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Asymptotic growth of Mordell–Weil
ranks of elliptic curves
in noncommutative towers
Anwesh Ray

Abstract. Let E be an elliptic curve defined over a number field F with good ordinary reduction at
all primes above p, and let F∞ be a finitely ramified uniform pro-p extension of F containing the
cyclotomic Zp-extension Fcyc . Set F(n) be the nth layer of the tower, and F(n)

cyc the cyclotomic Zp-
extension of F(n). We study the growth of the rank of E(F(n)) by analyzing the growth of the λ-
invariant of the Selmer group over F(n)

cyc as n →∞. This method has its origins in work of A. Cuoco,
who studied Z2

p-extensions. Refined estimates for growth are proved that are close to conjectured
estimates. The results are illustrated in special cases.

1 Introduction

The Mordell–Weil Theorem states that given an elliptic curve E defined over a number
field F, its F-rational points form a finitely generated abelian group, i.e.,

E(F) ≃ Z
r ⊕ E(F)tors ,

where r is a non-negative integer called the Mordell–Weil rank. In [22], Mazur
initiated the study of Selmer groups of elliptic curves in Zp-extensions. A major
application of Iwasawa theory is the study of the growth of Mordell–Weil ranks
of abelian varieties in towers of number fields. Given an abelian variety defined
over a number field F with good ordinary reduction at the primes above p, Mazur
showed that the rank of A is bounded in the cyclotomic Zp-extension of F. Kato
and Rohlrich proved the analogous statement for all elliptic curves defined over
abelian number fields, see [15, 24]. Alongside further developments in Iwasawa theory
over larger p-adic Lie extensions, there has been significant interest in analyzing the
asymptotic growth of Mordell–Weil ranks in towers. For ordinary primes, Mazur in
[23] formulated a precise conjecture on the growth of ranks in any Zp-extension of
an imaginary quadratic field F, called the Growth number conjecture. This question
has been studied in anticyclotomic extensions by Cornut [4] and Vatsal [26]. A
prototypical example of interest is the Z

2
p-extension F∞ of an imaginary quadratic
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Mordell–Weil ranks in noncommutative towers 1051

field F. For every integer n ≥ 1, set F(n) to denote the nth layer. In this setting, it is
the extension contained in F∞ such that Gal(F(n)/F) = (Z/pnZ)2. For elliptic curves
E/F , asymptotic formulas for the growth of the rank of E(F(n)) as n →∞ have been
proven by Lei and Sprung in [19]. More recently, such growth questions are studied
in admissible uniform pro-p extensions of number fields by Delbourgo and Lei in [7],
and by Hung and Lim in [14].

In this note, we employ a new strategy to study the growth of ranks in non-
commutative towers. Let F(n)cyc be the cyclotomic Zp-extension of F(n). We study
the growth of the rank of E(F(n)) by analyzing the growth of the λ-invariant of
the Selmer group over F(n)cyc as n →∞ using a generalizations of Kida’s formula due
to Hachimori and Matsuno [11] and Lim [20]. The method has several advantages.
First, it is a straightforward application of Kida’s formula which a priori allows one
to circumvent technicalities of noncommutative Iwasawa theory. In other words, the
proof is short and can be understood without familiarity with methods in noncom-
mutative Iwasawa theory, though it does build on previous work of Lim [21] which
uses nontrivial results in the subject. Given an elliptic curve E over a number field F,
we do however require that the Selmer group of E over the cyclotomic Zp-extension
of F be cotorsion over the Iwasawa algebra and impose the MH(G) conjecture
(see [2, 20]).

Secondly, (and perhaps more importantly) the method strengthens known results
and these estimates are closer to conjectured asymptotics. The error term in the
asymptotic formulas of Hung–Lim are removed in the process, and the main term is
sharper (see Remark 2.8 for further details). The significance of this is illustrated for
certain examples, namely, Zd

p-extensions, false Tate-curve extensions, and trivializing
extensions generated by the p-primary torsion of a non-CM elliptic curve. It should be
pointed out here that for Z2

p-extensions, a similar question was studied by Cuoco in
[6], who studied the growth of Iwasawa invariants associated with class group towers
in families of Zp-extensions contained in the composite of two Zp-extensions. The
results can also be applied to prove statistical results.
(1) In Corollary 3.3, it is shown that if E is an elliptic curve defined over an

imaginary quadratic field F such that E does not have complex multiplication
and rank E(F) = 0, then the rank remains 0 is 100% of Z2

p-extensions of F.
(2) In Corollary 3.7, we consider the curve E =11a2. It is shown that there is a

positive density set of primes � such that

rank E (Q(μ7n+1 , �
1

7n )) ≤ λ7(E/Q(μ7∞))7n

for all integers n > 0.
The method employed in this paper shows that in any context in which a satis-

factory generalization of Kida’s formula is proved, it should be possible to analyze
the growth of λ-invariants in noncommutative towers. We point out that analogs of
Kida’s formula have been proven for fine Selmer groups by Kundu in [17]. In this
particular context, the number fields are assumed to be totally real. Also, such results
were proved by Hatley and Lei in the supersingular setting, see [13].
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1052 A. Ray

2 Growth of Iwasawa invariants in towers

In this section, we introduce some preliminary notions and prove the main result of
this paper.

2.1 Uniform pro-p extensions

Throughout, p will be a prime ≥ 5 and F a number field. Let F∞ be an infinite Galois
extension of F with pro-p Galois group G ∶= Gal(F∞/F). The lower central p-series
of G is recursively defined as follows:

G0 ∶= G and Gn+1 ∶= G p
n[Gn , G].

Definition 2.1 The group G is said to be uniform if
(1) it is finitely generated,
(2) it is powerful, i.e., [G , G] ⊆ G p , and
(3) [Gn ∶ Gn+1] = [G ∶ G1] for all n ∈ Z≥1.

Setting d ∶= [G ∶ G1], we observe that [G ∶ Gn] = pdn . Assume that G has the
structure of a p-adic Lie group. We say that F∞ is a strongly admissible p-adic Lie
extension if
(1) only finitely many primes ramify in F∞,
(2) F∞ contains the cyclotomic Zp-extension Fcyc of F, and
(3) the p-torsion subgroup of G is trivial.
We assume that F∞ is pro-p a strongly admissible p-adic Lie extension and G
is uniform. Note that Gn/Gn+1 ≃ (Z/pZ)d for n ∈ Z≥1. It is well known that the
dimension of G is equal to d and that Gn = G pn

, see [8, Theorem 3.6]. The extension
F∞ is filtered by a tower of number fields. Setting F(n) ∶= FGn

∞ , consider the nonabelian
tower

F = F(0) ⊂ F(1) ⊂ ⋯ ⊂ F(n) ⊂ ⋯,

and let F(n)cyc be the cyclotomic Zp-extension of F(n). We have thus filtered the
extension F∞ into a tower of cyclotomic Zp-extensions

Fcyc = F(0)cyc ⊂ F(1)cyc ⊂ ⋯ ⊂ F(n)cyc ⊂ ⋯

Set H ∶= Gal(F∞/Fcyc) and � ∶= G/H ≃ Zp . For n ∈ Z≥1, we write Hn (resp. �n) for
the descending central series of H (resp. �). We list a few useful facts.

Lemma 2.2 The following assertions hold:
(1) The normal subgroup H is uniform with (d − 1) generators, and Hn is identified

with H ∩Gn .
(2) �n is identified with Gn/Hn .

Proof See [8, Theorem 3.6] and [14, Lemma 2.6] for further details. ∎
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Mordell–Weil ranks in noncommutative towers 1053

As a result, we have that F(n)cyc = FHn
∞ and hence,

Gal(F(n+1)
cyc /F(n)cyc ) = Hn/Hn+1 ≃ (Z/pZ)d−1 .

Since �n = Gn/Hn , we have that �n = Gal(F(n)cyc /F(n)). We now introduce the
Iwasawa-algebra at the nth level, taken to be

Λ(�n) ∶= lim←�
L

Zp[Gal(L/F(n))],

where L ranges over all number fields contained in between F(n) and F(n)cyc . Choose
a topological generator γn of �n and fix the isomorphism Λ(�n) ≃ Zp⟦x⟧ sending
γn − 1 to x.

More generally, if G is any pro-p group, set

Λ(G) ∶= lim←�
U

Zp[G/U],

where U ranges over all finite index normal subgroups of G. Given a number field F,
we set ΛF ∶= Λ (Gal(Fcyc/F)).

2.2 Iwasawa invariants

Let M be a cofinitely generated cotorsion Zp⟦x⟧-module, i.e., the Pontryagin-dual
M∨ ∶= Hom(M ,Qp/Zp) is a finitely generated and torsionZp⟦x⟧-module. Recall that
a polynomial f (x) ∈ Zp⟦x⟧ is said to be distinguished if it is a monic polynomial
whose nonleading coefficients are all divisible by p. Note that all height 1 prime
ideals of Zp⟦x⟧ are principal ideals (a), where a = p or a = f (x), where f (x) is an
irreducible distinguished polynomial. According to the structure theorem for Zp⟦x⟧-
modules (see [27, Theorem 13.12]), M∨ is pseudo-isomorphic to a finite direct sum of
cyclic Zp⟦x⟧-modules, i.e., there is a map

M∨ �→ (
s
⊕
i=1

Zp⟦x⟧/(pμ i )) ⊕
⎛
⎝

t
⊕
j=1

Zp⟦x⟧/(g e j
j (x))

⎞
⎠

with finite kernel and cokernel. Here, μ i > 0, e j > 0, and g j(x) is an irreducible
distinguished polynomial. Furthermore, the numbers μ1 , . . . , μs and irreducible dis-
tinguished polynomials g1(x), . . . , gt(x) are uniquely determined. The characteristic
ideal of M∨ is (up to a unit) generated by

f (p)
M (x) = fM(x) ∶= p∑i μ i ∏

j
g e j

j (x).

The μ-invariant of M is defined as the power of p in fM(x). More precisely,

μp(M) ∶=
⎧⎪⎪⎨⎪⎪⎩

∑s
i=1 μ i if s > 0,

0 if s = 0.
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1054 A. Ray

The λ-invariant of M is the degree of the characteristic element, i.e.,

λp(M) ∶=
⎧⎪⎪⎨⎪⎪⎩

∑t
i=1 e i deg g i if s > 0,

0 if s = 0.

Since the numbers μ i and polynomials g j(x) are uniquely determined by M, the μ
and λ-invariants determined above are well defined.

Let F be a number field and E an elliptic curve over F with good ordinary
reduction at all primes of F above p. Denote by Selp∞(E/Fcyc) the p-primary Selmer
group of E over Fcyc (see [1] for further details). Suppose Selp∞(E/Fcyc) that is a
cotorsion ΛF -module, we set μp(E/F) and λp(E/F) to denote the μ and λ-invariant
of Selp∞(E/Fcyc) respectively, when viewed as a module over ΛF . We fix a strongly
admissible pro-p, uniform, p-adic Lie extension F∞/F and let Selp∞(E/F∞) be the
Selmer group of E over F∞ (see [21] for the definition). Throughout, we make the
following assumption.

Assumption 2.3 With notation as above, assume that Selp∞(E/F∞) satisfies the
MH(G)-conjecture. In greater detail, set X(E/F∞) to be the Pontryagin dual of
Selp∞(E/F∞). We assume that

X f (E/F∞) ∶=
X(E/F∞)

X(E/F∞)[p∞]

is finitely generated as a Λ(H)-module.

2.3 An analogue of Kida’s formula

Hachimori and Matsuno in [11] proved an analogue of Kida’s formula for Selmer
groups of elliptic curves. We recall this result and a refinement due to Lim. Let F be a
number field and E/F an elliptic curve. Let L/F be a finite Galois extension such that
Gal(L/F) is a p-group. Let P1(E , Lcyc) (resp. P2(E , Lcyc)) be the set of primes η ∤ p
of Lcyc that are ramified in the extension Lcyc/Kcyc, at which E has split multiplicative
reduction (resp. E has good reduction and E(Lcyc,η)[p] ≠ 0). Given a prime η of Lcyc,
set eLcyc/Kcyc(η) to denote the ramification index of η with respect to the extension
Lcyc/Kcyc.

Theorem 2.4 (Lim) Let p ≥ 5 be a prime number, F a number field and E/F an
elliptic curve with good ordinary reduction at all primes of F above p. Let L/F be a
Galois extension for which Gal(L/F) is a p-group. Assume that there is a pro-p strongly
admissible p-adic Lie extension F∞/F such that
(1) F∞ contains L.
(2) Assumption 2.3 is satisfied.
Then, the following assertions hold
(1) Selp∞(E/Lcyc) is cotorsion over the Iwasawa algebra ΛL ,
(2) μp(E/L) = [L ∶ K]μp(E/K), and
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(3)

λp(E/L)= [Lcyc ∶ Kcyc]λp(E/K) + ∑
η∈P1(E/Lcyc)

(eLcyc/Kcyc(η) − 1)

+ 2 ∑
η∈P2(E/Lcyc)

(eLcyc/Kcyc(η) − 1) .

Proof The result as stated follows from the results in [21], as we now explain. Note
that since it is assumed that the Selmer group of E over F∞ satisfies the MH(G)-
conjecture, it follows from [2, Proposition 2.5] that Selp∞(E/Lcyc) is cotorsion over
ΛL . First, we reduce to the case when Kcyc ∩ L = K, i.e., [L ∶ K] = [Lcyc ∶ Kcyc]. Letting
K′ = Kcyc ∩ L, it is easy to see that if the result holds for the extensions L/K′ and K′/K,
then it holds for L/K.

First, we prove that the result holds for K′/K. It is a simple exercise to show
that μp(E/K′) = [K′ ∶ K]μp(E/K). Furthermore λp(E/K′) is the Zp-corank of
Selp∞(E/K′cyc). Since K′ is contained in Kcyc, we have that K′cyc = Kcyc. Therefore,
λp(E/K′) is equal to λp(E/K). Thus, the result is shown to hold for K′/K and it
suffices to prove the result for L/K′. Upon replacing K with K′, we thus reduce to the
case when [L ∶ K] = [Lcyc ∶ Kcyc]. In this setting, the result follows from [21, Theorem
4.1 and Section 5]. Indeed the decomposition conditions in loc. cit. are equivalent to
the conditions on P1 and P2. ∎

Remark 2.5 It should be noted here that in Section 5 of [21] an additional assump-
tion is made, namely that F contains the pth roots of unity. This assumption is in place
to guarantee the existence of an admissible p-adic Lie extension of L, see Lemma 4.2
of loc. cit. Since we have assumed that such an admissible p-adic Lie extension F∞/L
exists to begin with, there is no need for this additional assumption.

2.4 Main result

Let E be an elliptic curve over a number field F with good ordinary reduction at all
primes above p. Throughout, we shall make the following assumption.

We introduce some further notation. Let Q1 = Q1(E , F∞) (resp. Q2 = Q2(E , F∞))
be the set of primes w ∤ p of Fcyc that are ramified in F∞, at which E has split
multiplicative reduction (resp. E has good reduction and E(Fcyc,w)[p] ≠ 0). We stress
here that Q1 and Q2 consist of subsets of primes of Fcyc and not F∞. Recall that it is
stipulated that only finitely many primes ramify in F∞, and since all primes are finitely
decomposed in Fcyc, it follows that Q1 and Q2 are finite. For i = 1, 2, we set q i ∶= #Q i .

Theorem 2.6 Let n be a positive integer. Suppose that the conditions of Assumption
2.3 hold, then, Selp∞(E/F(n)cyc ) is a cotorsion ΛF(n)-module, with

μp(E/F(n)) = pnd μp(E/F).

Furthermore, we have that

pn(d−1)λp(E/F) ≤ λp(E/F(n)) ≤ pn(d−1)λp(E/F) + (pn(d−1) − pn(d−2)) (q1 + 2q2).
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1056 A. Ray

Proof According to Theorem 2.4, Selp∞(E/F(n)cyc ) is a cotorsion module over ΛF(n)

and the μ-invariant is given by

μp(E/F(n)) = [F(n) ∶ F]μp(E/F) = pnd μp(E/F).

Furthermore, the λ-invariant is

λp(E/F(n)) = [F(n)cyc ∶ Fcyc]λp(E/F) + ∑
w∈P1

(e(w) − 1) + 2 ∑
w∈P2

(e(w) − 1) ,

where e(w) is the ramification index of w in F(n)cyc /Fcyc, P1 and P2 are the set of primes
of F(n)cyc defined as follows:

P1 = {w ∣ w ∤ p, E has split multiplicative reduction at w},
P2 = {w ∣ w ∤ p, E has good reduction at w and E(Fn ,w) has a point of order p}.

Since p is odd, the primes Pi lie above Q i , therefore,

∑
w∈Pi

(e(w) − 1) = ∑
v∈Q i

⎛
⎝∑w∣v

(e(w) − 1)
⎞
⎠

.

Choose a prime w0 ∈ Pi above v. Since e(w) is the same for all primes w∣v, we have
that

∑
w∣v
(e(w) − 1) = (1 − e(w0)−1)∑

w∣v
e(w) ≤ (1 − e(w0)−1) [F(n)cyc ∶ Fcyc].

According to Lemma 2.2, H is uniform with d − 1 generators. Note that [F(n)cyc ∶ Fcyc] =
[H ∶ Hn] = p(d−1)n . Since pro-p tame inertia is generated by a single element, it follows
that e(w0) ≤ pn . Putting it all together, the result follows. ∎

Theorem 2.7 Let E be an elliptic curve defined over a number field F and F∞ a uniform
pro-p extension of F satisfying aforementioned conditions and suppose that the Selmer
group over Fcyc is cotorsion as a Zp⟦x⟧-module. Then, we have the following bound

rank E(F(n)) ≤ pn(d−1)λp(E/F) + (pn(d−1) − pn(d−2)) (q1 + 2q2).

Proof The result immediately follows from Theorem 2.6 and the inequality

rank E(F(n)) ≤ λp(E/F(n)),

see [10, Theorem 1.9]. ∎

Remark 2.8 The estimate above is stronger than [14, Theorem 3.1]. The error term is
O(pn(d−2)) and their method used relies on the work of Harris. In greater detail, [12,
Theorem 1.10] is the key result used in the estimate in [14, Lemma 3.3]. Note however,
that the error estimate of Hung–Lim is known to be 0 under certain additional
constraints. Namely, if certain cohomology groups vanish and the p-torsion group
E(F∞)(p) is finite, see [14, Theorem 3.2] and the remark following it. If F∞ contains
the extension F(E[p∞]) generated by the p-primary torsion of E, then the error term
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of Hung–Lim is nonzero, even under additional assumptions. Also, even when the
error term of Hung–Lim is 0, the the estimate above is strictly better when q1 or q2 is
nonzero.

The improvement in the bound has some nontrivial consequences, which we shall
explain in the next section. The following is a Corollary to Theorem 2.6 and is entirely
unconditional.

Corollary 2.9 Let E and F∞ be as in Theorem 2.7. Assume that q1 = q2 = 0 and

Selp∞(E/Fcyc) = 0.

Then, Selp∞(E/F(n)cyc ) = 0 for all n.

Proof Since the μ-invariant μp(E/F) = 0, it follows that MH(G) is satisfied for
F∞, see [2, Theorem 2.1]. By Theorem 2.6, it follows that the μ and λ-invariants of
Selp∞(E/F(n)cyc ) are 0, hence, Selp∞(E/F(n)cyc ) is finite. On the other hand, this Selmer
does not contain any finite index submodules (see [9, Proposition 4.14]), hence, must
be 0. ∎

3 Special cases

In this section, we study special cases of Theorem 2.7. Assume throughout that the
Assumption 2.3 is satisfied. Recall from the proof of Theorem 2.4 that this in particular
implies that Selp∞(E/L) is cotorsion over ΛL for every number field extension L/K
contained in F∞.

3.1 Z
d
p-extensions

Throughout this subsection, F will be an abelian number field and E/Q an elliptic
curve with good ordinary reduction at p. Let F∞ be the composite of allZp-extensions
of F, note that G = Gal(F∞/F) ≃ Z

d
p , where d = r2(F) + 1. For instance, when F is

an imaginary quadratic field, then, this gives a Z
2
p-extension of F. To emphasize the

dependence on the prime p, we denote the extension by F∞(p). On the other hand,
it follows from results of Kato and Rohlrich [11, Theorem 2.2] that the Selmer group
Selp∞(E/F∞) is cotorsion as a Zp⟦x⟧-module. It is well known that any Zp-extension
is unramified away from p (see [27]), hence, the composite of such extensions has the
same property. Let us state a few Corollaries to Theorem 2.7, the first of which gives a
simple criterion for the rank to be zero throughout the Zd

p-tower.

Corollary 3.1 Let E be as above and assume that λp(E/Fcyc) = 0. Then,

rank E(F(n)) = 0

for all n ∈ Z≥1 and

μp(E/F(n)) = pnd μp(E/F).
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Proof Note that since E has good ordinary reduction at the primes above p and

rank E(F) ≤ λp(E/F),

the Mordell–Weil rank of E is 0. Since F∞ is unramified at all primes w ∤ p, the
quantities q1 and q2 in Theorem 2.7 are both equal to 0. ∎

Remark 3.2 When F is an imaginary quadratic field and E is a CM elliptic curve over
F, the result of Hung–Lim in the above context shall imply that the rank in bounded
in the tower, however, not identically 0. In the more general case, their result implies
that the growth is O(pn(d−2)) unless certain homology groups are known to vanish,
see the discussion after [14, Theorem 3.2].

Example: Picking an elliptic curve E/Q at random, there are typically some primes
at which E[p] is residually reducible as a Galois module. At these primes, it is possible
that the μ-invariant μp(E/Q) does not vanish. For instance, let’s pick the elliptic curve
of smallest conductor with cremona label 11a2. We find that E has good ordinary
reduction at 5 with μ5(E/Q) = 2 and λ5(E/Q) = 0. Suppose that there is an imaginary
quadratic field F/Q in which rank E(F) = 0 and λ5(E/F) = 0 as well. Let F∞ be the
Z

2
p-extension of F. Then, indeed, since μ5(E/F) ≥ 2, the above result implies that

μ5(E/F(n)) ≥ 2p2n

for all n ≥ 1, however, the rank of E(Fn) remains 0 throughout. Unfortunately, the
author is not aware of any existing computer packages that can compute the λ-
invariant over an imaginary quadratic field.

Corollary 3.3 Let E/Q be an elliptic curve and F an abelian number field satisfying
(1) rank E(F) = 0 and
(2) E does not have complex multiplication.
Then, for 100% of primes p at which E has good ordinary reduction,

rank E(F∞(p)) = 0.

Proof In her thesis [16, Theorem 5.1.1], Kundu generalized a result of Greenberg to
show that the proportion of primes p such that
(1) E has good ordinary reduction at the primes of F above p and
(2) Selp∞(E/Fcyc) = 0,
is 100%. The result follows from this and Corollary 3.1. ∎

The following is a special case of [14, Conjecture 1].

Conjecture 3.4 [14, Conjecture 1’] Let E be an elliptic curve over an imaginary
quadratic field F, p ≥ 5 a prime and F∞ be the Z

2
p-extension of F. Assume that the

following conditions are satisfied:
(1) E has good ordinary reduction at all primes above p and
(2) Assumption 2.3 is satisfied.
Then, we have that rank E(F(n)) ≤ rank E(Fcyc)pn for all n ≥ 1.
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Corollary 3.5 Consider the setting of the above conjecture. Under Assumption 2.3, the
Theorem 2.7 specializes to give that

rank E(F(n)) ≤ λp(E/F)pn .

Thus, the Conjecture is true when

λp(E/F) = rank E(Fcyc).

Remark 3.6 Note that λp(E/F) ≥ rank E(F(n)) for all n and hence, λp(E/F) ≥
rank E(Fcyc). Indeed, it can be expected that λp(E/F) = rank E(F) for 100% of
primes above which E has good ordinary reduction. There is much evidence pointing
towards this expectation for elliptic curves defined over the rationals, see [18]. We
do expect that similar arguments do carry over to elliptic curves over imaginary
quadratic fields.

3.2 False-Tate curve extensions

Let � be a finite set of prime numbers that are coprime to p and let F∞ be the False-Tate
curve extension of F = Q(μp), given by

F∞ ∶= Q(μp∞ , �
1

p∞ ).

In other words, it is the extension obtained by adjoining all p-power roots of 1 and �.
It is easy to see that F∞/F is a uniform pro-p extension of F of dimension d = 2. Thus
Theorem 2.7 specializes to give us that

rank E(F(n)) ≤ λp(E/F)pn + (pn − 1) (q1 + 2q2) .

Let us compute the values of q1 and q2 for a given example. We note that it is difficult
to compute λp(E/F) due to the base change to F = Q(μp).

Example: We pick an elliptic curve and prime at random. Let E =11a2 in Cremona
label and p = 7. The elliptic curve is defined over Q and we consider its base change
to F = Q(μ7). It follows from Assumption 2.3 and from the proof of Theorem 2.4 that
Sel7∞(E/Q(μ7∞)) is cotorsion over ΛF . Note that since F is an abelian extension of
Q, the cotorsion property of the Selmer group (over ΛF ) also follows from results due
to Kato, see [15]. The image of the residual representation at p = 7 contains SL2(F7), as
stated in the link provided. Hence, after base change toQ(μ7) the image of the residual
representation will still contain SL2(F7). It is thus reasonable to expect that the μ-
invariant μ7(E/F) = 0, however, this is difficult to prove and needs to be assumed.
Consider the False Tate extension

F∞ ∶= Q(μ7∞ , 11
1

7∞ ).

Then, E has split multiplicative reduction at 11, hence q2 = 0, however, q1 > 0. Since
113 ≡ 1mod 7 and 113 /≡ 1mod 49, there are precisely two primes above 11 in Fcyc =
Q(μ7∞). It follows that q1 = 2. Putting it all together, we find that

rank E(F(n)) ≤ λ7(E/F)7n + 2(7n − 1).

Next, we prove a statistical result.
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Corollary 3.7 Consider the elliptic curve E = 11a2 from the example above and set
p = 7. There is a positive density set of primes � such that

rank E (Q(μ7n+1 , �
1

7n )) ≤ λ7(E/F)7n

for any integer n ≥ 1.

Proof For each prime number � such that � ≡ 1mod 7, let F(�)∞ denote the extension
Q(μ7∞ , � 1

7∞ ). Note that � splits inQ(μ7) and the only prime other than 7 that ramifies
in F(�)∞ is �. Since E has bad reduction at only finitely many primes, we deduce that
q1 = 0 for all extensions F(�)∞ except for finitely many choices of �. Recall that Q2
consists of the primes w ∤ 7 of Fcyc that are ramified in F∞, such that E has good
reduction at w and E(Fcyc,w)[7] ≠ 0. Since the formal group of E at w is pro-�,
E(Fcyc,w)[7] ≃ E(kw)[7], where kw is the residue field of Fcyc,w . Since kw is a
7-extension of F�, it follows that E(kw)[7] ≠ 0 if and only if E(F�)[7] ≠ 0. Thus, the
prime w lies in Q2 if the following conditions are satisfied:
(1) w∣�,
(2) E has good reduction at �, and
(3) E(F�)[7] ≠ 0.
This latter condition is satisfied for 1

7 of all primes �, see [3, Section 2] for further
details. We show that a similar application of the Chebotarev density theorem shows
that for a positive proportion of the primes �, both q1 and q2 are 0. Note that if a
prime � splits in Q(μ7) precisely when � ≡ 1mod 7. Let ρ̄ ∶ Gal(Q̄/Q) → GL2(F7) be
the Galois representation on the 7-torsion points E[7]. Denote by Q(ρ̄) the number
field fixed by the kernel of ρ̄. Note that det ρ̄ is the mod-7 cyclotomic character, which
we denote by χ̄. Therefore, the field Q(ρ̄) contains Q(μ7), which is the field fixed by
the kernel of χ̄. Let � ≠ 7 be a prime at which E has good reduction, note that ρ̄ is
unramified at �. Let σ� ∈ Gal (Q(ρ̄)/Q) denote the Frobenius element at �, it is well
known that the characteristic polynomial of ρ̄(σ�) is given by

det (Id ⋅x − ρ̄(σ�)) = x2 − (� + 1 − #E(F�))x + �.

Thus, if � is a prime such that

det ρ̄(σ�) = 1 and tr ρ̄(σ�) ≠ 2,(3.1)

then, � splits in Q(μ7) and E(F�)[7] = 0. We show that there is a positive density set
of primes � satisfying the above conditions (3.1). According to the LMFDB Database
[5], the image of ρ̄ contains SL2(F7). Thus there is σ ∈ Gal(Q(ρ̄)/Q) such that ρ̄(σ) =

( 2 1
1 1 ), and thus satisfies (3.1). According to the Chebotarev density theorem, there

is a positive proportion of primes such that σ� = σ , and thus, ρ̄(σ�) = (
2 1
1 1 ). As a

result, there is a positive density set of primes � such that q1 and q2 are both zero, and
this completes the proof. ∎
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3.3 The field generated by torsion points

We come to the example in which F∞ is the field Q(E[p∞]), i.e., the field generated
by the p-primary torsion points of E. Assume that E does not have complex multipli-
cation. Then, by Serre’s Open image theorem (see [25, Section 4 and Theorem 3]), G
is a finite index subgroup of GL2(Zp) and it follows from this that the dimension of
G is 4. In this setting, F = Q(E[p]), and F(n) = Q(E[pn+1]). We find that

rank E(Fn) ≤ λp(E/F)p3n + q1(p3n − p2n),

where q1 is simply the number of primes � ≠ p at which E has split multiplicative
reduction, and q2 = 0. On the other hand, according to [14, Remark after Theorem
3.2] the result of Hung–Lim [14, Theorem 3.2] gives

rank E(Fn) ≤ (λp(E/F) + q1)p3n + 8,

when the whole dual Selmer group X(E/F∞) is finitely generated over Λ(H).
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