SEMIRINGS WITH A COMPLETELY 0-SIMPLE ADDITIVE SEMIGROUP

MIREILLE P. GRILLET

(Received 26 February 1973) Communicated by G. B. Preston

In a previous paper [2], we gave an explicit description of the structure of all semirings with a completely simple additive semigroup. The next step is then clearly to consider semirings with a completely 0-simple additive semigroup. We are able to classify these semirings according to the multiplicative nature of their additive zero. Let R be a semiring whose additive semigroup is completely 0-simple with zero ∞ . First, if $\infty \infty \neq \infty$, then the multiplication of R is trivial. Besides these trivial semirings, another class of semirings with a completely 0-simple additive semigroup can be easily obtained by adjoining an element ∞ which is together an additive zero and a multiplicative zero. We show that every semiring, with a completely 0-simple additive semigroup whose zero ∞ is a multiplicative zero, can be constructed in that manner. If now ∞ is a right (left) zero, but not a left (right) zero of (R, \cdot) , then $R - \{\infty\}$ is a subsemiring of $R, xy = \infty y$ for all x, $y \in R$, and the multiplication of R can be completely described in terms of $(R, +) = \mathcal{M}_{\alpha}(G, I, \Lambda, P)$ and idempotent mappings defined on I and Λ . If, finally, ∞ is a multiplicative idempotent, but is neither a left zero, nor a right zero, of (R, \cdot) , then the multiplication of R is defined by: $\infty y = x \infty = xy = e$, $\infty \infty = \infty$ for all $x, y \in R - \{\infty\}$, where e is some additive idempotent.

We essentially follow the notation of [1]. However, if R is a semiring with a completely 0-simple additive semigroup, we shall always denote by ∞ the zero of (R, +), and by E the set of additive idempotents. Rees matrix semigroups $S = \mathscr{M}_{\infty}(G, I, \Lambda, P)$ will be denoted additively, and G^{∞} considered as an additive group with zero ∞ ; elements of S will be written as triples (i, a, λ) with $i \in I$, $\lambda \in \Lambda$, $a \in G^{\infty}$, and added according to the formula: $(i, a, \lambda) + (j, b, \mu) =$ $(i, a + p_{\lambda, j} + b, \mu)$ for all $i, j \in I$, $\lambda, \mu \in \Lambda$ and $a, b \in G^{\infty}$. Note that, trivially, if $x, y \in S - \{\infty\}$, then x + y = y + x implies that x and y belong to the same \mathscr{H} -class of S.

436

1. Preliminary results

Let R be a semiring with a completely 0-simple additive semigroup. We easily see that the Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{D}$ and \mathcal{H} of (R, +) are multiplicative congruences. Our first result shows that, except when $R^2 = \{\infty\}, R^* = R - \{\infty\}$ is a subsemigroup of (R, \cdot) .

THEOREM 1. Let R be a semiring such that (R, +) is a completely 0-simple semigroup with zero ∞ and that $R^2 \neq \{\infty\}$. Then $xy \neq \infty$ for all $x, y \in R^*$.

PROOF. Assume that, on the contrary, there exist $x, y \in R^*$ such that $xy = \infty$. Then since (R, +) is 0-bisimple, we have $x \mathcal{D} z$ and $y \mathcal{D} t$ for all $z, t \in R^*$; since \mathcal{D} is a multiplicative congruence, it follows that $xy \mathcal{D} zt$. Therefore $zt = \infty$ for all $z, t \in R^*$. Furthermore, if $z \in R^*$, we have:

$$z\infty = z(\infty + z) = z\infty + zz = z\infty + \infty = \infty,$$

and similarly $\infty z = \infty$. Also

$$\infty \infty = \infty (\infty + x) = \infty \infty + \infty x = \infty \infty + \infty = \infty$$

We conclude that $R^2 = \{\infty\}$, which contradicts our assumption. Thus we must have $xy \neq \infty$ for all $x, y \in R^*$.

From now on, we shall always assume that $R^2 \neq \{\infty\}$. The next result is fundamental for the study of the structure of semirings with a completely 0-simple additive semigroup, as it provides a first useful classification of these semigroups.

THEOREM 2. Let R be a semiring such that (R, +) is a completely 0-simple semigroup and that $R^2 \neq \{\infty\}$. Then

i) If $\infty \infty \neq \infty$, R is reduced to one element.

ii) If $\infty \infty = \infty$, R^* is a subsemiring of R with a completely simple additive semigroup, and R is obtained by adjoining the additive zero ∞ to R^* .

PROOF. Let us first assume that $\infty \infty \neq \infty$. Then, if $x\infty = \infty$ for some $x \in \mathbb{R}^*$, we have:

$$\infty \infty = (\infty + x) \infty = \infty \infty + x \infty = \infty \infty + \infty = \infty,$$

which is a contradiction. Thus we must have $x \infty \neq \infty$ for all $x \in R$. Furthermore

$$x \infty + \infty \infty = (x + \infty) \infty = \infty \infty = (\infty + x) \infty = \infty \infty + x \infty$$

for all $x \in R^*$, and it follows from the fact that (R, +) is completely 0-simple that $x \propto \mathscr{H} \propto \infty$ for all $x \in R^*$. Noting that then $\infty \propto$ and $x \propto$ are two idempotents of (R, +) belonging to the same \mathscr{H} -class, we conclude that $x \propto = \infty \infty$. Similarly we have $\infty x = \infty \infty$ for all $x \in R^*$.

Mireille P. Grillet

Let now $x, y \in R^*$; by the above $x\infty = \infty y = \infty \infty$, so that we have: $xy + \infty \infty = xy + \infty y + x\infty + \infty \infty = (x + \infty)(y + \infty) = \infty \infty =$

$$(\infty + x)(\infty + y) = \infty \infty + x \infty + \infty y + x y = \infty \infty + x y.$$

Since $\infty \infty \neq \infty$ by assumption, and $xy \neq \infty$ by Theorem 1, it follows that $xy \mathscr{H} \infty \infty$. Since $xy + \infty \infty = \infty \infty$ by the above, we must have $xy = \infty \infty$. Therefore we have shown that $R^2 = \{\infty \infty\}$.

To prove ii), let now $\infty \infty = \infty$. By Theorem 1, it is clearly enough to show that R^* is a subsemigroup of (R, +). Suppose that, on the contrary, there exists an element t of R such that $t + t = \infty$. Then we have:

$$t\infty = t(\infty + \infty) = t\infty + t\infty = (t+t)\infty = \infty \infty = \infty$$

Since \mathscr{D} is a multiplicative congruence, and $x \mathscr{D} t$ for all $x \in \mathbb{R}^*$, it follow that $x\infty = \infty$ for all $x \in \mathbb{R}^*$. Let *e* be an additive idempotent different from ∞ ; then we have in particular $e\infty = \infty$, whence

$$et = (e+e)t = et + et = e(t+t) = e\infty = \infty,$$

which is a contradiction, since $et \neq \infty$ by Theorem 1. Thus we must have $t + t \neq \infty$ for all $t \in \mathbb{R}^*$, which proves that \mathbb{R}^* is a subsemiring of \mathbb{R} .

2. Structure theorems

From now on we assume that $R^2 \neq \{\infty\}$ and that ∞ is a multiplicative idempotent, thus excluding the trivial case when R^2 is reduced to one element. Clearly, whenever R^* is a semiring with a completely simple additive semigroup, we can construct a semiring with a completely 0-simple additive semigroup by adjoining to R^* an element which is together an additive zero and a multiplicative zero. Conversely, it trivially follows from Theorem 2 ii) that we have the following:

THEOREM 3. Let R be a semiring such that (R, +) is a completely 0-simple semigroup with zero ∞ such that $R^2 \neq \{\infty\}$ and that ∞ is a multiplicative zero. Then R^* is a subsemiring of R with a completely simple additive semigroup, and R is obtained by trivial adjunction of the additive and multiplicative zero ∞ to R^* .

Therefore, Theorem 4 of [2], which describes the structure of semirings with a completely simple additive semigroup, trivially extends to give the structure of semirings with a completely 0-simple additive semigroup whose zero is also a multiplicative zero.

We now study the case when ∞ is a multiplicative idempotent, but is not a zero of (R, \cdot) . For instance, we assume in the next two lemmas that ∞ is not a left zero of (R, \cdot) .

LEMMA 4. Let R be a semiring such that (R, +) is a completely 0-simple semigroup with zero ∞ . and that $\infty \infty = \infty$. If ∞ is not a left zero of (R, \cdot) , then $\infty y \neq \infty$ for all $y \in R^*$, and the mapping g defined by: $g(y) = \infty y$ for all $y \in R$, is an idempotent homomorphism of (R, +) into the set E of additive idempotents.

PROOF. Assume that $\infty x \neq \infty$ for some $x \in R^*$. Then, for all $y \in R^*$, we have: $x \mathcal{D} y$, and, since \mathcal{D} is a multiplicative congruence, it follows that $\infty x \mathcal{D} \infty y$. Thus $\infty y \neq \infty$ for all $y \in R^*$. The last part of the statement is then clear.

LEMMA 5. Let R be a semiring with a completely 0-simple additive semigroup with zero ∞ such that $\infty \infty = \infty$. If ∞ is not a left zero of (R, \cdot) , then we have: $xy = \infty y$ for all $x, y \in R^*$.

PROOF. Let $x, y \in \mathbb{R}^*$. Then $xy \neq \infty$ by Theorem 1, and $\infty y \neq \infty$ by Lemma 4. Therefore we have $xy \mathcal{D} \propto y$. Also

$$xy + \infty y = (x + \infty)y = (\infty + x)y = \infty y + xy,$$

whence $xy \mathscr{H} \infty y$. As an additive idempotent, ∞y is the identity of its \mathscr{H} -class, and it follows that $xy = xy + \infty y = \infty y$ for all $x, y \in \mathbb{R}^*$.

This last lemma shows that, if $\infty \infty = \infty$, but ∞ is not a left zero of (R, \cdot) , then the multiplication of R is completely determined by all products ∞y and $y\infty$ with $y \in R$.

First, if ∞ is neither a left zero, not a right zero, of (R, \cdot) , then $x\infty \neq \infty$ and $xy = x\infty$ for all $x, y \in R^*$, by the duals of Lemma 4 and 5. Thus $x\infty = xy$ $= \infty y$ for all $x, y \in R^*$. Thus we easily obtain the following

THEOREM 6. Let R^* be any completely simple additive semigroup, and R be the semigroup resulting from the adjunction of a zero ∞ to R^* . Then, for every idempotent e of R^* , the multiplication defined by:

$$x \infty = \infty y = xy = e, \ \infty \infty = \infty$$

for all $x, y \in \mathbb{R}^*$, defines a structure of semiring on \mathbb{R} . Conversely, every semiring \mathbb{R} , with a completely 0-simple additive semigroup with zero ∞ such that $\infty \infty = \infty$, but ∞ is neither a left, nor a right, zero of (\mathbb{R}, \cdot) , is obtained in this way.

If now ∞ is a right zero, but not a left zero, of (R, \cdot) , then the structure of R can be described as follows:

THEOREM 7. Let R^* be any completely simple additive semigroup, and R be the semigroup resulting from the adjunction of a zero ∞ to R^* . Given an idempotent homomorphism g of R into the set E of idempotents of R such that $g(\infty) = \infty$, the multiplication defined by: xy = g(y) for all $x, y \in R$, Mireille P. Grillet

defines a structure of semiring on R. Conversely, every semiring R with a completely 0-simple additive semigroup with zero ∞ such that ∞ is a right zero, but not a left zero, of (R, \cdot) , is obtained in this way.

PROOF. Let first R be as in the direct part of the statement, and g be an idempotent homomorphism of R into E. Then we have:

$$(xy)z = g(y)z = g(z) = g^{2}(z) = xg(z) = x(yx)$$
$$(x + y)z = g(z) = g(z) + g(z) = xz + yz$$
$$z(x + y) = g(x + y) = g(x) + g(y) = zx + zy$$

for all $x, y, z \in R$. Thus R, together with this multiplication is a semiring. The converse follows clearly from Lemmas 4 and 5.

We can use the description of homomorphisms of completely 0-simple semigroups given in [1] to translate this last result in terms of Rees matrix semigroups. We then get:

THEOREM 8. Let $R = \mathscr{M}_{\infty}(G, I, \Lambda, P)$ be a completely 0-simple semigroup resulting from the adjunction of the zero to $R^* = \mathscr{M}(G, I, \Lambda, P)$. Let ϕ and ψ be idempotent mappings of I into I and Λ into Λ , respectively, such that $p_{\psi\lambda,\phi i}$ $= v_{\lambda} + u_i$ for all $i \in I$ and $\lambda \in \Lambda$, where $u_i, v_{\lambda} \in G$. Then, together with the multiplication defined by:

$$\infty y = xy = (\phi j, -p_{\psi\mu,\phi j}, \psi\mu), \quad x\infty = \infty \infty = \infty$$

for all $x, y = (j, b, \mu) \in \mathbb{R}^*$, R is a semiring. Conversely, every semiring R with a completely 0-simple additive semigroup with zero such that ∞ is a right zero, but not a left zero, of (R, \cdot) is isomorphic to such a semiring.

PROOF. Let R, ϕ and ψ be as in the direct part of the statement, and define a mapping g of R into the set E of idempotents of R by: $g(y) = (\phi j, -p_{\psi\mu,\phi j},\psi\mu)$ if $y = (j, b, \mu) \in R^*$ and $g(\infty) = \infty$. Then we have

$$g(x) + g(y) = (\phi i, -p_{\psi\lambda,\phi i}, \psi\lambda) + (\phi j, -p_{\psi\mu,\phi j}, \psi\mu)$$

= $(\phi i, -p_{\psi\lambda,\phi i} + p_{\psi\lambda,\phi j} - p_{\psi\mu,\psi j}, \psi\mu) = (\phi i, -u_i - v_\lambda + v_\lambda + u_j - u_j - v_\mu, \psi\mu)$
= $(\phi i, -u_i - v_\mu, \psi\mu) = (\phi i, -p_{\psi\mu,\phi j}, \psi\mu) = g(x + y);$
$$g(x) + g(\infty) = g(x) + \infty = \infty = g(\infty) = g(x + \infty),$$

and similarly $g(\infty) + g(x) = g(\infty + x)$; $g(\infty) + g(\infty) = \infty = g(\infty)$; for all $x = (i, a, \lambda), y = (j, b, \mu) \in \mathbb{R}^*$. Thus g is an additive homomorphism. That g is idempotent results trivially from the fact that ψ and ϕ are idemponet mappings. Since the multiplication defined on R clearly satisfies xy = g(y) for all $x, y \in \mathbb{R}$, it follows from Theorem 7 that R is a semiring.

Semirings with an 0-simple semigroup

Conversely, let now R be a semiring, with a completely 0-simple additive semigroup with zero ∞ such that ∞ is a right zero, but not a left zero, of (R, \cdot) Then, by Theorem 7, the mapping g defined by $g(y) = \infty y$ for all $y \in R$, is an idempotent homomorphism of (R, +) into E such that xy = g(y) for all $x, y \in R$. By Theorem 3.11 of [1], we can describe g as follows: Let $i \to u'_i$ and $\lambda \to v_\lambda$ be mappings of I and A, respectively, into G^{∞} . Let ϕ and ψ be mappings of I into I and A into A, respectively. Let ω be a non-trivial homomorphism of G^{∞} into G^{∞} such that $\omega(p_{\lambda,i}) = v'_{\lambda} + p_{\psi\lambda,\phi i} + u'_i$ for all $i \in I$ and $\lambda \in \Lambda$. Then

$$g(j, b, \mu) = (\phi j, u'_i + \omega(b) + v'_\mu, \psi \mu)$$

for all $(j, b, \mu) \in \mathbb{R}^*$. Since g is idempotent, the mappings ϕ and ψ are clearly idempotent too, Now, for all $y = (j, b, \mu) \in \mathbb{R}^*$, g(y) is an additive idempotent contained in $H_{\phi j, \psi \mu}$, so that we must have: $g(y) = (\phi j, -p_{\psi \mu, \phi j}, \psi \mu)$. In particular $u'_j + \omega(b) + v'_{\mu} = -p_{\psi \mu, \phi j}$ for all $j \in I$, $\mu \in \Lambda$ and $b \in G$. Thus $\omega(b) = \omega(0)$ = 0 for all $b \in G$, and $v'_{\mu} + p_{\psi \mu, \phi j} + u'_j = \omega(p_{\mu, j}) = 0$ for all $j \in I$ and $\mu \in \Lambda$. Therefore, setting $u_i = -u'_i$, $v_{\lambda} = -v'_{\lambda}$, we get $p_{\psi \lambda, \phi i} = v_{\lambda} + u_i$ for all $i \in I$ and $\lambda \in \Lambda$, which completes the proof.

References

- A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. 1, Math. Surveys, No. 7, (Amer. Math. Soc., Providence, R. I., 1962), reprint 1964.
- [2] M. P. Grillet, 'Semirings with a completely simple additive semigroup', (to appear).

4 Trianon Plaza New Orleans Lousiana 70125 U.S.A.