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The internal structure of forced fountains
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We study the mixing processes inside a forced fountain using data from direct
numerical simulation. The outer boundary of the fountain with the ambient is a
turbulent/non-turbulent interface. Inside the fountain, two internal boundaries, both
turbulent/turbulent interfaces, are identified: (i) the classical boundary between upflow
and downflow which is composed of the loci of points of zero mean vertical velocity; and
(ii) the streamline that separates the mean flow emitted by the source from the entrained
fluid from the ambient (the separatrix). We show that entrainment due to turbulent fluxes
across the internal boundary is at least as important as that by the mean flow. However,
entrainment by the turbulence behaves substantively differently from that by the mean flow
and cannot be modelled using the same assumptions. This presents a challenge for existing
models of turbulent fountains and other environmental flows that evolve inside turbulent
environments.

Key words: turbulent mixing, plumes/thermals

1. Introduction

Understanding the process of turbulent mixing within fluid flows is a ubiquitous
challenge in the modelling of environmental processes, and in our exploitation of similar
physical processes to meet societal needs and demands (Fernando 1991). Frequently,
the understanding of the process of turbulent mixing between distinct bodies of fluid is
approached by seeking to investigate the exchanges of the physical properties between
these fluid bodies. In some circumstances, the region where these exchanges occur is
robustly defined by the constraints imposed by the presence of solid boundaries; with
the fluid behaviour in the proximity of that region being significantly altered by these
boundaries. Examples range in scale, at least, from the flow through the windows of
our buildings (Gladstone & Woods 2001) to the regions that occur when continental
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landmasses and the ocean floor conspire to create so-called ‘straits’, which affect the
dynamics of our global oceans (Finnigan & Ivey 1999, 2000). However, an even wider
range of exchanges between distinct bodies of fluid can be driven by turbulence in the
absence of any solid boundary. The study of such exchanges is long standing and ongoing
(see Dimotakis (2005) for a broad review). It is this type of exchange, specifically that
within a canonical turbulent forced fountain, which forms the focus of this study.

The term ‘turbulent fountain’ describes the flow in which the buoyancy force opposes
the initial momentum flux of an ejection from a localised source; for example, a negatively
buoyant high-Reynolds-number jet continuously injected upwards into a uniform quiescent
environment will produce a turbulent fountain (Hunt & Burridge 2015). In this frame of
reference, quasi-steady fountains consist of an inner core, herein the ‘upflow’, shrouded
by a returning counterflow, herein the ‘downflow’ (see, for e.g. Turner 1966; Mcdougall
1981). Amongst other applications (see Hunt & Burridge 2015), turbulent fountains play
important roles in determining the environment within our buildings (e.g. Lin & Linden
2005), water recirculation and purification (e.g. Bloomfield & Kerr 2000) and the forced
heating or cooling of enclosed spaces (Baines, Turner & Campbell 1990). The dynamics
of high-Reynolds-number high-Péclet-number miscible fountains can be described by
consideration of a single dimensionless parameter (Burridge & Hunt 2014), the source
Froude number

Fr0 = M0
5/4

Q0|F0|1/2 = w0√|b0|r0
, (1.1)

where Q0, M0, F0 are the integral source fluxes, per unit π, of volume, momentum and
buoyancy, respectively; b0 = F0/Q0 is the source buoyancy scale, r0 = Q0/M1/2

0 is the
source radial scale and w0 = M0/Q0 is the characteristic vertical velocity at the source.
Note that r0 is the physical radius of the source only if one takes the velocity profile at the
source to be uniform (i.e. top-hat). These fountains: (a) offer a rich variety of turbulent
exchanges across non-solid boundaries, (b) are canonical flows and as such can inform our
fundamental understanding of the physics of these processes and (c) have been relatively
unexplored, compared with other canonical flows, like plumes or jets.

Exchanges driven by turbulence, in the absence of a solid boundary, have traditionally
been studied from perspectives driven by two distinct motivations. Firstly, that of
understanding, and often modelling, the fundamental physics of these processes, e.g. the
modelling of gravitational convection of turbulent plumes and jets (e.g. Morton, Taylor &
Turner 1956); or secondly, from a need to account for the effects of these physical processes
within societal applications, e.g. the modelling of atmospheric dynamics for weather
prediction (for e.g. Neggers, Siebesma & Jonker 2002). These different motivations have
led to subtly different meanings of the same key terms within different fields of scientific
literature. As such, we devote some effort to clarifying first the history, and then our usage
of these terms, in particular ‘entrainment’.

When driven by the desire to develop widely applicable models for the effects of
turbulence, the term ‘entrainment’ has classically referred exclusively to the drawing in
of mass (volume) by a region of turbulent fluid from an ambient background (Morton
et al. 1956); implicitly this occurs across what is now termed a ‘turbulent/non-turbulent
interface (TNTI)’. This physical process is relevant to a broad class of canonical flows, e.g.
jets (Abramovich et al. 1984), plumes (Priestley & Ball 1955; Morton et al. 1956), temporal
jets (Van Reeuwijk & Holzner 2014), clouds (De Rooy et al. 2013), growing regions of
turbulence driven by an oscillating grid (Thompson & Turner 1975) and between fountain
flows and the environment at their envelope (Burridge & Hunt 2016); for a thorough review
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The internal structure of forced fountains

see Da Silva et al. (2014). By definition, a quantity that is exchanged from the background
into the region of interest is referred to as being entrained, or ‘entrainment’; if it leaves the
region of interest it is often referred to as being detrained or ‘detrainment’ – we adhere to
this usage of these terms.

In the context of these scientific endeavours, the term ‘turbulent entrainment’ has
historically been used to emphasise the physical mechanism by which this process occurs.
However, this ‘entrainment’ is classically associated with a mean inflow velocity across
the TNTI which is related to a characteristic velocity of the flow within the region of
interest, in this case, the only region of turbulent fluid, via an entrainment coefficient
(Turner 1986). This inflow might not only be associated with fluxes of mass (volume),
but also with other quantities such as momentum and buoyancy (Talluru, Williamson &
Armfield 2022). This can be insignificant, as in the canonical cases of plumes or jets when
the background is a quiescent uniform environment, but becomes significant, for example,
whenever the background is stratified or in motion. These considerations are pertinent
to the modelling of the momentum and buoyancy exchanges between the upflow and
downflow within fountains (Bloomfield & Kerr 2000; Shrinivas & Hunt 2014, hereafter
referred to as BK00 and SH14, respectively).

More recently, some studies have focused on cases where the background fluid is also
turbulent (rotational) so that the exchanges occur across a turbulent/turbulent interface
(TTI) (Kankanwadi & Buxton 2020; Van Reeuwijk, Vassilicos & Craske 2021). In cases
that feature a TTI, the use of the term ‘turbulent entrainment’ referring to the transport
by the mean properties of a turbulent flow region is no longer helpful, since the flow is
turbulent on both sides of the interface (TTI).

An unambiguous terminology is thus needed to describe the different exchanges when
dealing with TTIs. We will refer to the exchanges into our region of interest (which must be
defined explicitly in each case) due to the mean flow properties as ‘mean entrainment’ and
the exchanges due to turbulence as ‘turbulent entrainment’. However, to avoid a conflict
with the classical usage of the terms, we shall not use the term ‘turbulent entrainment’
in isolation, instead we always explicitly specify the quantity that is being exchanged,
e.g. ‘mean volume entrainment’ and ‘turbulent momentum entrainment’, etc.

The aforementioned entrainment terms can be defined rigorously using the example of
a slender axisymmetric steady-state jet/plume/fountain developing in the direction of the
coordinate z, for which the integral continuity equation and transport equation of a generic
scalar, or vector component, X in the absence of sources are given by (see Van Reeuwijk
et al. 2021)

d
dz

∫
Ω̄

w̄ dA = −
∮

∂Ω̄

V̄g d�, (1.2)

d
dz

∫
Ω̄

(
w̄X̄ + w′X′

)
dA = −

∮
∂Ω̄

(
V̄g X̄ + V ′

gX′
)

d�. (1.3)

Here, the velocity component in the z-direction is denoted w, and integration is performed
over a domain Ω̄ , orthogonal to the z-direction, that encompasses the flow within the
region of interest; ∂Ω̄ denotes the boundary of Ω̄ . The overbar indicates the domain
is chosen based on a Reynolds-averaged quantity: in the case of jets/plumes, this
Reynolds-averaged quantity is typically a small fraction ε of the centreline velocity w̄c
(Van Reeuwijk et al. 2016), i.e. Ω̄ is the domain for which w̄ > εw̄c. Since the flow is
statistically axisymmetric and time independent, the interface can equally be described
using a single-valued function r = ht(z).
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The instantaneous entrainment velocity across the interface is denoted Vg, which is
the difference between the local fluid velocity and the boundary velocity. Following Van
Reeuwijk et al. (2021), we write this as

Vg = u − Dht

Dt
= u − w

dht

dz
, (1.4)

where Dht/Dt is the material derivative representing the boundary velocity, u and w are
the instantaneous radial and streamwise velocity components of fluid on the interface ∂Ω̄ ,
respectively. For the case under consideration, ht is time independent due to consideration
of a boundary defined by a Reynolds-averaged quantity, in which case this term then
simplifies as per the right-hand side of (1.4). Reynolds averaging the expression above
results in V̄g = ū − w̄(dht/dz). Note that, since we choose the interface based on a
threshold of velocity, the last term is negligibly small compared with the first, and we
recover the classical entrainment velocity V̄g = ū for jets/plumes.

The right-hand side of (1.2) represents the mean volume entrainment, as the transport is
due to the mean quantity V̄g, in this case V̄g = ū. The first term on the right-hand side
of (1.3) represents the mean scalar entrainment term V̄gX̄ and the second term of the
right-hand side is the turbulent scalar entrainment term V ′

gX′ (by definition X can also
be a vector component, e.g. w; we omit the ‘vector’ in the name here for simplicity). Note
that volume entrainment can only be caused by the mean flow, but all other transported
properties (momentum, buoyancy, etc.) can have both a mean and a turbulent component.

The terms for entrainment are illustrated schematically in figure 1. The figure illustrates
the entrainment from an ambient of two cases: (a) the ambient is non-turbulent so that the
interface is a TNTI, for which only mean volume entrainment and mean scalar entrainment
can occur at the interface (e.g. the interface between a turbulent fountain and the quiescent
environment); (b) the ambient is turbulent so that the interface is a TTI (e.g. the interface
between the upflow and downflow inside a turbulent fountain), for which, besides mean
volume entrainment and mean scalar entrainment, turbulent scalar entrainment can occur
at the interface. Instantaneous exchanges at the TTI can and do occur in both directions
(as allowed in the BK00 model of a fountain or measured at the cloud edge De Rooy
et al. 2013), but the Reynolds-averaged quantities discussed here are the net value of these
bi-directional exchanges.

In some circumstances, the fluid on one particular side of the TTI has a larger turbulence
intensity and so the choice of the ‘region of interest’ (or ‘flow region’) and ‘background’ is
obvious. However, for more complex fluid flows this is not so straightforward. For example,
in a fountain one can distinguish between an upflow and a downflow, which are modelled
separately (BK00). Here, in the upflow and in the downflow, turbulence levels can be
of comparable turbulence intensity, with standard metrics switching from being typically
larger in the upflow near the source, to the downflow further from the source. Another
example is a cumulus cloud, where it is also difficult to distinguish on which side of the
interface between the cloud core and descending shell the turbulence intensity is largest
(Heus & Jonker 2008; De Rooy et al. 2013; Nair, Heus & van Reeuwijk 2020). Thus, in
order to distinguish ‘entrainment’ and ‘detrainment’, one must always clearly define the
‘region of interest’, as this will determine whether one should use the term entrainment
(exchange into the region) or detrainment (exchange out of the region). For completeness,
we note that, should the exchanges illustrated in figure 1(b) be evaluated to be negative
then, following our convention, this would result in the reversal of the direction of the
arrows, and the exchanges would thus be termed ‘detrainment’.
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Non-turbulent
environment

Turbulent region
of interest

Turbulent
environment

Turbulent region
of interest

V̄g  mean volume entrainment

V̄g  mean volume entrainment

V̄g X̄ mean scalar entrainment

V̄g X̄ mean scalar entrainment

V ′
g X ′  turbulent scalar entrainment

Mean interface position

(b)

(a)

Figure 1. Schematic illustrating the entrainment of volume and scalars across interfaces separating the flow
within the chosen region of interest, which is by definition turbulent, and the environment. Two different
cases emphasise our chosen terminology: (a) a non-turbulent environment, and (b) a turbulent environment.
Transport or exchanges across the interface, here all termed ‘entrainment’, are illustrated by arrows; for
each entrainment, the associated transport term and its naming convention are highlighted. Black arrows
represent the entrainment that is associated with the mean flow, while the red arrow represents that associated
with the turbulence.

The aim of this work is to study the internal structure of a turbulent forced fountain; to do
so, we use direct numerical simulation (DNS) to investigate a highly forced fountain. The
structure of the paper is as follows: in § 2 we describe the numerical simulation details. In
§ 3 we describe the instantaneous fountain observation and discuss the internal structure of
a Reynolds-averaged fountain, we divide the fountain into three regions of interest with two
TTIs. In § 4 we introduce the integral quantities of a fountain and appropriate conservation
equations in order to find the flux and entrainment budgets of mass, momentum and
buoyancy. In § 5 we examine the vertical variation in fluxes within the three flow regions.
In § 6 we discuss entrainment across the interfaces, including that near the fountain top;
ending with a comparison of the entrainment coefficients from our DNS with those of
other studies. Concluding remarks are made in § 7.

2. Simulation details

We simulate an axisymmetric fountain driven by an isolated source of uniform (top-hat)
vertical upwards velocity w0 and opposing (negative) buoyancy b0 where buoyancy is
defined as b = g(ρe − ρ)/ρa, in which ρ and ρe denote the density of fountain flow
and environment, respectively, ρa is a reference density, and g is the gravity. The
domain has size Lx × Ly × Lz = 160 r0 × 160 r0 × 100 r0 where r0 is the source radius.
The coordinate system has its origin in the bottom corner with the z-direction upwards
(figure 2), and the source is located in the centre at (Lx/2, Ly/2, 0). The source fluxes, per
unit π, of volume Q0, momentum M0, buoyancy F0 and (again per unit π) the integral
buoyancy B0, can be defined as

Q0 = w0r2
0, M0 = w2

0r2
0, F0 = w0b0r2

0, B0 = b0r2
0. (2.1a–d)

The fountain source is such that the source Froude number is Fr0 = 21 which sits
well above the threshold (Fr0 � 4.0) for the region described as forced fountains
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Top

Four vertical sides

periodical boundary

Source

u = v = 0, w = w0, b = b0

z

xy

1.0 × 100

–1.0 × 100

0.5

–0.5

0

w/w0

Bottom

∂u
∂z ∂z ∂z ∂z

∂v ∂w ∂b
= = = = 0= 0,

∂u
∂z ∂z ∂z

∂v ∂b
= = = 0= 0, w = 0,

Figure 2. The whole simulation domain with an illustration of an instantaneous fountain depicted by plotting
an isosurface of buoyancy, coloured according to the local vertical velocity. The unit of the length is the number
of nodes.

(Burridge & Hunt 2012). The Reynolds number is Re0 = w0r0/ν = 1667, sufficient such
that our simulations sit within a Reynolds-number regime (Re0 � 1000) for which the
experiments of Burridge, Mistry & Hunt (2015) demonstrate that the bulk behaviour of
the fountain, in particular the fountain rise height, is broadly independent of Re0, and the
flow can be regarded as high Reynolds number, or ‘turbulent’.

For these turbulent highly forced fountains universal scalings exist based on
consideration of a point source fountain of momentum flux, M0, and opposing buoyancy
flux, F0. By consideration of the length scale LF = M3/4

0 /|F0|1/2 = r0Fr0 (cf. Turner
(1966), who originally defined the length scale based on physical fluxes, rather than the
fluxes per unit π, i.e. there is a ratio of π1/4 between the two length scales) and time
scale TF = M0/|F0| = √

r0/|b0| Fr0 (Burridge & Hunt 2013), results for forced fountains
are therefore universal when scaled on Fr0. Herein, we use these scales to normalise all
quantities, making our findings directly applicable to all turbulent fountain flows with
source Froude number Fr0 � 4 (Hunt & Burridge 2015). For example, we normalise
all volume fluxes using QF = L3

F/TF = M5/4
0 /|F0|1/2 (QF ∝ Q0Fr0 Baines, Corriveau &

Reedman 1993) and for all quantities concerning the entrainment of volume, momentum
and buoyancy, we use qF = QF/LF = M1/2

0 , mF = M0/LF and fF = F0/LF, respectively.
The size of our cuboidal domain in these units, is Lx × Ly × Lz = 7.55 LF × 7.55 LF ×
4.72 LF.

The incompressible Navier–Stokes equations under the Boussinesq approximation are
solved numerically using DNS on a uniform Cartesian grid of Nx × Ny × Nz = 12803

cells. The grid size is resolved smaller than two Kolmogorov scales, such as �x =
Lx/Nx < 2ηK . Here, the Kolmogorov scale ηK = (ν3/ε)1/4, where ε is the averaged
integral dissipation rate of turbulent kinetic energy over the entire fountain height. The
code employed is SPARKLE, which uses a spatial discretisation of fourth-order accuracy
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and a third-order Adams–Bashforth time integration scheme. Details of the numerical
method used in SPARKLE can be found in Craske & van Reeuwijk (2015).

A Dirichlet boundary condition w = w0, b = b0 is applied at the source to ensure the
uniform source value. We initiate the turbulence by applying an uncorrelated perturbation
of 1 % to the velocities in the first cell above the source. The boundary condition at the
domain top has a Neumann condition on velocity and buoyancy, and at the domain bottom,
the boundary condition is ‘free slip’ with a Neumann condition on buoyancy (except at the
source). The four sidewalls of the domain are periodic, raising potential concerns that
fluid leaving from one side and re-entering at the opposite can potentially influence the
fountain flow – we mitigate this concern in two ways. First, we ensure that the domain is
sufficiently large that the dynamics of the fountain is unaffected by any transport at the
domain edges. To do this, we checked a variety of fountain flow statistics for a domain
that is approximately 50 % smaller. We found no substantial differences between the
domain in terms of the fountain (outer boundary) and the exchanges across the internal
boundaries (defined later on). These results are presented in Appendix A. Second, to avoid
any accumulation of buoyancy within the domain affecting our results, a buoyancy ‘sink’
region is set within a thin region (of height r0) at the bottom of the domain and, to avoid
affecting the source, only within the region r � 9r0 – within this sink region the fluid
buoyancy is gradually adjusted by a ‘nudging’ process towards the environmental value,
i.e. the buoyancy is nudged to zero in this region (Stevens, Graham & Meneveau 2014).

Observations show that the longest time scales in a forced fountain flow are the time
scale required to establish a statistically steady state (found here to be approximately
5TF), followed by the time scales of the large-scale low-frequency fluctuations near the
fountain top. The latter time scale is approximately 2TF (Burridge & Hunt 2013). We ran
our simulations for a duration of 16TF in order to allow sufficient time for the flow to reach
a statistically steady state and then experience a number of the largest-scale fluctuations
in the region near the top of the fountain, a region which we describe as the ‘fountain
cap’. Instantaneous statistics were obtained at a vertical plane at the centre of the domain
with time increments of 0.09TF. Azimuthally Reynolds-averaged data were computed and
stored every 0.14TF once the fountain was in a statistically steady state by partitioning the
domain into concentric cylindrical shells and averaging over all cells lying within a given
shell (Craske & van Reeuwijk 2015; Van Reeuwijk et al. 2016).

3. Flow observations and internal structure

3.1. Observations of instantaneous fountain
A movie showing the fountain from the initial transient state to the statistically steady
state can be found within the supplementary material available at https://doi.org/10.1017/
jfm.2023.210. Figure 3 shows a time series of the evolution of the vertical distribution of
the horizontally integral buoyancy within the fountain B (per unit π), which is defined as

B(z, t) = 1
π

∫ Lx

0

∫ Ly

0
b(x, y, z, t) dx dy ≈

∫ Lx

0
b(x, z, t)

∣∣∣∣x − Lx

2

∣∣∣∣ dx, (3.1)

for practical reasons (namely, instantaneous data are taken at a central vertical plane), our
evaluation comes via the approximation in (3.1).

Fountain flows typically feature a region at the fountain cap which is characterised by
the formation and collapse of large-scale structures within the fountain flow as is observed
in figure 3. The fountain height is determined by a threshold 0.01B(zb), where B(zb) is
the time-averaged integral buoyancy at a height zb/LF = 1.63, which we define as the
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–1

0

Figure 3. Time series of normalised local integral buoyancy, B(z, t)/B0, within the fountain. The
instantaneous fountain height is outlined by the solid line. The horizontal dashed line marks the initial height
and the dash-dotted line marks mean steady height. Within the figure, the darker shades of blue represent the
greater negative buoyancy.

fountain cap base (see § 3.2). During t/TF � 5.0, which we regard as the initial transient
period, the upflow reaches an initial height at t/TF ≈ 2.2, and the downflow is yet to
be fully developed until t/TF ≈ 4.0. After t/TF ≈ 5.0, the fountain can be said to have
reached a statistically steady state, and the fountain height fluctuates around a mean steady
height. The ratio of initial to steady heights is approximately 3 : 2, in line with experimental
measurements (Turner 1966; Burridge & Hunt 2012). Note that the heights referred to
here are taken from measurements only in the central vertical plane. Figure 3 shows the
characteristic (dark blue) inclined stripes that indicate the falling of distinct negatively
buoyant fluid structures within the downflow, as previously discussed for fountains in
statistically steady state by Burridge & Hunt (2013) and Mingotti & Woods (2016). The
thin region, z/LF � 0.05 in which the local buoyancy is nudged to the environmental value
in order to avoid the accumulation of buoyancy in the domain can also be observed.

3.2. Internal structure of Reynolds-averaged fountain
Once the fountain has reached a statistically steady state, its averaged form is
governed by the axisymmetric Reynolds-averaged Navier–Stokes equations in the
high-Reynolds-number limit, namely

1
r

∂(rū)

∂r
+ ∂w̄

∂z
= 0, (3.2a)

1
r

∂

∂r
(rū w̄ + ru′w′) + ∂

∂z
(w̄ w̄ + w′w′) = −∂p

∂z
+ b̄, (3.2b)

1
r

∂

∂r
(rū b̄ + ru′b′) + ∂

∂z
(w̄ b̄ + w′b′) = 0, (3.2c)

where ·̄ represents the time average (mean): b̄ is the mean buoyancy. The mean velocity
components (ū, w̄) correspond to the radial direction r and vertical direction z, respectively.
The mean pressure p̄ is the kinematic pressure from which the hydrostatic pressure field
resulting from the environmental density has been subtracted.
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Figure 4. The normalised mean vertical velocity w̄/wF , where wF = M1/4
0 |F0|1/2, within the time-averaged

fountain marked by colour with regions of: upward velocities shaded red, downward shaded blue and zero
vertical velocity being white. (a) Highlights the internal structure of the fountain by overlaying the vertical
velocities with relevant boundaries: the inner boundary (blue line), outer boundary (red line) and the separatrix
(purple line). The thin dash-dotted line marks the loci of points where the maximum downflow vertical velocity
occurs. (b) The vertical velocities are overlaid with velocity streamlines. The fountain cap base is marked by
the horizontal dashed line.

Figure 4(a) shows the internal structure of the Reynolds-averaged fountain in its
statistically steady state with the shaded colour indicating the mean vertical velocity,
w̄ = w̄(r, z), at that location. We define the point at which the mean vertical velocity
on the centreline first falls to zero to be the ‘height of the upflow’, denoted zi and we
find zi/LF ≈ 2.22. Some works (e.g. BK00) attempted to model fountains only via the
application of ‘plume-like’ flow theory, whilst others acknowledged the need to model a
‘cap’ region near the fountain top via distinct considerations (e.g. Mcdougall (1981) and
SH14). The fountain cap region can be considered to be the region of flow enclosed by the
outer boundary above some height zb, which we term the fountain cap base. The definition
used to determine the height of the fountain cap base varies between studies; for example,
Mcdougall (1981) theoretically modelled the cap region as a hemisphere whose radius is
half of its base vertical height, SH14 and Hunt & Debugne (2016) defined the cap base
location as where the local Froude number of upflow is equal to

√
2. In their experimental

study of fountains, Talluru et al. (2022) investigated the sensitivity of their findings to the
choice cap base definition, dependent on a local Froude-number condition (in the upflow);
they found that the ratio of the volume flux entrained within the cap to that in the upflow at
the cap base was insensitive to the location of the cap base when the local Froude-number
condition was chosen to be in the range 1.2–1.8. The numerical study of Awin et al. (2018)
defined the cap base at the location where the radius of upflow is the widest. Specifically
for our fountain, the locations of the cap base following each of the three above definitions
from the existing literature are all within the region 1.60 � z/LF � 1.65. Therefore, our
precise choice of definition is of little significance and, somewhat arbitrarily, we choose to
define the fountain cap base as the point of maximum upflow radius, giving, zb/LF = 1.63.
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The downflow of the steady fountain and the environment are separated by the outer
boundary of radius rf = rf (z), this also constitutes the boundary of fountain flow. The
outer boundary is defined by the loci of points at which the mean buoyancy b̄ = 0.01b̄cc,
where b̄cc = b̄(0, zb) is the centreline mean buoyancy at the fountain cap base level
which is approximately 0.36b0. The sensitivity of our results to the constant within the
threshold b̄ = 0.01b̄cc that was used to determine the outer boundary is presented in
Appendix A; this sensitivity is not deemed significant. The top of the outer boundary (also
the final steady height of the entire time-averaged fountain) is located at zf /LF ≈ 2.45, i.e.
zf /r0 ≈ 2.45Fr0, which is close to the value 2.46 reported by Burridge & Hunt (2012), and
also agrees well with other experimental literature (see Turner 1966; Mizushina, Ogino &
Takeuchi 1982; Baines et al. 1990). The outer boundary generally increases from the top to
bottom as, too, does the area of downflow. We find that the height of the cap region (from
cap base to the top) is zf − zb = 0.82LF, which comprises approximately one third of the
total fountain height. We note that the fountain cap region is not our primary focus but we
do include some analysis in § 6.2, and we mark the location of the fountain cap base in all
relevant figures for completeness.

Below the cap, the flow can be divided into two regions separated by an internal
boundary, or interface. Herein, we investigate two different definitions of this internal
boundary. The first is to decompose the fountain into an upflow region where w̄ is positive
(shaded red in figure 4) and a downflow region where w̄ is negative (shaded blue), that
are separated by the inner velocity boundary ri defined by the loci of points at which
w̄ = 0. The radial position of this inner velocity boundary (hereinafter ‘inner boundary’)
ri increases to a maximum width at z/LF ≈ 1.63 (in fact the definition of cap base) and
decreases to zero above, at the point at which the mean centreline velocity reduces to zero.
Shown in figure 4(b) are the streamlines of the mean velocity, {ū, w̄}. By construction, the
streamlines are horizontal on the inner boundary since the vertical velocity is zero.

The streamlines in figure 4(b) then provide our second definition of the internal
boundary. The streamlines illustrate that the flow being injected from the source is, in the
mean, separated from the entrained ambient flow by a streamline that originates from the
stagnation point at the top of the inner boundary. This separatrix, which we denote rs(z),
is highlighted by the purple line in figure 4(a) and defines our second internal boundary.
The streamlines outside the separatrix show the environmental fluid is entrained into the
downflow and eventually leaves the domain from the side. The streamlines cross the outer
boundary at some angle to the horizontal indicating that the entrainment velocity has some
vertical component. The streamlines inside the separatrix either originate from the source
or are closed loops within the upflow, crossing the inner boundary twice – this highlights
that, in the mean, the upflowing core entrains near the source and then detrains fluid into
downflow further from the source (above z/LF ≈ 1.20).

By construction, there is no mean exchange across the separatrix, and so the volume
flux inside rs is conserved. Exchange across the separatrix rs can thus only occur by
turbulence. By definition, the separatrix intersects the centreline at the height z = zi,
i.e. rs(zi) = ri(zi) = 0. The separatrix divides the downflow into an ‘inner downflow
region’ (the region between the inner boundary and separatrix), and an ‘outer downflow
region’ (the region between the separatrix and outer boundary). The outer downflow region
contains all mass (volume) that has been entrained from the environment. These regions
and boundaries are all shown in figure 4(a). Except close to the fountain top, the location
of the separatrix (purple line) is very similar to that of the vertical velocity maximum (thin
black dashed line). This suggests that the fluid beyond the vertical velocity maximum is
entrained from the environment.
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Figure 5. The normalised mean buoyancy field b̄/bF , bF = M−5/4
0 |F0|3/2, overlaid with three fountain

boundaries presented in figure 4 and: (a) field lines of mean buoyancy flux {ūb̄, w̄b̄}, where the grey lines
mark the field lines outside the separatrix; (b) field lines of total buoyancy flux {ūb̄ + u′b′, w̄b̄ + w′b′}.

The relevance of the separatrix rs to fountain flows is highlighted by consideration of the
field lines of mean buoyancy flux {ūb̄, w̄b̄}, and total buoyancy flux {ūb̄ + u′b′, w̄b̄ + w′b′},
plotted in figures 5(a) and 5(b), respectively, both with the buoyancy field overlaid. Here,
we note that, as (3.2c) demonstrates, only the total buoyancy flux is a conserved quantity.
This implies that for the field lines of mean buoyancy, there is a sink–source term and the
total buoyancy between the two field lines need not be conserved. As the mean buoyancy
flux is the product of the velocity field and the scalar buoyancy field, the field lines of mean
buoyancy flux are similar to the streamlines inside the fountain presented in figure 4(b)
within the separatrix. As the environment has neutral (zero) buoyancy, the fountain source
is the only source of (negative) buoyancy. Therefore, it is worth noting from figure 5(a)
that: firstly, no field lines exist outside the outer boundary rf ; and secondly, the buoyancy
injected from the source cannot be transported outside of the separatrix rs by the mean
buoyancy fluxes. However, we can observe there is mean transport of (negative) buoyancy
flux within the outer downflow beyond, as indicated by the grey field lines between the
purple boundary, rs, and red boundary, rf . Combining observations from figures 5(a) and
5(b) highlights that it is only turbulence that transfers the negative buoyancy across rs into
the outer downflow region, i.e. all the negative buoyancy within the outer downflow is the
result of turbulent exchange across rs. The field lines of total buoyancy flux in figure 5(b)
evidence the transfer of buoyancy across the separatrix due to turbulence. Since the total
buoyancy flux within the fountain is conserved, the buoyancy flux in the upflow equals the
buoyancy flux in the downflow.

Note that the streamlines and field lines indicate that, as expected, the dynamics of the
outer downflow below z/LF ≈ 0.5 is visibly affected by the (free-slip) bottom boundary,
e.g. the flow is forced radially outwards in that region. To ensure the absence of boundary
effects in the data presented herein, we therefore only display data from the outer downflow
region for z/LF > 0.66 in all further analyses. However, the inner downflow region is not
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likely to be significantly affected since this fluid is entrained by the upflow. We, therefore,
consider our results for the inner downflow region to be valid over the full height.

4. Integral equations

The theoretical work in this section presents exact transport budgets for each flow region.
We integrate (3.2a)–(3.2c) over the radial coordinate r between two radial locations r1(z)
and r2(z) and employ the Leibniz integration rule to give conservation equations (per unit
π) for the fluxes of volume, momentum and buoyancy as

dQ
dz

= q1 − q2, (4.1a)

d(M + M′ + P)

dz
= B + m1 − m2, (4.1b)

d(F + F′)
dz

= f1 − f2. (4.1c)

The integral quantities, per unit π, are defined as

Q ≡ 2
∫ r2

r1

w̄r dr, B ≡ 2
∫ r2

r1

b̄r dr,

M ≡ 2
∫ r2

r1

w̄2r dr, M′ ≡ 2
∫ r2

r1

w′2r dr, P ≡ 2
∫ r2

r1

p̄r dr,

F ≡ 2
∫ r2

r1

w̄b̄r dr, F′ ≡ 2
∫ r2

r1

w′b′r dr,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

where B is the integral mean buoyancy. The quantities M, M′ and P correspond to the
integral mean momentum flux, turbulent momentum flux and pressure. Moreover, F and
F′ denote the integral mean buoyancy flux and turbulent buoyancy flux. Depending on
the region of interest, the inner boundary can take the locations r1(z) = {0, ri(z), rs(z)},
and the outer boundaries r2(z) = {ri(z), rs(z), rf (z)}, with the only condition being that
r2(z) > r1(z). The perpendicular exchanges of volume, momentum and buoyancy across
the boundary rj (with j = i, f , or s) are defined as

qj = 2r
(

ū − w̄
dr
dz

)∣∣∣∣
rj

, (4.3a)

mj = 2r
(

ū w̄ − w̄2 dr
dz

)∣∣∣∣
rj

+ 2r
(

u′w′ − w′2 dr
dz

)∣∣∣∣
rj

+ 2r
(

−p̄
dr
dz

)∣∣∣∣
rj

and, (4.3b)

fj = 2r
(

ū b̄ − w̄ b̄
dr
dz

)∣∣∣∣
rj

+ 2r
(

u′b′ − w′b′ dr
dz

)∣∣∣∣
rj

, (4.3c)

respectively. The terms associated with the radial change, i.e. dr/dz, are ‘Leibniz terms’.
As discussed in § 1, the perpendicular exchange of volume flux qj (4.3a) only comprises a
mean contribution, and the mean entrainment velocity V̄g, see (1.4), is clearly recognisable.
The term mj, (4.3b), is the perpendicular exchange of momentum flux which comprises a
mean momentum flux (the first term on the right-hand side; note that this term is equal to
2rV̄gw̄ evaluated at rj) and turbulent momentum flux terms (the second and third terms
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The internal structure of forced fountains

on the right-hand side; with the second term equal to 2rV ′
gw′ evaluated at rj and the

third term accounting for the effects of pressure which are typically small compared
with the second term). The term fj, (4.3c), is referred to as the perpendicular exchange
of buoyancy flux which comprises one term for mean buoyancy entrainment (the first term
on the right-hand side; equal to 2rV̄g b̄ evaluated at rj) and one for turbulent buoyancy
entrainment (the second term on the right-hand side; equal to 2rV ′

gb′ evaluated at rj).
Whether these exchanges are termed ‘entrainment’ or ‘detrainment’ depends solely on the
chosen ‘region of interest’ and the sign of the flux.

In the remainder of this section, the budgets for the upflow, downflow and inner
downflow are presented by substituting appropriate boundaries into the equations above.
For completeness, we note that, since we use a buoyancy that is consistently defined
relative to the uniform ambient fluid, our buoyancy formulation corresponds to both that
termed ‘BFI’ by BK00, which is also that used by SH14.

4.1. Upflow region
The upflow budgets can be obtained by integrating from the centreline to the inner
boundary, i.e. r1(z) = 0 and r2(z) = ri(z). Denoting upflow quantities with subscript ‘u’,
it immediately follows that (4.1a)–(4.1c) for the upflow region become

dQu

dz
= −qi, (4.4a)

d(Mu + M′
u + Pu)

dz
= Bu − mi, (4.4b)

d(Fu + F′
u)

dz
= −fi. (4.4c)

By stipulating that Qu = r2
uwu, Mu = r2

uw2
u and Bu = r2

ubu, the characteristic (top-hat)
upflow vertical velocity wu, buoyancy bu and radius ru are defined

wu ≡ Mu

Qu
, bu ≡ BuMu

Q2
u

, and ru ≡ Qu

M1/2
u

. (4.5a–c)

These natural characteristic scales will be used to investigate the entrainment coefficients
in § 6.3.

4.2. Downflow region
The downflow budget (i.e. including both the inner and outer downflows), can be obtained
by integrating from the inner boundary to the fountain edge, i.e. r1(z) = ri(z) and r2(z) =
rf (z). As the flow direction is opposite to the upflow, we define a downward coordinate zd.
A transformation z → −z implies that w → −w, b → −b in order to achieve invariance
of the equations (3.2a)–(3.2c). From the definitions, (4.2), it now follows that the integral
downflow quantities are given by Qd = −Q, Md = M, Fd = F, Bd = −B and d/dzd =
−d/dz, with the transformation of the turbulent quantities following an equivalent form.
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Substitution into (4.1a)–(4.1c) results in

dQd

dzd
= qi − qf , (4.6a)

d(Md + M′
d + Pd)

dzd
= Bd + mf − mi, (4.6b)

d(Fd + F′
d)

dzd
= ff − fi. (4.6c)

The radial coordinate remains unchanged in this transformation. Therefore, a positive
volume flux qf contributes negatively to the downflow budget. Note that, at the outer
boundary, the term ‘mf ’ can be interpreted as −(−mf ), where −mf is an outwards
flux of downward momentum (consider (4.3b) at rj = rf under coordinate zd). Similar
understanding holds true for the buoyancy flux term ff in (4.6c). At the inner boundary,
the exchange of volume flux, qi, contributes oppositely to the upflow and downflow (4.4a),
(4.6a) as the volume flux exchanged out of the upflow will increase the volume flux in
the downflow and vice versa. However, in terms of the upflow, mi represents an outward
flux of upward momentum which reduces the upflow momentum flux, so that a negative
sign is correctly associated with mi in (4.4b); with respect to the downflow and the
coordinate zd, −mi denotes a flux of downward momentum into the downflow (radially
outward) at the inner boundary, this contributes positively to the downflow momentum.
Hence the sign convention in (4.4b) and (4.6b), with equivalence, for the term fi in (4.4c)
and (4.6c).

The downflow region has a characteristic annular cross-sectional area, which can be
denoted (per unit π) as r2

d − r2
u (BK00); thus, the fluxes can be written as Qd = (r2

d −
r2

u)wd, Md = (r2
d − r2

u)w
2
d, Bd = (r2

d − r2
u)bd and it follows that the natural characteristic

scales are

wd ≡ Md

Qd
, bd ≡ BdMd

Q2
d

, and rd ≡
√

Q2
u

Mu
+ Q2

d
Md

. (4.7a–c)

4.3. Inner downflow region
The transport budgets for the inner downflow region can be obtained by integrating from
the inner boundary to the separatrix, i.e. r1(z) = ri(z) and r2(z) = rs(z). As the flow in this
region is by definition downward, the transformation applied to § 4.2 is required. Denoting
inner downflow quantities with subscript ‘id’, we obtain

dQid

dzd
= qi − qs, (4.8a)

d(Mid + M′
id + Pid)

dzd
= Bid + ms − mi, (4.8b)

d(Fid + F′
id)

dzd
= fs − fi. (4.8c)

5. Integral quantities

The vertical variation in the normalised integral quantities in the upflow, downflow and
inner downflow (the portion of the downflow that falls within the separatrix) are shown in
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Figure 6. Integral quantities for the upflow, downflow and inner downflow region, each normalised by the
relevant source scales. The vertical dashed line marks fluxes of zero where appropriate.

figure 6. Buoyancy fluxes and integral buoyancy are normalised by absolute values of BF
and F0, respectively, in order to accurately reflect the opposing or assisting action of the
buoyancy force on each of the flows. We choose to discuss any flow regions in the direction
of their flow, i.e. we discuss any downward flowing regions from top to bottom (that is in
the direction of the downwards coordinate zd).

Figure 6(a) shows that below z/LF ≈ 1.11, the upflow volume flux increases, suggesting
a net volume entrainment into the upflow in this region. Above z/LF ≈ 1.11 the volume
flux in the upflow decreases due to the volume detrainment into the downflow. The figure
also shows that the volume flux in the upflow is identical to that within the inner downflow;
this confirms that, by construction, the volume flux is conserved within the separatrix.
The volume flux in the downflow increases from the top of the fountain showing net
volume entrainment by the downflow. Noting that the downflow consists of both inner and
outer downflow regions, the difference between the downflow and the inner downflow,
reassuringly, confirms that fluid from the environment is entrained into the fountain outer
downflow over the full height of the outer boundary. Careful observation of the streamlines
in figure 4(a) confirms these above observations.

Figure 6(b) plots the normalised vertical evolution of mean vertical momentum fluxes.
The mean momentum flux in the upflow, Mu, decreases to zero at the top of the upflow zi,
as the buoyancy acts to decelerate the flow; whilst this buoyancy then acts to enhance
the mean momentum flux in the downflow Md. The momentum flux within the inner
downflow Mid is also shown to increase from the top of the fountain until the height
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z/LF ≈ 0.88, below which Mid then decreases back towards zero. The magnitudes of
the mean momentum flux Mu and Md are, perhaps surprisingly, approximately equal
(despite the significant differences between the characteristic velocity and radial scales
within the two flows); this suggests that, broadly speaking, fountain fluid roughly
attains the same momentum flux on the way back down that it originally had on the
way up.

Figure 6(c) plots the normalised turbulent vertical momentum flux. The maximum
turbulent momentum flux in upflow M′

u occurs relatively low down within the fountain
(z/LF ≈ 0.88, i.e. approximately a third of the height of the fountain), the reason for this
is unclear. The turbulent momentum flux in the downflow M′

d continuously increases
from the fountain top, in line with the suggestion that, since the buoyancy increases
the mean momentum flux, the turbulent momentum flux broadly scales with the mean
momentum flux. Again, for heights z/LF � 1.92, there is a surprisingly close agreement
between the magnitude of the turbulent momentum fluxes in the upflow and downflow,
perhaps suggesting that both these turbulent fluxes might be predominantly driven by the
mean momentum fluxes over much of the fountain height. In-depth analysis of the data in
figures 6(b) and 6(c) shows that the ratio of turbulent and mean momentum flux M′/M is
greatest near the fountain top, suggesting analysis of the dynamics via mean flow statistics
might be insufficient in this region.

Figure 6(d) shows that the integral buoyancy in the upflow Bu is negative, while in the
downflow Bd is positive. Combining (4.4b) and (4.6b), confirms that the integral buoyancy
is, in fact, a sink for Mu but a source for Md. The magnitudes of all the three flow regions
peak near z/LF ≈ 1.50. The inner downflow region contains nearly half of the integral
buoyancy in the downflow, evidence that the buoyancy within the inner downflow is more
concentrated than the outer downflow (i.e. the inner downflow is denser than the outer
downflow).

Figures 6(e) and 6( f ) show the mean and turbulent vertical buoyancy fluxes,
respectively. Unlike the momentum fluxes, the turbulent buoyancy fluxes are much smaller
than the mean in all flow regions, suggesting that the turbulence affects the buoyancy
fluxes less than it does the momentum fluxes. The upflow mean buoyancy flux Fu is
negative due to its opposing buoyancy; it is noteworthy that, for z/LF � 1.20, the mean
buoyancy flux in the upflow is approximately constant, suggesting that, in this region,
whilst the integral buoyancy within the upflow is increasing (figure 6d), a particular
interplay between radial growth, upflow velocity and entrainment from the downflow,
must exist to maintain this approximately constant flux which then breaks down at greater
heights. When looking at the mean quantities, the inner downflow buoyancy flux is
approximately half that of the total downflow. However, the turbulent buoyancy flux in
the inner downflow region is a much smaller fraction of the total, implying that most
of the downflowing turbulent buoyancy flux is transported in the outer downflow region.
Finally, figures 6(e) and 6( f ) show that, although relatively weak, the turbulent buoyancy
fluxes act in the same direction as the mean buoyancy fluxes within both the upflow and
downflow.

6. Entrainment

The rich variety of exchanges, herein ‘entrainment’, between the fountain upflow, the
returning downflow and the fountain cap is crucial in determining the bulk dynamics of
fountain flows, including the interactions with the environment. We now examine these in
detail.
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Figure 7. The vertical variation of the normalised (a–c) volume entrainment, (d–f ) total momentum
entrainment and (g–i) total buoyancy entrainment at the (a,d,g) inner boundary, (b,e,h) outer boundary
and (c, f,i) the separatrix, respectively. The mean and turbulent components of momentum and buoyancy
entrainment are included. The total volume entrainment is also the mean. The dash-dotted line in (b) shows
the vertical component of mean volume entrainment. The horizontal dashed line marks the fountain cap base.
The vertical dashed line marks the line of zero exchange.

6.1. Vertical evolution of entrainment
Figure 7 shows the entrainment terms, see (4.3), at each of the defined internal boundaries
ri, rs and the outer boundary rf . As expected, all entrainment terms approach zero at the
top of their respective boundaries (i.e. where these boundaries also approach r = 0).

Results for the volume exchange at the inner boundary (the term qi, figure 7a) are
reassuringly supportive of the observation of the fluxes in figure 6(a). We note that,
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for the upflow region, there is a change from net entrainment to net detrainment at
z/LF ≈ 1.11, where the local Froude number of upflow is 2.87, approximately twice of
the value at the fountain cap base. By construction, the mean momentum entrainment is
close to zero at the inner boundary (figure 7d), but the momentum exchange associated
with turbulence by the upflow is significant over much of the fountain height – this
acts to reduce both the momentum fluxes of the upflow (4.4b) and downflow (4.6b),
either by entrainment of downward momentum fluctuations into, or detrainment of
upward momentum fluctuations from the upflow; which of these is dominant could be
rigorously determined by investigations of the instantaneous transports, for example, via a
quadrant plot, but this is beyond the scope of the current study. Alternatively, in terms
of the turbulent stress −u′w′ on the boundary, the interpretation of the reduction of
upflow momentum flux is that it experiences substantial shear by the downflow, thereby
decelerating the upflow. As the upflow and downflow are opposite to one another, the shear
will also decelerate the downflow.

The buoyancy exchange at the inner boundary (figure 7g) exhibits significant
contributions from both the mean flow and turbulence. The mean component of fi exhibits
a similar variation to that of qi (figure 7a), consistent with the view that buoyancy can
be both entrained and detrained by the mean flow at different heights according to V̄gb̄.
By contrast, the turbulent component of fi is negative at all heights; suggesting that, with
respect to the upflow, there is either detrainment of negative buoyancy fluctuations, or
entrainment of positive buoyancy fluctuations.

A schematic illustration of the net flux qj, mj and fj (with j = i, f , or s) shown in figure 8
is intended to clarify the sign of the exchanges. During the following discussion, this sketch
is intended to act as a useful visual reference of the exchanges. The arrows indicate the
sign of the exchanges of volume, momentum and buoyancy between the vertical fluxes
of relevant flow regions, at various heights within the fountain. Taking the above inner
boundary as an example, in figure 8(a), the volume exchange across the inner boundary
(blue line) qi below z/Lf = 1.11 has a leftward arrow which denotes a negative flux (in this
case radially inward). Combined with (4.4a), this illustrates that qi increases the volume
flux in the upflow in that region.

At the outer boundary (figure 7b), there is mean volume entrainment from the
environment into the downflow. Inspired by the streamline patterns shown in figure 4(b),
we include results for the vertical component of volume entrainment at the outer boundary
within figure 7(b) for which the contribution is significant within the region z/LF � 1.63,
i.e. within the fountain cap region. Our results highlight that the volume entrainment into
the fountain from the environment is generally greater than the volume exchange within
the fountain (see figure 7a). Figure 7(e) shows there is very low momentum entrainment
into the downflow at the outer boundary due to low velocities and levels of turbulence
beyond; reassuringly, the buoyancy entrainment at the outer boundary, ff , is shown to be
negligible (figure 7h).

Along the separatrix there is, by construction, no volume exchange associated with the
mean flow (see figure 7c, f,i). For z/LF � 1.77, ms is positive, becoming negative at lower
heights and lessening the inner downflow momentum flux (4.8b). Despite the separatrix
being at larger radial locations, the magnitude of turbulent momentum exchange there
(figure 7f ) is still markedly smaller than that at the inner boundary (figure 7d), suggesting
weaker turbulence at the separatrix than at the inner boundary. Figure 7(i) shows that
fs acts to reduce the buoyancy flux in the inner downflow. Note that the figure shows fs
exhibits a linear decrease with the height up to z/LF ≈ 1.95, which by adding the integral
buoyancy conservation equation (4.4c) and (4.8c), implies that the total vertical buoyancy
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Volume exchange Momentum exchange

Outer

down
Inner

downUp

z

z/Lf = 1.11

z/Lf = 1.77

z/Lf = 1.11

Buoyancy exchange

(c)(b)(a)

Figure 8. Schematic illustration depicting the sign of the exchange fluxes across the identified boundaries:
right being positive and left being negative of the exchanges across the relevant boundaries within the fountain:
(a) volume exchange, (b) momentum exchange and (c) buoyancy exchange. From left to right, each panel
contains vertical lines: black marks the fountain’s centre line, blue illustrates the inner boundary, purple the
separatrix and orange the outer boundary. Green horizontal solid arrows represent the fluxes associated with
the mean flow, while green dashed arrows represent those associated with turbulence. The dashed black lines
mark any height at which the exchange changes sign. The grey areas represent the fountain cap region. The
vertical coordinate is drawn approximately to scale, but the scale of the arrows itself does not represent the
magnitude of the entrainment exchanges.

flux F + F′ of the fountain inside the separatrix grows quadratically with the height (for
which, in figure 6(e) one would need to combine the mean buoyancy flux in the upflow,
blue line, with that of the inner downflow, purple line).

6.2. Integral entrainment in the fountain cap region
As one might expect, the vertical evolution of entrainment of the various quantities
(figure 7) shows significant changes within the fountain cap region, e.g. sharp peaks in
volume and buoyancy exchanges, and the momentum exchange ms changes the sign around
the cap base (figure 7f ). Note that, in this region, Williamson, Armfield & Lin (2011)
suggested that the momentum transport is significantly affected by the pressure gradient,
and is also the region dominated by low-frequency fluctuations that complicate the flow
dynamics (e.g. Williamson et al. 2011; Burridge & Hunt 2013). In this subsection, we
focus on fluxes apparent upon integrating the entrainment over the height of this fountain
cap region.

The integral entrainment across the boundaries over the fountain cap is

Qcap,j =
∫ zt

zb

qj dz, Mcap,j =
∫ zt

zb

mj dz, Fcap,j =
∫ zt

zb

fj dz, (6.1a–c)

where zt = zi for the inner boundary and separatrix, while zt = zf for the outer boundary.
These quantities show the volume, momentum and buoyancy exchanges, respectively,
across the corresponding boundary integrated over the cap region. The values are
presented in table 1 with two normalisations: firstly, by the relevant forced fountain scales,
e.g. QF, M0 and |F0|, and secondly, by the upflowing fluxes at the cap base, namely,

Qub = Qu(zb) ≈ 0.09QF, (6.2)

Mub = Mu(zb) + M′
u(zb) ≈ 0.36M0 and, (6.3)

Fub = Fu(zb) + F′
u(zb) ≈ −0.71|F0|. (6.4)
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Qcap,j

QF

Qcap,j

Qub

Mcap,j

M0

Mcap,j

Mub

Fcap,j

|F0|
Fcap,j

|Fub|
Fluxes across inner boundary, ri 0.09 1.00 0.12 0.34 −0.75 −1.00
Fluxes across separatrix, rs 0.00 0.00 0.05 0.14 −0.45 −0.60
Fluxes across outer boundary, rf −0.22 −2.40 0.02 0.05 0.00 0.00

Table 1. Integral volume, momentum and buoyancy entrainment across the boundaries within the fountain cap
region, normalisation both by the relevant forced fountain scales and by the upflowing fluxes across at the cap
base are presented for convenience.

These upflowing fluxes at the cap base highlight that around one third of the source
momentum flux reaches the cap region; and nearly three quarters of the fountain’s total
buoyancy flux passes through the cap region. These facts, combined with the results in
table 1, highlight the importance of the cap region for the dynamics of fountains. Figure 8
is intended to aid interpretation of table 1 by indicating the directions of Qcap,j, Mcap,j and
Fcap,j.

Table 1 shows that the integral volume entrainment by the cap is Qcap,f = −0.22QF,
combining this with the results for the bulk fountain entrainment (i.e. that the total
entrainment flux for these highly forced fountains is approximately 0.77QF Burridge
& Hunt 2016) would suggest that more than a quarter of all the fountain’s volume
entrainment occurs within the cap (we note that our bottom boundary condition prohibits
us making our own estimates of the bulk volume entrainment by the fountain). Meanwhile,
Qcap,f = −2.40Qub shows that the integral volume entrainment from the environment is
approximately two and a half times larger than that injected at the cap base, agreeing with
the data taken from Awin et al. (2018) and from Talluru et al. (2022) for a turbulent forced
fountain.

Considering the exchanges across the inner boundary within the cap region, we note that
Qcap,i/Qub = 1.00 confirms that, as expected, all upcoming volume flux is detrained into
the downflow region. The momentum flux detrained out of upflow, Mcap,i, is approximately
35 % of the upflowing momentum flux, suggesting around two thirds of the vertical
momentum flux that enters the cap is acted on by the pressure gradient and opposing
buoyancy. The integral buoyancy detrainment Fcap,i/|Fub| = −1.00 shows the buoyancy
flux injected into the cap is all detrained into the downflow; furthermore, more than
half of this is then detrained from the inner downflow to the outer downflow (Fcap,s/
|Fub| = −0.60).

6.3. Entrainment coefficients
In this section, we calculate the entrainment coefficients from our DNS data, and compare
them with those employed in other studies, in particular the fountain model BK00.
Classically, entrainment coefficients have been used to represent the rate of dilution of
a flow; this approach has proved valuable to the modelling of a broad set of classes of
turbulent free-shear flows. This concept was popularised by Morton et al. (1956) (referred
to as the MTT entrainment model), who successfully characterised the bulk entrainment
of mass by a plume by relating the fluid entrainment velocity across the plume edge to
local characteristic scales via a constant entrainment coefficient. The application of this
concept to bulk-averaged models of fountains came somewhat later (Mcdougall 1981)
and continues to be developed, e.g. BK00 and SH14. The most general case presented to
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date applies the entrainment coefficients to estimate the mass, momentum and buoyancy
exchanges of the upflow and the downflow. Typically, the entrainment coefficients in
models were either assumed constant with values determined by analogy to a more simple
canonical flow (e.g. a jet and or a line plume, as in the case of Mcdougall (1981), BK00), or
approximated empirically based on either experimental or numerical studies of fountains
(e.g. SH14).

Notably, BK00 represented the fountain upflow and downflow as two separate flows: an
upward negatively buoyant jet, and a downward (annular) line plume, respectively; which
both entrain via their boundaries. As a result, unlike our Reynolds-averaged statistics,
they parameterised two-way entrainment at the inner boundary: the upflow entrains from
the downflow with a velocity ωi while the downflow entrains from the upflow with a
velocity ωd. Meanwhile, the downflow also entrains from the environment via the outer
boundary with a velocity ωf , see figure 12; DNS simulations, or high fidelity experiments,
could enable conditionally sampled data to directly inform such a parameterisation (e.g. to
parameterise simultaneous entrainment and detrainment of the upflow), should use of such
a parameterisation be deemed necessary. In order that readers can check consistency with
relative ease, the BK00 model and governing equations are reproduced in Appendix B
using the notation and coordinate system presented herein.

BK00 considered two formulations of the body force acting on the upflow, and two
formulations of the velocity scale characteristic of entrainment; in combination, this leads
to four different cases to consider. In terms of the body force, the first formulation (BFI)
assumed the buoyancy force acting on the upflow depends directly on the density of the
environment, that is in our notation Bu as evident in (4.4b) and (B1c). The second, BFII,
assumed the buoyancy force is relative to the local density difference between the upflow
and downflow, that is in our notation Bu + Bd. In agreement with SH14, we assert that
BFI is a uniquely appropriate formulation for the body force; we, therefore, consider only
BFI. In terms of the characteristic entrainment velocity, the first formulation considered
by BK00, which we denote ‘EI’, assumed the mean entrainment velocity should be
proportional to the difference in velocity between the upflow and downflow, so that the
three entrainment velocities in BK00 can be written as

− ωI
i = αi00(wu + wd), ωI

d = αf00wd, −ωI
f = αf00wd, (6.5a–c)

where αi and αf are the mean volume entrainment coefficients of the upflow and downflow,
respectively, the subscript ‘00’ denotes the variables as used in BK00 and the superscript
‘I’ denotes the entrainment formulation EI. The negative sign in ωi and ωf indicates
entrainment velocity into upflow and downflow (see Appendix B for details). Note that
BK00 parameterised the downflow as having the same entrainment coefficient αf00 at both
boundaries – the physical reasoning for this remains unclear.

Neglecting all the turbulent and Leibniz terms, and taking entrainment parameterisation
EI, (4.4a) becomes

qi = 2αI
i ru(wu + wd), qf = 2αI

f rdwd, (6.6a,b)

where αI
i and αI

f are the entrainment coefficients for the upflow and downflow, respectively,
that are evident from our DNS data under entrainment formulation EI. When applying
entrainment formulations presented here, it should be clarified that BK00 prescribed the
same constant entrainment coefficients, αi00 and αf00 , and then applied two formulations
to calculate entertainment velocities apparent within their fountain model; for our DNS
data we measured the actual fluxes entrained and then directly determined the relevant
entrainment coefficients. Substituting (6.5a–c) into (B1a) and combining with (4.4a),
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provides the relationships between our entrainment coefficients and those of BK00, under
formation EI, as

αI
i = αi00 − αf00

wd

wu + wd
and αI

f = αf = αf00 . (6.7a,b)

In their second entrainment formulation ‘EII’, BK00 assumed the mean entrainment
velocity is related to a characteristic velocity depending only on the relevant fraction of
the total shear, i.e. the sum of the magnitude of velocity on either side of the interface.
Thus the entrainment equations of BK00 under EII are

− ωII
i = αi00wu, ωII

d = αf00wd, −ωII
f = αf00wd, (6.8a–c)

with the relevant equations for our data being

qi = 2αII
i ruwu, qf = 2αII

f rdwd. (6.9a,b)

Therefore, the relationships between our entrainment coefficients and those of BK00,
under formation EII, become

αII
i = αi00 − αf00

wd

wu
and αII

f = αf = αf00 . (6.10a,b)

We note that BK00 assumed constant entrainment coefficients throughout the height of
the fountain and calibrated their model (against a single statistic of fountain behaviour;
namely, the fountain rise height), for the four combinations of body forces and entrainment
formulations, always taking the same values for each of their two entrainment coefficients,
specifically αi00 = 0.085 and αf00 = 0.147 – for this reason our notation does not
distinguish between entrainment formulations when denoting the coefficients of the BK00
model.

The other fountain model worthy of consideration is that of SH14; they assumed that
only entrainment by the upflow occurred at the inner boundary (i.e. only inward exchanges
over the full height of their upflow z/LF � 1.62). With this assumption, (6.7a,b) and
(6.10a,b) reduce to αI

i = αII
i = αi00 . SH14 took the inner boundary entrainment coefficient

to be αi = 0.06, and αf = 0.15 for the entrainment coefficient at downflow at outer
boundary (these values being loosely based on those reported in the studies of Williamson
et al. 2011; Burridge & Hunt 2013) – the precedents set by SH14’s model were followed
by Debugne & Hunt (2016).

Examination of figure 9, which plots our measurements of the entrainment coefficients
and those used in fountain models thus far, challenges the validity of the entrainment
assumptions that underpin the important contributions to the fountain modelling of BK00,
SH14 and Debugne & Hunt (2016). The figure plots the values of αi and αf , according to
both entrainment formulations, i.e. calculated from our DNS data according to (6.6a,b) and
(6.9a,b). Firstly, comparison of our data with those of Milton-McGurk et al. (2022) yields
similar values – Milton-McGurk et al. (2022), to our knowledge, being the only other study
to report the vertical variation of entrainment coefficient at the inner boundary of highly
forced fountains (Fr � 15) based on measurements (therein under entrainment formulation
EI and reported as a variation with the local Richardson number of the upflow). Both
studies determine that the entrainment coefficient changes sign at a particular height within
the upflow. Secondly, irrespective of the entrainment formulation chosen, the notable
variation in our measurements of αi and αf with height renders the assumption of constant
αf in BK00, and constant αi and αf in SH14, as questionable. Thirdly, (6.7a,b) and
(6.10a,b) provide the relationships that must hold true for the entrainment modelling at
the inner boundary of BK00 to be valid.
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Figure 9. The vertical evolution of entrainment coefficients both calculated based on Reynolds averaging our
DNS data (αI

i , αII
i and αf , see (6.6a,b) and (6.9a,b)) and, for direct comparison, the appropriately adjusted

entrainment coefficients used in BK00, SH14 and Debugne & Hunt (2016) (who used same entrainment
coefficients as SH14) are also plotted. (a) The entrainment coefficients of the upflow at the inner boundary
(αI

i and αII
i , shown as blue dashed line and solid line, respectively), the entrainment coefficients of BK00

presented in adjusted form (lines with mark, using velocity scales from our DNS and taking the entrainment
constants from BK00, namely αi00 = 0.085 and αf00 = 0.147, see (6.7a,b) and (6.10a,b)) and the value used in
both SH14 and Debugne & Hunt (2016), αi = 0.06 (vertical black line). The vertical dashed line marks zero
coefficient. (b) The entrainment coefficient of the downflow at the outer (orange line) calculated from (6.6a,b)
and (6.9a,b) – which give the identical result, and the entrainment coefficients used in BK00 and SH14 (thin
black solid line and dashed line, respectively).

Figure 9(a) plots the left-hand side of (6.7a,b) and (6.10a,b), i.e. the equivalent
entrainment coefficients calculated from our data, namely, αI

i and αII
i . In addition, it shows

the profiles that follow from the existing theory, by substituting the constants used in
BK00, i.e. αi00 = 0.085 and αf00 = 0.147 into the right-hand side of (6.7a,b) and (6.10a,b),
and using our measured values of the velocity scales. It is clear from the figure that
these relationships do not hold true for the values taken; furthermore, we have tested
various other choices for the entrainment constants within the BK00 formulation and
there is an equally poor agreement for all physically reasonable entrainment constants.
These facts highlight that an integral model of fountains, that captures the exchanges
within the fountain, is yet to be developed, or at least parameterised appropriately. Integral
models, to date, have been parameterised based on matching a single measurable statistic
of fountain behaviour, the fountain height (albeit sometimes both the initial and steady rise
heights, e.g. Debugne & Hunt 2016), but our results suggest that no integral model has even
been able to qualitatively captured the appropriate exchanges within fountains. As such,
the agreement with the calibrated metric might be unique and all other fountain metrics
from such models may be questionable. We have shown, § 6.1, that the total buoyancy
exchanges, and the mean volume entrainment at the inner boundary, broadly follow a
similar dependence of the vertical coordinate (see figure 7a,g); combined with figure 9, it
shows that fountain models are yet to provide the capability to predict these fundamental
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Figure 10. The entrainment coefficients for the upflow from our data: volume entrainment αi from (6.10a,b),
momentum αm,i obtained from the budget (6.11a) and buoyancy αf ,i from the budget (6.11b); i.e. all consistent
with BK00’s EII formulation.

exchanges which must affect the total weight of fountain fluid supported by a given source
momentum flux. This highlights a major research challenge in fountain modelling, future
models of fountains should seek validation via multiple statistics, not a single criterion
(e.g. fountain height) as has been carried out previously.

In addition, by their very construction, bulk-averaged fountain models (e.g. BK00
and SH14) did not account for the turbulent exchanges within fountains, e.g. turbulent
momentum entrainment and turbulent buoyancy entrainment. We have shown in §§ 5
and 6.1 that there is significant integral vertical turbulent momentum flux (M′, see
figure 6c), and turbulent momentum exchanges and turbulent buoyancy exchanges at the
inner boundary (turbulent component of mi and fi, respectively, see figure 7d,g). Hence, we
challenge future models of fountains to account for these exchanges driven by turbulence,
at the very least implicitly, within their parameterisation.

Following the BK00 model, but considering entire budgets (we choose to consider only
EII, a choice of little consequence), the total momentum entrainment (4.4b) and total
buoyancy entrainment (4.4c) are

mi = 2αi,mruw2
u, (6.11a)

fi = 2αi,f ruwubu. (6.11b)

Figure 10 shows entrainment coefficients for momentum αi,m and buoyancy αi,f given
by (6.11), respectively. The figure, for contrast, also re-plots αII

i , from (6.10a,b), the plot
clearly highlights that taking the same entrainment coefficient to parameterise exchanges
of volume, momentum and buoyancy is inappropriate. More research is clearly needed to
determine a suitable route to developing appropriate models of turbulent fountains; our
leading suggestion is that the latest understanding of transports across both TNTIs and
TTIs be considered in depth. Note that we do not present the entrainment coefficients
decomposed into mean and turbulent components due to the lack of self-similarity of the
radial profiles within the fountain (cf. Milton-McGurk et al. 2022).
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7. Conclusion

The structure of a forced fountain was investigated by decomposing the fountain into
regions based on two distinct internal boundaries. The first comprised the classical
decomposition into an upflow and a downflow, via the internal boundary ri(z)
characterised by the loci of zero vertical velocity. The second exploited a separatrix, a
streamline rs(z) that forms the boundary between the flow emitted from the source and
entrained from the environment. Both of these boundaries are TTIs, which can have
both mean and turbulent entrainment across their boundary. For the internal boundaries
investigated here, we showed that, for the boundary ri, entrainment fluxes are large and
consist both of mean and turbulent components. However, the boundary rs by construction
exhibits zero mean entrainment, since it is a streamline; hence, only turbulent exchanges
can occur.

The findings reported herein indicate that turbulent entrainment fluxes across the
internal boundary are of similar magnitude to, and sometimes larger than, the mean
entrainment fluxes. This has important implications for the modelling of turbulent
entrainment. Indeed, the classical view of entrainment considers mean entrainment only,
which then implies that an associated entrainment velocity can be defined across the
interface, and entrainment of all other quantities (e.g. momentum, buoyancy) can then
simply be obtained by multiplying that entrainment velocity by some local characteristic
value of that quantity. The DNS data broadly supported this observation, in that the vertical
variation of the fluxes of mean volume entrainment and mean buoyancy entrainment
across ri exhibited a similar form (note the mean momentum entrainment which was
zero by construction on ri). However, the vertical variation of turbulent entrainment fluxes
across ri exhibits an entirely different form to the mean entrainment fluxes and therefore
requires different modelling. Even for the ‘classical’ (mean volume) entrainment flux, the
agreement between our DNS data and existing models was poor when the entrainment flux
was normalised by suitable local characteristic scales, suggesting that parameterisation
following MTT and deploying a constant entrainment coefficient is inappropriate for
fountains and needs to be reconsidered. We further showed that different magnitudes
of values are required for the respective entrainment coefficients to appropriately
parameterise either mean entrainment, turbulent momentum entrainment or turbulent
buoyancy entrainment. This reinforces our suggestion that alternative modelling strategies,
perhaps guided by more detailed studies of the transport across TNTIs and TTIs, might
be fruitful if predictions of fountain behaviour, beyond their rise heights, are required.
This is of relevance to many applications of fountains, for example, those produced within
under floor air distribution systems (Lin & Linden 2005) where predictions of fountain
rise height only determine the vertical extent within the room that the cool air might rise;
the cooling effect that occupants feel is further affected by the temperature of the rising
and falling cooler air – this depends both on the fountain’s mixing with the environment
and the mixing within the fountain’s internal structure.

Finally, we assert that, without greater regard to the modelling of the fountain cap
region, insufficient progress might be made. In this region the flow is entirely dominated by
the formation and collapse of large-scale turbulent structures – characterised by periodic
fluctuations in fountain rise height and responsible for the dark bands typically seen in
time series images of fountain (e.g. see figure 3 and Burridge & Hunt 2012). Fountain
modelling to date has focused on models that reflect only quantities of the mean flow – our
results suggest that both turbulent exchanges, and the transient nature of the fountain cap
region, may be of importance in future modelling efforts.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.210.
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Figure 11. (a) Fountain boundaries, inner boundary ri (blue) and outer rf (orange) both from the standard
domain (solid lines) and a small domain (dashed lines). (b) From the standard domain, the fountain outer
boundary using a buoyancy threshold of 0.01 b̄cc (solid line), 0.02 b̄cc (dot-dashed line) and 0.005 b̄cc (dotted
line). The horizontal black line marks z/LF = 0.66 below where the data of downflow are discarded. Mean
volume entrainment at inner boundary qi (c) and at outer boundary qf (d) of the standard domain (solid lines)
and small domain (dashed lines) respectively.
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Appendix A. Comparison with smaller flow domain

To validate that the effect of the domain size, in particular the sidewall periodic boundary
condition, was insignificant in our results we simulated identical source conditions in a
‘small’ domain (of volume (100r0)

3 and grid size 10243); we refer to the domain used to
simulate all other results presented herein as ‘standard’.

Figure 11(a) plots the fountain inner boundary, ri, and outer boundary, rf , for simulations
in both the standard and small domains. The effects of domain size on the fountain
boundaries are negligible, particularly when one notes that we discard all results for the
downflow (including rf ) below the height z/LF = 0.66, with the typical change in the
radial location of the boundaries with domain size being less than 7 %. Moreover, by
integrating the volume of fountain V = ∫ zf

0 2πrf (z) dz = 82 730 r3
0 ≈ 8.70L3

F, the fountain
occupies around 3 % of the standard domain, suggesting the standard domain is of an
appropriate size.

To check the location of the outer boundary is relatively insensitive to the choice of
buoyancy threshold (b̄ = 0.01b̄cc), figure 11(b) plots the outer boundary using both a larger
threshold, b̄ = 0.02b̄cc, and a smaller threshold, b̄ = 0.005b̄cc. The figure evidences that
the outer boundary is indeed insensitive to the choice threshold, within our range of interest
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Figure 12. Fountain model BK00, with the arrows indicating the direction of variables.

and especially above z/LF = 0.66. We therefore conclude that our outer boundary, rf ,
contains the vast majority of fountain fluid and is appropriate.

To ensure the entrainment at the boundaries is also less influenced by the domain,
figures 11(c) and 11(d) plot the mean volume entrainment qi and qf of two domains,
respectively. The lines agree well although there is a relatively greater difference in qf
near the fountain top. By calculating the integral volume entrainment of the fountain cap
Qcap, the value of the small domain is approximately −0.19QF, not far from the value of
the standard domain which is −0.22QF.

Appendix B. The integral equations of BK00

In order to provide a direct comparison of the entrainment coefficients of the
well-established BK00 model with those presented herein, i.e. those apparent on rigorous
application of Reynolds averaging of the governing equations, we first present the BK00
model in our notation (the notation introduced in § 4) within figure 12. The velocities ωi,
ωd characterise the two-way entrainment across the inner boundary, and ωf characterises
the entrainment at the outer boundary. As these velocities are defined under our outward
horizontal direction, ωi and ωf here should be associated with a negative sign to represent
the entrainment velocity into the respective flow.

In the model of BK00, the integral fluxes are defined equivalently to those defined
in (4.5a–c)–(4.7a–c) and note that the BK00 model assumed (top-hat) uniform fluid
properties and velocities in each flow region. BK00 directly applied integral conservation
laws for volume, momentum and buoyancy fluxes which resulted in

dQu

dz
= 2ru(−ωi) − 2ruωd, (B1a)

dQd

dzd
= 2rd(−ωf ) − 2ru(−ωi) + 2ruωd, (B1b)

dMu

dz
= Bu + 2ru(−ωi)(−wd) − 2ruωdwu, (B1c)

961 A31-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

21
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.210


J. Huang, H.C. Burridge and M. van Reeuwijk

dMd

dzd
= Bd + 2ruωd(−wu) − 2ru(−ωi)wd, (B1d)

dFu

dz
= 2ru(−ωi)(−bd) − 2ruωdbu, (B1e)

dFd

dzd
= 2ruωd(−bu) − 2ru(−ωi)bd. (B1f )

As is typical, BK00 considered mean integral fluxes only, and thus the terms
M′

u, Pu, F′
u, M′

d, Pd and F′
d in (4.4) and (4.6) are identically zero. Momentum and

buoyancy entrainment from the environment is assumed to be negligible. As discussed in
§ 6.1, BK00 use two-way entrainment at the inner boundary, which then implicitly contains
the Leibniz contributions to the exchange.

We note that the BK00 model assumes top-hat conditions which imply that the upflow
region has a width ru = Qu/M1/2

u ; in reality, the profiles are not top-hat and thus the actual
internal boundary is located at a greater radial position and equivalent to ri ≈ 1.25ru.
Another consequence of the top-hat assumption is that the momentum and buoyancy on
the boundary are equivalent to their values in the upflow or downflow.
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