SEMIRINGS WITH A COMPLETELY 0-SIMPLE ADDITIVE SEMIGROUP

MIREILLE P. GRILLET

(Received 26 February 1973)
Communicated by G. B. Preston

In a previous paper [2], we gave an explicit description of the structure of all semirings with a completely simple additive semigroup. The next step is then clearly to consider semirings with a completely 0 -simple additive semigroup. We are able to classify these semirings according to the multiplicative nature of their additive zero. Let R be a semiring whose additive semigroup is completely 0 -simple with zero ∞. First, if $\infty \infty \neq \infty$, then the multiplication of R is trivial. Besides these trivial semirings, another class of semirings with a completely 0 -simple additive semigroup can be easily obtained by adjoining an element ∞ which is together an additive zero and a multiplicative zero. We show that every semiring, with a completely 0 -simple additive semigroup whose zero ∞ is a multiplicative zero, can be constructed in that manner. If now ∞ is a right (left) zero, but not a left (right) zero of (R, \cdot), then $R-\{\infty\}$ is a subsemiring of $R, x y=\infty y$ for all $x, y \in R$, and the multiplication of R can be completely described in terms of $(R,+)=\mathscr{M}_{\infty}(G, I, \Lambda, P)$ and idempotent mappings defined on I and Λ. If, finally, ∞ is a multiplicative idempotent, but is neither a left zero, nor a right zero, of (R, \cdot), then the multiplication of R is defined by: $\infty y=x \infty=x y=e$, $\infty \infty=\infty$ for all $x, y \in R-\{\infty\}$, where e is some additive idempotent.

We essentially follow the notation of [1]. However, if R is a semiring with a completely 0 -simple additive semigroup, we shall always denote by ∞ the zero of ($R,+$), and by E the set of additive idempotents. Rees matrix semigroups $S=\mathscr{M}_{\infty}(G, I, \Lambda, P)$ will be denoted additively, and G^{∞} considered as an additive group with zero ∞; elements of S will be written as triples (i, a, λ) with $i \in I$, $\lambda \in \Lambda, a \in G^{\infty}$, and added according to the formula: $(i, a, \lambda)+(j, b, \mu)=$ ($i, a+p_{\lambda},{ }_{j}+b, \mu$) for all $i, j \in I, \lambda, \mu \in \Lambda$ and $a, b \in G^{\infty}$. Note that, trivially, if $x, y \in S-\{\infty\}$, then $x+y=y+x$ implies that x and y belong to the same \mathscr{H}-class of S.

1. Preliminary results

Let R be a semiring with a completely 0 -simple additive semigroup. We easily see that the Green's relations $\mathscr{L}, \mathscr{R}, \mathscr{D}$ and \mathscr{H} of $(R,+)$ are multiplicative congruences. Our first result shows that, except when $R^{2}=\{\infty\}, R^{*}=R-\{\infty\}$ is a subsemigroup of (R, \cdot).

Theorem 1. Let R be a semiring such that $(R,+)$ is a completely 0 -simple semigroup with zero ∞ and that $R^{2} \neq\{\infty\}$. Then $x y \neq \infty$ for all $x, y \in R^{*}$.

Proof. Assume that, on the contrary, there exist $x, y \in R^{*}$ such that $x y=\infty$. Then since $(R,+)$ is 0 -bisimple, we have $x \mathscr{D} z$ and $y \mathscr{D} t$ for all $z, t \in R^{*}$; since \mathscr{O} is a multiplicative congruence, it follows that $x y \mathscr{D} z t$. Therefore $z t=\infty$ for all $z, t \in R^{*}$. Furthermore, if $z \in R^{*}$, we have:

$$
z \infty=z(\infty+z)=z \infty+z z=z \infty+\infty=\infty,
$$

and similarly $\infty z=\infty$. Also

$$
\infty \infty=\infty(\infty+x)=\infty \infty+\infty x=\infty \infty+\infty=\infty .
$$

We conclude that $R^{2}=\{\infty\}$, which contradicts our assumption. Thus we must have $x y \neq \infty$ for all $x, y \in R^{*}$.

From now on, we shall always assume that $R^{2} \neq\{\infty\}$. The next result is fundamental for the study of the structure of semirings with a completely 0 -simple additive semigroup, as it provides a first useful classification of these semigroups.

Theorem 2. Let R be a semiring such that $(R,+)$ is a completely 0 -simple semigroup and that $R^{2} \neq\{\infty\}$. Then
i) If $\infty \infty \neq \infty, R$ is reduced to one element.
ii) If $\infty \infty=\infty, R^{*}$ is a subsemiring of R with a completely simple additive semigroup, and R is obtained by adjoining the additive zero ∞ to R^{*}.

Proof. Let us first assume that $\infty \infty \neq \infty$. Then, if $x \infty=\infty$ for some $x \in R^{*}$, we have:

$$
\infty \infty=(\infty+x) \infty=\infty \infty+x \infty=\infty \infty+\infty=\infty,
$$

which is a contradiction. Thus we must have $x \infty \neq \infty$ for all $x \in R$. Furthermore

$$
x \infty+\infty \infty=(x+\infty) \infty=\infty \infty=(\infty+x) \infty=\infty \infty+x \infty
$$

for all $x \in R^{*}$, and it follows from the fact that $(R,+)$ is completely 0 -simple that $x \infty \mathscr{H} \infty \infty$ for all $x \in R^{*}$. Noting that then $\infty \infty$ and $x \infty$ are two idempotents of $(R,+)$ belonging to the same \mathscr{H}-class, we conclude that $x \infty=\infty \infty$. Similarly we have $\infty x=\infty \infty$ for all $x \in R^{*}$.

Let now $x, y \in R^{*}$; by the above $x \infty=\infty y=\infty \infty$, so that we have:

$$
\left.\begin{array}{rl}
x y+\infty \infty=x y+\infty y+x \infty+\infty \infty= & (x+\infty)(y+\infty)=\infty \infty
\end{array}\right)
$$

Since $\infty \infty \neq \infty$ by assumption, and $x y \neq \infty$ by Theorem 1, it follows that $x y \mathscr{H} \infty \infty$. Since $x y+\infty \infty=\infty \infty$ by the above, we must have $x y=\infty \infty$. Therefore we have shown that $R^{2}=\{\infty \infty\}$.

To prove ii), let now $\infty \infty=\infty$. By Theorem 1, it is clearly enough to show that R^{*} is a subsemigroup of $(R,+)$. Suppose that, on the contrary, there exists an element t of R such that $t+t=\infty$. Then we have:

$$
t \infty=t(\infty+\infty)=t \infty+t \infty=(t+t) \infty=\infty \infty=\infty
$$

Since \mathscr{D} is a multiplicative congruence, and $x \mathscr{D} t$ for all $x \in R^{*}$, it follow that $x \infty=\infty$ for all $x \in R^{*}$. Let e be an additive idempotent different from ∞; then we have in particular $e \infty=\infty$, whence

$$
e t=(e+e) t=e t+e t=e(t+t)=e \infty=\infty
$$

which is a contradiction, since et $\neq \infty$ by Theorem 1. Thus we must have $t+t \neq \infty$ for all $t \in R^{*}$, which proves that R^{*} is a subsemiring of R.

2. Structure theorems

From now on we assume that $R^{2} \neq\{\infty\}$ and that ∞ is a multiplicative idempotent, thus excluding the trivial case when R^{2} is reduced to one element. Clearly, whenever R^{*} is a semiring with a completely simple additive semigroup, we can construct a semiring with a completely 0 -simple additive semigroup by adjoining to R^{*} an element which is together an additive zero and multiplicative zero. Conversely, it trivially follows from Theorem 2 ii) that we have the following:

Theorem 3. Let R be a semiring such that $(R,+)$ is a completely 0 -simple semigroup with zero ∞ such that $R^{2} \neq\{\infty\}$ and that ∞ is a multiplicative zero. Then R^{*} is a subsemiring of R with a completely simple additive semigroup, and R is obtained by trivial adjunction of the additive and multiplicative zero ∞ to R^{*}.

Therefore, Theorem 4 of [2], which describes the structure of semirings with a completely simple additive semigroup, trivially extends to give the structure of semirings with a completely 0 -simple additive semigroup whose zero is also a multiplicative zero.

We now study the case when ∞ is a multiplicative idempotent, but is not a zero of (R, \cdot). For instance, we assume in the next two lemmas that ∞ is not a left zero of (R, \cdot).

Lemma 4. Let R be a semiring such that $(R,+)$ is a completely 0 -simple semigroup with zero ∞. and that $\infty \infty=\infty$. If ∞ is not a left zero of (R.•), then $\infty y \neq \infty$ for all $y \in R^{*}$, and the mapping g defined by: $g(y)=\infty y$ for all $y \in R$, is an idempotent homomorphism of $(R,+)$ into the set E of additive idempotents.

Proof. Assume that $\infty x \neq \infty$ for some $x \in R^{*}$. Then, for all $y \in R^{*}$, we have: $x \mathscr{D} y$, and, since \mathscr{D} is a multiplicative congruence, it follows that $\infty x \mathscr{D} \infty y$. Thus $\infty y \neq \infty$ for all $y \in R^{*}$. The last part of the statement is then clear.

Lemma 5. Let R be a semiring with a completely 0 -simple additive semigroup with zero ∞ such that $\infty \infty=\infty$. If ∞ is not a left zero of (R, \cdot), then we have: $x y=\infty y$ for all $x, y \in R^{*}$.

Proof. Let $x, y \in R^{*}$. Then $x y \neq \infty$ by Theorem 1, and $\infty y \neq \infty$ by Lemma 4. Therefore we have $x y \mathscr{D} \infty y$. Also

$$
x y+\infty y=(x+\infty) y=(\infty+x) y=\infty y+x y
$$

whence $x y \mathscr{H} \infty y$. As an additive idempotent, ∞y is the identity of its \mathscr{H}-class, and it follows that $x y=x y+\infty y=\infty y$ for all $x, y \in R^{*}$.

This last lemma shows that, if $\infty \infty=\infty$, but ∞ is not a left zero of (R, \cdot), then the multiplication of R is completely determined by all products ∞y and $y \infty$ with $y \in R$.

First, if ∞ is neither a left zero, not a right zero, of (R, \cdot), then $x \infty \neq \infty$ and $x y=x \infty$ for all $x, y \in R^{*}$, by the duals of Lemma 4 and 5. Thus $x \infty=x y$ $=\infty y$ for all $x, y \in R^{*}$. Thus we easily obtain the following

Theorem 6. Let R^{*} be any completely simple additive semigroup, and R be the semigroup resulting from the adjunction of a zero ∞ to R^{*}. Then, for every idempotent e of R^{*}, the multiplication defined by:

$$
x \infty=\infty y=x y=e, \infty \infty=\infty
$$

for all $x, y \in R^{*}$, defines a structure of semiring on R. Conversely, every semiring R, with a completely 0 -simple additive semigroup with zero ∞ such that $\infty \infty=\infty$, but ∞ is neither a left, nor a right, zero of (R, \cdot), is obtained in this way.

If now ∞ is a right zero, but not a left zero, of (R, \cdot), then the structure of R can be described as follows:

Theorem 7. Let R^{*} be any completely simple additive semigroup, and R be the semigroup resulting from the adjunction of a zero ∞ to R^{*}. Given an idempotent homomorphism g of R into the set E of idempotents of R such that $g(\infty)=\infty$, the multiplication defined by: $x y=g(y)$ for all $x, y \in R$,
defines a structure of semiring on R. Conversely, every semiring R with a completely 0 -simple additive semigroup with zero ∞ such that ∞ is a right zero, but not a left zero, of (R, \cdot), is obtained in this way.

Proof. Let first R be as in the direct part of the statement, and g be an idempotent homomorphism of R into E. Then we have:

$$
\begin{aligned}
(x y) z & =g(y) z=g(z)=g^{2}(z)=x g(z)=x(y x) \\
(x+y) z & =g(z)=g(z)+g(z)=x z+y z \\
z(x+y) & =g(x+y)=g(x)+g(y)=z x+z y
\end{aligned}
$$

for all $x, y, z \in R$. Thus R, together with this multiplication is a semiring. The converse follows clearly from Lemmas 4 and 5.

We can use the description of homomorphisms of completely 0-simple semigroups given in [1] to translate this last result in terms of Rees matrix semigroups. We then get:

Theorem 8. Let $R=\mathscr{M}_{\infty}(G, I, \Lambda, P)$ be a completely 0 -simple semigroup resulting from the adjunction of the zero to $R^{*}=\mathscr{M}(G, I, \Lambda, P)$. Let ϕ and ψ be idempotent mappings of I into I and Λ into Λ, respectively, such that $p_{\psi \lambda, \phi i}$ $=v_{\lambda}+u_{i}$ for all $i \in I$ and $\lambda \in \Lambda$, where $u_{i}, v_{\lambda} \in G$. Then, together with the multiplication defined by:

$$
\infty y=x y=\left(\phi j,-p_{\psi \mu, \phi j}, \psi \mu\right), \quad x \infty=\infty \infty=\infty
$$

for all $x, y=(j, b, \mu) \in R^{*}, R$ is a semiring. Conversely, every semiring R with a completely 0 -simple additive semigroup with zero such that ∞ is a right zero, but not a left zero, of (R, \cdot) is isomorphic to such a semiring.

Proof. Let R, ϕ and ψ be as in the direct part of the statement, and define a mapping g of R into the set E of idempotents of R by: $g(y)=\left(\phi j,-p_{\psi \mu, \phi j}, \psi \mu\right)$ if $y=(j, b, \mu) \in R^{*}$ and $g(\infty)=\infty$. Then we have

$$
\begin{aligned}
& g(x)+g(y)=\left(\phi i,-p_{\psi \lambda, \phi i}, \psi \lambda\right)+\left(\phi j,-p_{\psi \mu, \phi j}, \psi \mu\right) \\
&=\left(\phi i,-p_{\psi \lambda, \phi i}+p_{\psi \lambda, \phi j}-p_{\psi \mu, \psi j}, \psi \mu\right)=\left(\phi i,-u_{i}-v_{\lambda}+v_{\lambda}+u_{j}\right. \\
&\left.\quad-u_{j}-v_{\mu}, \psi \mu\right) \\
&=\left(\phi i,-u_{i}-v_{\mu}, \psi \mu\right)=\left(\phi i,-p_{\psi \mu, \phi j}, \psi \mu\right)=g(x+y)
\end{aligned}
$$

$$
g(x)+g(\infty)=g(x)+\infty=\infty=g(\infty)=g(x+\infty)
$$

and similarly $g(\infty)+g(x)=g(\infty+x) ; g(\infty)+g(\infty)=\infty=g(\infty)$; for all $x=(i, a, \lambda), y=(j, b, \mu) \in R^{*}$. Thus g is an additive homomorphism. That g is idempotent results trivially from the fact that ψ and ϕ are idemponet mappings. Since the multiplication defined on R clearly satisfies $x y=g(y)$ for all $x, y \in R$, it follows from Theorem 7 that R is a semiring.

Conversely, let now R be a semiring, with a completely 0 -simple additive semi group with zero ∞ such that ∞ is a right zero, but not a left zero, of (R, \cdot) Then, by Theorem 7, the mapping g defined by $g(y)=\infty y$ for all $y \in R$, is an idempotent homomorphism of $(R,+)$ into E such that $x y=g(y)$ for all $x, y \in R$. By Theorem 3.11 of [1], we can describe g as follows: Let $i \rightarrow u_{i}^{\prime}$ and $\lambda \rightarrow v_{\lambda}$ be mappings of I and Λ, respectively, into G^{∞}. Let ϕ and ψ be mappings of I into I and Λ into Λ, respectively. Let ω be a non-trivial homomorphism of G^{∞} into G^{∞} such that $\omega\left(p_{\lambda, i}\right)=v_{\lambda}^{\prime}+p_{\psi \lambda, \phi i}+u_{i}^{\prime}$ for all $i \in I$ and $\lambda \in \Lambda$. Then

$$
g(j, b, \mu)=\left(\phi j, u_{j}^{\prime}+\omega(b)+v_{\mu}^{\prime}, \psi \mu\right)
$$

for all $(j, b, \mu) \in R^{*}$. Since g is idempotent, the mappings ϕ and ψ are clearly idempotent too, Now, for all $y=(j, b, \mu) \in R^{*}, g(y)$ is an additive idempotent contained in $H_{\phi j, \psi \mu}$, so that we must have: $g(y)=\left(\phi j,-p_{\psi \mu, \phi j}, \psi \mu\right)$. In particular $u_{j}^{\prime}+\omega(b)+v_{\mu}^{\prime}=-p_{\psi \mu, \phi j}$ for all $j \in I, \mu \in \Lambda$ and $b \in G$. Thus $\omega(b)=\omega(0)$ $=0$ for all $b \in G$, and $v_{\mu}^{\prime}+p_{\psi \mu, \phi j}+u_{j}^{\prime}=\omega\left(p_{\mu, j}\right)=0$ for all $j \in I$ and $\mu \in \Lambda$. Therefore, setting $u_{i}=-u_{i}^{\prime}, v_{\lambda}=-v_{\lambda}^{\prime}$, we get $p_{\psi \lambda, \phi i}=v_{\lambda}+u_{i}$ for all $i \in I$ and $\lambda \in \Lambda$, which completes the proof.

References

[1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Math. Surveys, No. 7, (Amer. Math. Soc., Providence, R. I., 1962), reprint 1964.
[2] M. P. Grillet, 'Semirings with a completely simple additive semigroup’, (to appear).

4 Trianon Plaza

New Orleans
Lousiana 70125
U.S.A.

