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ABSTRACT. This is a generalization of the paper by Bhatnagar and Beena
Gupta 'Resonance in the restricted problem of three bodies with short-
periodic perturbations'. The motion of an asteroid moving in the gravita-
tional field of Jupiter is considered. In the original paper it was
assumed that Jupiter is moving in a circular orbit around the Sun. In

the present paper we consider the orbit to be elliptic. The series
ocdcurring in the problem are expanded in powers of a small parameter €,
which represents the ratio of the mass of Jupiter to that of the Sun.

The perturbations in the osculating elements are obtained up to 0O(g).

1. EQUATIONS OF MOTION

Let us suppose that Jupiter moves in an unperturbed elliptic orbit
with the Sun at one of its foci. Take the orbital plane of Jupiter as
the (x,y) plane. Let e' be the eccentricity of Jupiter's orbit, a' its
semi-major axis, A' its mean longitude, £' its mean anomaly and n' its
mean motion. The corresponding elements of the asteroid are denoted by
e, a, A, &, and n.

The equations of motion of the asteroid with negligible mass are:

ax _ 8 ax _ _ 8

dat x ' at ox '

dy _ 3 a _ _ 3

dat ~ 3y ’ dt oy '

dz _ 3H dz _ _ 3%

at =~ 3z ' at = 3z

where the Hamiltonian, H = HO + Hl’ is given by

_ .2 .2 .2 u

Hy = 172 (2" +y° + 27) ol
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Xx' +y ')

H, = ¢ (l-—
H A r

1
In these equations (x,y,z) are the coordinates of the asteroid,
(x',y',0) are the coordinates of Jupiter, A is the Jupiter-asteroid
distance, r' the Sun-Jupiter distance, r the Sun-asteroid distance and
p o= k2.
Let us introduce the change of variables

(x,v,2,%,v,2) > (L,G,H,%,9,h)

defined by the canonical transformations

oW’ oW’ > ow'

L= - 3L, ’ g = - 3G ’ h = 9H ’
% = oW’ . _ oW’ 5 = oW’
Toax ! Ty T 3z

Here W' is a generating function; and L,G,H,%,9 and h are the Delauny
variables given by

L = Ypa, G = /1—e2, H=G Cos i,

L]

L= 4L, g=uw , h = Q,
where 1 is the inclination of the orbital plane of the asteroid with
respect to the reference plane, w the argument of the perihelion and

Q the longitude of the ascending node.

The equations of motion become

d _ 3F ar _ _ 3%
at 3’ dt oL
dg _ 3F dg _ _ 3F
at =~ 3g’ at 3G’
aH _ 9F ah _ _3F
dt  3n’ at = 9H
. 5 2 2 _ 2 1 oxx' + yy!
with F=y7/” + 7, Fo=ek” [f "““;73**'%-

k is the Gaussian constant.
The equations of motion can be written as (Brouwer and Glemence,
1961),

dL oF al

dt ~ ag’ dt aL’

@
‘T
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dé _ oF d9 _ _ 9F
dt = 3g’ dt = 3G’
an _ ¢ an _ 3% W
dat = 3h’ at =~ oH’
dK _ oF dk _ _ 9F
at sk’ dt =~ 3K’
with
F=F0+F1,
u2
= - []
FO EEZ n'kK,
m.,m_,m ., 2m_. m m
273774 i 3 72 4
F, = Sin = ' + + .
1 €z Cpl’pz,p3,p4 (Sin 2) e e cos(p12 p2g+p3h p4k)

The coefficients C's are functions of a and a' of degree-1. And

the D'Alembert's characteristics give

my, = |3, + 2k, = |p,-p,| + 2k,

2m

5 = 1350 + 25 = |py-p,| + 2k,

my = |3,] + 2k, = |pyp,| + 2k,

(2)

where kp, k3 and k, are positive integers of zero. Let us introduce the

new variables
() X1 Xy s Xyi ¥ 1Y,0¥30Y,)

defined by the following canonical transformations:

x1 =L + g-K, y1 =L,

X, = - l-K = + qw + g(Q - A")
2 q ’ Y2 PL q q ’

x3 =G+ K , y3 = W,

X4=—H—K, y4_(1)l.

The system of Equation (1) reduces to

i JK' i JK'

dt Byi' dt Bxi

(i =1,2,3,4)
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with K' = K + K

0 1’
2
K = —H '
= an'x,, (5)
0 2({x, + px.) 2
1 TP
and
K1 = ¢ R,
where
= 2ot a0 S | '
R=1ZI f(a,e,i,a',e'") cos(pll + p,w p3w + p42 ). (6)

and restrictions on pl,pz,p3 and P, are given by the Equations (2).

2. SHORT-PERIOD PERTURBATIONS

Let us eliminate the short-periodic terms, i.e. the terms which
contain mean anomaly in their argument. The elimination is achieved
through the well known Von Zeipel method. Here we assume canonical
transformations (x,y) to (£,n) defined by the generating function
W(E,v,e) such that the new Hamiltonian ¢(£,n,e) is free from the angular
variable Ny Also we assume the two series

W

WO+W;§+W1+W3/2+... ’

=0yt Oyt by F by ey
where

Wj = O(ej) and ¢j = O(ej).

We consider the problem by assuming that

pn - an'| S n e¥/?, (7)

where p and g are mutually prime integers. Since W does not contain
time explicitly, the Hamilton-Jacobi equation will be

3W_ 3W_ W W
¢(g; 352’ 8£3, 8E4, €) - K(ayl YI €)' (8)

Here §{ means 51, 52, 53 and 54 and y means yl, y2, y3 and y4.

Following the procedure of Giacaglia (1969) we shall have

%o = Ko
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by =W, =0
2rq
%1 = onq é R dyy,
BKO -1
Wl(E,y,s) = _(SE:) f(K1 - ¢1) dyl, (9)
03/ = O
3K 9K W
= - (—0y-1 0 1
W3/2 = (agl) S (agz) (3y2) dyl.

Thus we have established the two series of W and ¢ up to 0(53/2).

Since we are considering terms only up to 0(€3/2), we naglect terms of
0(e2). It may be noted that the series are of the same form as in the
circular case except that the value of K differs from one case to

another.
Thus in this case, i.e. up to 0(63/2), the Hamiltonian become
(3/2) _

$ = ¢g * by (10)

where uz
= '
¢O TAREETN + gn 52. (11)
1 2

and

* * 4% L L - -
¢, = e ICla*,e*,i*,a'*,e'*) cos [-p n, + (py+p,;q) Ny
(py + py@)n,]. (12)

Also up to this order we have

a¢(3/2)
1= -0
1
Hence
51 = const.
or
L* + (p/q)K* = const.

The short-period perturbations are given by the generating function
W in an implicit form as

W W
1 3/2
X, = €, + =—— 4 ———t— = + ¢ X
J 3 ayj Byj gj b %y
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oW oW
1 3/2
n. = T+ = .+ e A . 13
I C T A R Yy (13)

where ij and ij are short-periodic terms.

3. ELIMINATION OF THE CRITICAL ARGUMENT

At the critical point the motion is stationary and this occurs when
pn = gn'. Now we will further decrease the degrees of freedom by intro-
ducing a new transformation given by a generating function S.

Here ¢ is a function of (&;np, n3, n4, €). Let us change the
Hamiltonian ¢ to F(X;Y;e) by introducing a generating function S such
that the new Hamiltonian F is independent of Y,5.

Let us introduce the new variables

X , X ; -, ¥ ,Y , €)

(X1’ Xy 3" T4 3" T4

with the transformation defined by the equation
i Y, = —. (3 =1,2,3,4)

We also assume that

S = SO + S;2 + S1 + 53/2 + ...

F = FO + F;2 + F1 + F3/2 + ...
and

Sp = XqMy * Xy * Xyng Xy
where

Sj = O(ej) and Fj = O(Ej).

In general, the stationary solution will exist for the mean motion
of the orbit and it will correspond to exact mean reasonance, i.e. at
the point,

=§9——=
£, an, 0.,
(14)
° =—§9__=0
n2 3E, !

and
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pn** - gn' = 0. (15)

Here the double asterisks denote the averaged value over ng and nj.

To obtain the series for S and F we will solve the Hamilton-Jacobi
equation by successive approximations.

a) If we take the case of zero-order approximation then we will get

2

-2 '
(X, + sz) + gn X2 (61)

NI'E

FO(X1’X2) = ¢O(X11X2) =

1
which is constant. )
b) Approximation of order (e°)
Taking the approximation upto O(s%) we have

F, = 0. (17)

c) Approximation of order (e)
Taking the approximation upto O(e%) we have

o =9y *+ 0
F=F +F

and
S=SO+S%+Sl'

Also from Equation (8) and taking transformations up to this order
we have the Hamilton-Jacobi equation

98 3S 39S 9S8
4 1 - , 2, 1
d(X + o + e Nyr Nayr Ny g) = F(X,n3 + 3x3 + ax3’
98 39S
Ng *+ ax12 + axl’ €)
4 4

Expanding this equation in Taylor's series and considering them up to
0(e) we have
2
as 9 ¢ 98, 9¢
5.2 0 el 0
Fl(xrﬂ3rn4r€) = ¢1(X.T\.2m3.1’14;€) + % (aT'l ) P + an. X, °
2 ax2 2 2

In this equation both Fjy and Sy are unknown quantities. For deter-
mining these two we consider the approximate relations:

52 =X, + —
(18)

Y2 = n, + [aslz / aX2].
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We know that X, is constant at any event. And by considering the
Eugation (14) we see that £2 is constant. Because from Equation (14) we
see that up to 0(g), B¢(1)/3n2 = 0 is the necessary condition for the
solution and therefore for satisfying Equation (18) we see that Sy should
be identically zero for the stable stationary solution.

Let np = n9 (£; n3, ng, €) be the point of minimum of ¢(&;n;¢e)
such that

3¢
| ! n, # ng = 0. (19)

The point will exist because ¢1 is periodic in nj with period mw.
Now to make the condition (Sy = 0) sufficient for the stable stationary
solution we take
Fl(X;n

) = ¢, (XinJ (X,nn

5 3 4,9), n3,n4,e), (20)

3;ﬂ4,€
where ¢ is given by Equation (12).
And the general equation defining Sy is given by

3S
L** 2 6 n*
5;§-= 557;;;—[—qn'—pn** + {{(gn'-pn**) i** v, } ], (21)
where
0
Ul(X;nz,n3,n4,E) = ¢1(X;n2,n3,n4,e) - ¢q(X;n2(X,n3,n4,e)n3,n4,€)

At:the stationary sclution the condition Si = 0 is satisfied by
Equation (21), Also from this equation we see that in general the
motion will be of circulation, asymptotic or libration in np if

6p2n**

< 2
T U3 e

| I, pn**)
provided ny is_taken to be maximum. U; is minimum at the libration
centre (n2 = nj) where it is zero and it is maximum at the end points
of the oscillation.

The amplitude of libration is given by the equation

L**

2
. - [ * %
Uy (Xinyimyin, e) ZoonTr (gn pn**) ",

and is obtained as

n, n, (X;n3,n4,€).

which is of order (e) in this case.
Finally up to 0(e3/2) the Hamiltonian is given by

2
u

= — _2 )
F = 5 (X1 + pX2) + gn X2 + F,(X,Y

1 (Xr¥3eY ) .
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which is a system with two degrees of freedom.
Also the parameters of the trajectory are given by the following

equations:
a* = a** = const = (p2g')1/3
K** = const
. BF1
¥, = nr* - 5§I—= n** —¢ R'(X;Y3,Y4),
oF
Yz = pn** - gn' - 5§;.= pn* - gn' -¢ R"(X;Y3,Y4) (22)
aFl '
X3 = 3;; =€ h (X,Y3,Y4),
. 8F1
%, = -,()—YZ= e h''(X.¥,,¥,),
BFl .
93 = - 5§5-= e F (X,Y3,Y4,t)r
oF
94 = - 5;(Z= € F'(X,Y3,Y4,t)

The period of Yy is 27/n** which is short, and of Y, is given by
2n/(pn**-gn') which is long and that of Y3,X3,Y, and X4 is very long
and given by 2m/n** €.

d) Approximation of 0(53/2)

Taking the approximation of Of(e

3/2) we will get

0
F3/2 = P3/2(X;ﬂ2(xln3m4,€), n31n4r€)r

where
3/2 374 8n2 8x2 gn3 3X3 8n4 3X4
N, X2 90X 8n3 3X4 8n4
Therefore
F3/2zl%%'%?+%§i'%?ln—no (23)
3 3 3 3 4 4 4 4 2 2
0

and n2 in this case is given by the equation
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(3/2) 3¢
|§95——-- . _ 0=0 or |5—1- _ 0=o0,
n, 'ny=n, Ny n, =n,

for ¢ and ¢3/p are zero. Hence, the location of the libration centre
is not changed.
Also Sy is given by the equation

(1 2
as "’ _mEx oo . 2 p‘n*x Y
o, = 3pZnFw [-(gn'-pn**) * {(gn'-np ) 6 Trw (U1+qiﬂ
2
where (24)
Ly _
S —S%+S1,
and

U3/2(X;n2,n3,n4,6) = P3/2(X;n2,n3,n4,6) - F3/2(Xn2,n3,n4,€)...
(25)
Since in general S4 is real there are three possible motions in the

variable n,. The case of circulation, asymptotic motion and libration
in np occurs when

max 622n** < ' *ky 2
{ } T xw (U1 + U3/2) N (gn' - pn**) .
n2

In the circulation and asymptotic cases S1 is defined by choosing
plus or minus sign. In the libration case the sign changes at the end
points of oscillation where

2
6 ** 2
R 0 + Uy ) = (@' - v,

which also gives the amplitude of libration and can be found from
n, = n2(X;n3,n4,e).

Now up to 0(63/2) the system is reduced to two degrees of freedom with
the Hamiltonian given by

= + F, + .
F=Fy+ B+ 7y

where Fg, G) and F3/p are given by the Equations (16), (20) and (23).
Two integrals of motion can be found from the equations

*

ax const.
e (26)

K**

const.
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and the other parameters of the trajectory can be found from the
following six equations:

oF oF
Y1 = n** - 5‘)‘(']:‘ - _a_)_(3/___2_ = n** - ¢ U(X7Y3IY4IE)I
1 1
JF 8F3/2
O = *k Vo e o 2L *k  _ v ' .
Y2 pn an 8X2 JBXQ pn an eU (X,Y3,Y4,e),
oF oF
. 1 3/2
X3 = B—Y—_ + aY/ =€ V(X;Y3,Y4,€), (27)
4 3
. aF oF
_ 1 3/2 .
X4 = 3Y4 + 8Y4 =€V (XIY3IY4IE)I
JF F
_ 1 3/2 _ = .
Y3 = ax3 ax3 = ¢ W(X,Y3,Y4,e,t),
oF oF
oo L __3/2_ =
94 = ax4 3X4 =€ W(X,Y3,Y4,€,t).

The period of Yy is 27/n** which is short. The period of Y, is given
by 2m/(pn** - gn') which is long and that of X3,X4,¥3 and X4 is very
long and given by 2m/n** 3/2,

4. PERTURBATIONS IN THE OSCULATING ELEMENTS UP TO 0(6%)

We see that up to 0(e%) there are no perturbations in the osculating
elements. Up to O(s%) the variations in the osculating elements can be
found out by considering the transformations:

3s
5
=X, + =
gJ i an,’
J
E)S12

nj = Yj + gx—' (J =1,2,3,4).
J

We shall first find the perturbations in Delaunay's variables and
then we shall obtain the variations in the osculating elements taking
tprms up to O(e%). From Equations (3) we have.

L = x1 + px2, 2 = yl,
1 p
= -— ' = = - —
G X3 + aXy Q A a Y, q ¥y Yar
= qx, = X, w = y3,
- v -
- qx2 ’ W Y4‘

Also we know that
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dS aS

bl
* = = — —
R TP T T T S A T
and
9S8
T
on,
1
Therefore
BS%
L*zL**+p§r_]—'
2
Similarly
9S 39S
G*=G~k*+q___l£+__i’
8n2 8n3
25, 3S, (28)
H*=H**+q‘3'?]——§ﬁ-—,
2 4
and 9S
K*=K**_q§n_;£.
2

The variation of the

2

mean semi-major axis is given by

39S

L* 1 5,2
* - = * % —21°.
a " n [L + p T ]

Substituting the value of BS%/anl from Equation (21) in this equation

we have
a* = a* + Aa*,

where

ra* = 2 s [ - gn' , - 1 Ul]1/2

3 pn** n**L**

For a stationary sclution, we have that

a* = a* = a**,

0

but, in general, the maximum variation from the mean value a

by putting np = ng in Equation (31), i.e.,

an'
pn* *

2
* o p— * % -
(A2 )max. 3 arx(1

) .

(29)

(30)

(31)

is given

Also from the second and third relation to Equation (28) we see

that at exact resonance
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G* = G** and H* = H**,
The variation in eccentricity and inclination can be found if the
system of equation a* = const. and K* = const. are completely integrated.
* Similarly we can find the variations in the angular variables as
follows:

as% 3s

2** - 12

dL** T 3Gr*’
3s

b
= p** + FTTL

BS% (32)

BK**

BS%

aG**'

Q** -

BS%

1% = Yk _ =
w'* = @ SEFE

5. PERTURBATIONS IN THE OSCULATING ELEMENTS UP TO O(e)

In this case the transformations are

3s aS
I
J J
35 58 (j=1l2l y )
€3 = Yj * 3?; * 52%'
J J

Again, also in this case, we shall
the Delaunay variables and from that we
the osculating elements taking terms up

Following the same procedure as in
the Delauny variables are given by

first find the perturbations in
shall obtain the variation in
to 0 (g).

Section 4, the variations in

(1)
L*¥* = L** + p 95 ’
an
(1) (1
G* = G** + q 32 ai ’,
Ny N3 (33)
(1) (1)
H*:H**+qa§ _ag ,
) Ny
(1)
K* = KF* - q o,
an
wherxe
(1)
S =5 +5,.
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The variation in the mean semi-major axis is given by

2 (1)
[L** + P as 2

1°.

1
a* = = =
H H

an

Simplifying this result we get

a* = a6 * Aa*, (34)
where

ay = avr G- 28,
and

Aa* = g— a** [(1 - 2‘2;*) - n**i** (U, + 03/2)]1/2. (35)

At exact resonance, we have, as before,

a* = a* = a**,
0
In general, the maximum variation from the mean semi-major axis
a6 is obtained by putting nj = ng in Eguation (35), i.e.,
gl’)' l

2
* = Z % -
(da )ma 3 a Il pn**

X.
The variations in eccentricity and inclination can be found if

integrals of Equation (26) are completely known. The variations in the
angular variables are given by

38(1) aS(l)
SL**  3GgE* !

(1)
3S
w** + SoRE
Bs(l) Bs(l)
SK** 3G**  °
35(1)

BH

o* = gx* -

w*

Q*

It

Q** -

wl* - wl** -

Hence we can find perturbations in all the osculating elements.
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