certainly happens, I will show that scientists
can make breakthrough discoveries and generate new knowledge utilizing fully

1 To that end, scientists and philosophers have turned to various nascent approaches under the
heading of “explainable AI” (XAI). Nevertheless, the presumption is still that, absent explanation,
justification for network outputs will be hard to come by.

2 Though I also believe that scientists routinely underestimate the epistemological challenge
presented by DNN opacity.
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opaque deep learning without raising any epistemological alarms. In fact,
scientists are often well aware of the epistemological limitations and pitfalls that
attend the use of black-box methods. But, rather than throw up their arms and
embrace a form of pure instrumentalism (or worse, bad science), they can
carefully position and constrain their use of deep learning outputs to what
philosophers of science have called the “context of discovery.”

The paper proceeds as follows: In Section 2, drawing on recent philosophy of
science, I explain the relevant sense in which deep learning models are opaque. In
Section 3, I sketch the epistemological distinction between treating opaque model
outputs as standing in need of justification and treating such outputs as part of a wider
process of discovery. In Section 4, I present two cases which demonstrate the way in
which researchers can make meaningful scientific discoveries by means of deep
learning. Yet, in both cases, the findings do not rely on interpretability or accuracy for
their justification.

2. Deep learning opacity
Deep learning is a machine learning technique based on artificial neural networks
that is widely used for prediction and classification tasks. The goal of deep learning is
to automate the search for a function f̂ that approximates the true function f that
generates observed data. The fundamental assumption that motivates the use of deep
learning is that f is in the set of functions F representable by a neural network given
some particular architecture and (hyper)parameterization. Of course, for any given
parameterization k, we have no way of knowing a priori whether f 2 Fk. However,
deep neural networks are universal approximators (Hornik et al. 1989), so the
assumption is at least principled.

Like most regression tasks, the trained model f̂ is arrived at by iteratively
minimizing a loss function L through back-propagation of error gradients and
updating all weights in the network such that the risk R over the training distribution

P is minimized for RP f̂
� �

:� E X;Y� ��P L f̂ X� �; Y
� �h i

, where X and Y are sets of inputs

and outputs. It is assumed that f̂ is low risk over the distribution used for training if it
performs well on a randomly selected independent and identically distributed test set
from P. As a result, a highly accurate model is expected to perform well on out-of-
training-sample data which, in turn, provides a high degree of inductive support for
confidence in the accuracy of its outputs. Nevertheless, while inductive consid-
erations are common for assessing the merit of claims in science, they typically fall
short of the justificatory standard of most disciplines.

From the above, it should be clear that there is a straightforwardly
mathematical sense in which deep neural networks are fully transparent. All
weights on all connections across the network, billions as there may be, are both
available for inspection and computationally tractable. However, while formally
precise, neural network logic is largely semantically unintelligible. That is, the
mathematical expression of a fully trained neural network model cannot, in
general, be given an intelligible interpretation in terms of the target system such
that one can understand or comprehend how the parts interact and contribute to
the network’s outputs.
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Zerilli (2022) describes the opacity of deep learning models (DLMs) by bringing out
the distinction between “tractability,” “intelligibility,” and “fathomability,” a
distinction echoed in Lipton (2018). Here, the idea is that any working machine
learning model is tractable in so far as it can be run on a computer. However,
intelligibility comes in degrees that are modulated by model fathomability.
Fathomability is understood to be the extent to which a person can understand,
straight away, how the model relates features to produce outputs. As a result, the
more complex a model (e.g., increased dimensionality, extreme nonlinearities,
etc.), the less fathomable it becomes. Many highly complex but linear models (e.g.,
random forests) remain “intelligible” in so far as all of the relationships between
elements of the model can, in principle, be semantically deciphered even though
the model as a whole (its overall decision logic) remains unfathomable due to
complexity.

Zerilli’s three aspects of epistemic access to neural network logic mirror Creel’s
(2020) three levels or granular scales of transparency. For Creel, the transparency
of a complex, computational model can be assessed “algorithmically,” “structur-
ally,” and at “runtime.” Most relevant to the issues of this paper are algorithmic
and structural transparency. For Creel, a model is algorithmically transparent if it
is possible to establish which high-level logical rules (e.g., which algorithm) govern
the transformation of input to output. In the case of a deep neural network, it is
not possible to know which algorithm is implemented by the network precisely
because the algorithm is developed autonomously during training. As a result,
DNNs also lack what Creel calls “structural” transparency in that it is not clear
how the distribution of weights and (hyper)parameterization of the neural
network implements (realizes) the algorithm that it has learned. Therefore, for
Creel, DNNs are opaque—neither “fathomable” nor “intelligible” in Zerilli’s
sense.3 Following Humphreys (2004, 2009), a process is said to be epistemically
opaque when it is impossible for a scientist to know all of the factors that are
epistemically relevant to licensing claims on the basis of that process, where
factors of “epistemic relevance” include those falling under Creel’s algorithmic
and structural levels and Zerilli’s intelligibility and fathomability criteria. As such,
DLMs are “epistemically opaque.”

3. Discovery and justification with deep learning
When it comes to justifying belief or trust in the outputs of deep learning models,
their epistemic opacity is straightforwardly problematic. This is due to the fact that it
is not possible to evaluate all of the epistemically relevant factors that led to the
output. In high-stakes settings such as medical diagnosis, where the output of an
epistemically opaque model forms the basis of a decision, a decision-maker’s inability
to explain why the model prompts the decision that it does (and not, say, some other
decision) can raise reasonable doubt as to whether the decision is, in fact, justified.
Here is Creel on why we should strive for transparency:

3 Both Creel and Zerilli draw on the computational concepts of understanding in information
processing systems developed by David Marr (1977).
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I claim that we should [strive for transparency] because scientists, modelers, and
the public all require transparency and because it facilitates scientific
explanation and artifact detection [ : : : ] Descriptively, the scientists who use
the [epistemically opaque] systems to investigate, the modelers and computer
scientists who create the systems, and the nonscientist citizens who interact
with or are affected by the systems all need transparency. (Creel 2020, 570)

Why might scientists (and others) all need and require transparency? The reasons Creel
and most philosophers4 concerned with the epistemology of deep learning give are
that, without transparency, scientists are unable to understand the outputs of their
models, are powerless to explain why the models perform the way they do, cannot
provide justification for the decisions they make on the basis of the model output, are
uncertain whether and to what extent the models reflect our values—on and on.
What all of these reasons have in common is a commitment to the idea that neural
network transparency is epistemically essential to effectively use and gain knowledge
from powerful artificial intelligence applications in scientific and societal settings
(Gunning et al. 2019).

However, I argue that there are many cases in which the epistemic opacity of deep
learning models is epistemically irrelevant to justifying claims arrived at with their aid.
That is, it is justifiably possible to effectively use and gain scientific knowledge from
epistemically opaque systems without sacrificing any justificatory rigor at all. In fact,
scientists routinely achieve breakthroughs using deep learning that far exceed what
they would have been able to do without such systems, while neither needing nor
requiring transparency to justify their findings. This, I argue, can be readily observed
when considering how epistemically opaque models can figure in the generation of
findings.

Philosophers of science have, at least since Reichenbach (1938) (and, later, Popper
(2002)), drawn a logical distinction between what has typically been referred to as the
contexts of “justification” and “discovery.” I argue that concerns about opacity are
only epistemically relevant in settings where the outputs of epistemically opaque
models are treated as candidates for scientific knowledge in their own right, that is,
treated as claims that stand in need of justification. In these settings, neural network
outputs are treated as the end result of an investigation (e.g., as findings in their own
right) and, as such, fall within the “context of justification.” However, in the context
of justification, rigorous evaluation of the reasons that support findings is required to
justify them. If those reasons are the internal logic of a neural network, then this kind
of evaluation is blocked by neural network opacity.

Be that as it may, the outputs of epistemically opaque models need not be treated
in this way. Rather, they can serve as aspects or parts of a process of discovery. While
the process ultimately leads to claims that stand in need of justification, the part
played by an opaque model in that process can, itself, be epistemically insulated from
the strong sort of evaluation that is applied to findings in the context of justification.
In this way, neural network outputs can serve to facilitate discovery without their
outputs or internal logic standing in need of justification. That is, neural network
outputs that serve as parts of a process of discovery—similar to abduction (Duede

4 There are exceptions, including Lenhard and Winsberg (2010) and Hooker and Hooker (2018).
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and Evans 2021; Hanson 1965) and problem-solving heuristics (Wimsatt 2007; Simon
1973)—can be treated as situated in the “context of discovery.”5

In the context of discovery, the outputs of neural networks can be used to guide
attention and scientific intuition toward more promising hypotheses but do not,
themselves, stand in need of justification. Here, outputs of opaque models serve to
provide reasons to or evidence for pursuit of particular paths of inquiry over others
(see Figure 1). As such, they both provide and are subject to forms of preliminary
appraisal, but, as the cases in Section 4 will bring out, the mere inductive support
DLMs provide is epistemically sufficient to guide pursuit.

4. Justified discoveries using deep learning
In this section, I present two cases that demonstrate the claim that the epistemic
opacity of DLMs can be epistemologically irrelevant for justifying the very scientific
findings facilitated by their use.

4.1. Case 1: Guiding mathematical intuition
Here, I consider a case from low-dimensional topology in which researchers use deep
learning to guide mathematical intuition concerning the relationship between two
classes of properties of knots. Knots are interesting topological objects because the
relationships between their properties are poorly understood, while their
connections to other fields within mathematics are plausible but unproven.

In Davies et al. (2021), mathematicians seek to discover and prove a conjecture that
establishes a mathematical connection between known geometric and algebraic
properties of knots in R3. In particular, the aim is to establish that hyperbolic
invariants of knots (e.g., geometric properties of knots that are identical for all
equivalent knots) and algebraic invariants of knots are connected. While the

(a) (b) (c) (d)

(e)

Figure 1. The confinement of epistemically opaque neural network outputs to the context of discovery.
a) Posit the existence of some theory 9f that connects two phenomena. b) Generate a dataset D that
represents the assumed connection. c) Train a deep learning model to learn a function that approximates the
posited theory. d) Examine the behavior of f̂ . e) Iteratively evaluate (b)–(d), formulate, and refine
hypotheses f �i connecting phenomena. Justify f � by means distinct from those used to produce it.

5 For a more nuanced view of the context of discovery see, for example, (Laudan 1981, 181–191).
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possibility of this connection had been imagined, its plausibility had not been
established empirically and certainly not proved mathematically. As a result,
mathematical intuition concerning a possible connection was too vague for genuine
insight to emerge.

The deep learning approach in Davies et al. (2021) begins by imagining that the
geometric invariants X of a given knot K are, in fact, connected to that knot’s algebraic
invariants Y. The algebraic invariant σ 2 Y called the “signature” is known to
represent information about a given knot’s topology. The researchers hypothesized
that a knot’s signature σ K� � is provably related to its hyperbolic invariants X K� � such
that there exists some function f such that f X K� �� � � σ K� � (Figure 1a). They then
constructed a dataset of observed hyperbolic invariants and signatures for individual
knots and trained a DLM to predict the latter from the former (Figure 1b). If the
resulting DLM (Figure 1c) achieves an accuracy better than chance on a holdout set,
then this provides researchers with reasons to expect that some mathematical
relationship must obtain between X K� � and σ K� �. Importantly, however, accepting
this claim ultimately serves no role in proving the conjectured mathematical
relationship.

In fact, the initial DLM achieved an accuracy of roughly 0:78, giving researchers
high confidence that a connection between hyperbolic invariants and algebraic
invariants obtains. While the established plausibility of the connection might be
sufficient to find a promising conjecture, it is possible to isolate the various geometric
invariants most responsible for the accuracy of f̂ . Specifically, by quantifying the
change in the gradient of the loss function with respect to each of the individual
geometric invariants,6 it is possible to guide attention to a subset of hyperbolic
invariants to consider when formulating a conjecture (Figure 1d). In particular, three
such invariants are found to be most responsible for DLM accuracy in predicting
signatures: the real and imaginary parts of the meridional translation µ and the
longitudinal translation λ.

From these elements, mathematicians used their intuition to formulate an initial
conjecture (Figure 1e) that relates µ K� � and λ K� � to σ K� � by means of a novel
conjectured property which they call the natural slope (Re λ=µ

� �
, where Re denotes

the real part of the meridional translation) of K. Using common computational
techniques, corner cases were constructed that violate the initial conjecture, which
was, in turn, refined into the following theorem.

Theorem: There exists a constant c such that, for any hyperbolic knot K,

2σ K� � � slope K� �
�� �� ≤ c vol K� � inj�K��3:

Let’s call the above theorem T. That T is true is provable. As a result, justification
for belief in the truth of T does not lie in any empirical considerations. Nor does it rely
on any facts about how the conjecture was arrived it. That is, the proof for T does not
depend on any of the steps that were taken for its discovery. Its justificatory status is
not diminished by the fact that a number of assumptions were made in the process of

6 The saliency quantity r is calculated by averaging the gradient of the cross-entropy loss
function with respect to each geometric invariant xi over all training examples such that
ri � 1= Xj j� �P

x2X @L=@xi
�� ��.
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its discovery, nor that an opaque model aided in the decision to take seriously the
connection between hyperbolic and algebraic properties.

One might object to the claim that the opacity of the network in this case was
epistemically irrelevant. After all, the gradient-based saliency method used to isolate
the contribution to accuracy of the various inputs might be viewed as an interpretive
step. Yet, it is important to note that this saliency procedure was applied to the input
layer which is, necessarily, transparent to begin with. Ultimately, then, what this
saliency method adds is computational expediency as, alternatively, it was possible to
use a simple combinatorial approach to iteratively search through the input space for
the most predictive properties. In this way, saliency adds nothing of epistemic
relevance to the process that would not have been possible without it. Moreover,
saliency is not required for justification. Nevertheless, as we will see, Case 2 is an
example in which no such interpretive step is taken.

4.2. Case 2: Deep learning for theory improvement
This case demonstrates the use of deep learning to dramatically improve our
understanding of the geophysics of earthquakes by providing researchers good
reasons to consider integrating known geophysical properties into existing theory.
Consistent with the central claim of this paper, the neural network itself, while
opaque, neither contributes nor withholds anything of epistemic importance to the
justificatory credentials of the reworked theory.

The geophysics of earthquakes is poorly understood. In DeVries et al. (2018),
scientists seek to improve theory that describes the dynamics relating aftershocks to
mainshocks. The best available theoretical models of aftershock triggering dynamics
correctly predict the location of an aftershock with an AUC � 0:583. As the authors
point out, while “the maximum magnitude of aftershocks and their temporal decay
are well described by empirical laws [ : : : ] explaining and forecasting the spatial
distribution of aftershocks is more difficult” (DeVries et al. 2018, 632).

To overcome this difficulty, scientists turn to deep learning to evaluate whether
and to what extent it is possible to functionally relate mainshock and aftershock
locations. After all, if an essentially stochastic process relates locations, then perhaps
the extant theory is empirically adequate. As in Case 1, researchers begin by
imagining that aftershock locations are a function f of mainshocks and seek to find an
approximation of that function, f̂ (Figure 1a). To operationalize this, they construct a
dataset of mainshock and aftershock events by representing the planet as a collection
of 5 km3 tiles (Figure 1b). A tile is experiencing a mainshock, an aftershock, or no
shock at any given moment. For the purposes of relating events, it is sufficient to treat
the prediction as a simple binary classification task (Figure 1c). Given an input
(mainshock parameter values and affected tiles), the task is to classify every
terrestrial tile as either “aftershock” or “not aftershock.”

The fully trained DLM correctly forecasts the locations of aftershocks between one
second and one year following a mainshock event with an AUC � 0:85, significantly
outperforming theory. This gives researchers good reason to take seriously the
possibility of further improving theory (Figure 1d). Yet, this reason is not implicated
in, nor relevant to, justifying the reworked theory.
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The DLM outputs a probability distribution of “aftershock” over tiles. The
researchers compare this distribution to the one predicted by extant theory.
Surprisingly, they observe that the probability of aftershock within a certain radius of
a mainshock assigned by theory is largely uncorrelated with the probabilities
assigned by the DLM. At this point, the DLM’s predictive power is treated as evidence
that theory can be significantly improved, thereby guiding the process of discovery.

Given the network’s high accuracy, it is reasonable to assume that an improved
theory would more closely resemble the observed probability distribution generated
by the network. By iteratively sweeping through known geophysical properties and
correlating them with DLM distributions, they find that three parameters (maximum
change in shear stress, the von Mises yield criterion, and aspects of the stress-change
tensor), that had not been considered by geophysicists as relevant, in fact explain
nearly all of the variance in predictions generated by the neural network, thereby
providing novel physical insight into the geophysics of earthquakes (Figure 1e).

In this case, a fully opaque DLM has profound implications for our theoretical
understanding of earthquake dynamics. Namely, the ability to accurately predict
phenomena orients scientific attention to empirical desiderata necessary for more
accurate theory building. Moreover, it is epistemically irrelevant to justifying the
improved theory that we cannot verify whether and how any of the geophysical
quantities that were determined to be of relevance are, in fact, represented in the
network. This is because it is not the network’s predictions that stand in need of
justification but, rather, the theory’s itself. The reworked theory is justified in ways
that are consistent with the norms of the discipline—it relates known geophysical
properties in ways that are consistent with first principles, it aids in the explanation
and understanding of aftershock dynamics, and it outperforms extant theory in
prediction. Yet, none of this depends on the neural network that was used to lead
attention to relevant revisions of the theory for justification.7

5. Discussion
What I hope to have shown in this paper is that, despite their epistemic opacity, deep
learning models can be used quite effectively in science, not just for pragmatic ends
but also for genuine discovery and deeper theoretical understanding. This can be
accomplished when DLMs are used as guides for exploring promising avenues of
pursuit in the context of discovery. In science, we want to make the best conjectures
and pose the best hypotheses that we can. The history of science is replete with
efforts to develop processes for arriving at promising ideas. For instance, thought
experiments are cognitive devices for hypothesis generation, exploration, and theory
selection. In general, we want our processes of discovery to be as reliable or
trustworthy as possible. But, here, inductive considerations are, perhaps, sufficient to
establish reliability. After all, the processes by which we arrive at our conjectures and
hypotheses do not typically also serve to justify them. While philosophers are right to
raise epistemological concerns about neural network opacity, these problems
primarily concern the treatment and use of deep learning outputs as findings in their

7 Note that no relevant geophysical properties are in the input or output space of the model. So, none
of these properties are explicitly modeled. As a result, we have what Wimsatt (2007) might call a false
model that, nevertheless, leads to “truer theory.”
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own right that stand, as such, in need of justification which (as of now) only network
transparency can provide. Yet, when DLMs serve the more modest (though no less
impactful) role of guiding science in the context of discovery, their capacity to lead
scientists to significant breakthroughs is in no way diminished.
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