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Auerbach Bases and Minimal Volume
Sufficient Enlargements

M. I. Ostrovskii

Abstract. Let BY denote the unit ball of a normed linear space Y . A symmetric, bounded, closed,

convex set A in a finite dimensional normed linear space X is called a sufficient enlargement for X

if, for an arbitrary isometric embedding of X into a Banach space Y , there exists a linear projection

P : Y → X such that P(BY ) ⊂ A. Each finite dimensional normed space has a minimal-volume

sufficient enlargement that is a parallelepiped; some spaces have “exotic” minimal-volume sufficient

enlargements. The main result of the paper is a characterization of spaces having “exotic” minimal-

volume sufficient enlargements in terms of Auerbach bases.

1 Introduction

All linear spaces considered in this paper will be over the reals. By a space we mean a

normed linear space, unless explicitly stated otherwise. We denote by BX the closed

unit ball of a space X. We say that subsets A and B of finite dimensional linear spaces

X and Y , respectively, are linearly equivalent if there exists a linear isomorphism T

between the subspace spanned by A in X and the subspace spanned by B in Y such

that T(A) = B. By a symmetric set K in a linear space we mean a set such that x ∈ K

implies −x ∈ K.

Our terminology and notation of Banach space theory follows [6]. By Bn
p, 1 ≤

p ≤ ∞, n ∈ N we denote the closed unit ball of ℓn
p. Our terminology and notation

of convex geometry follows [17]. A Minkowski sum of finitely many line segments is

called a zonotope. We use the term ball for a symmetric, bounded, closed, convex set

with interior points in a finite dimensional linear space.

Definition 1.1 ([9]) A ball in a finite dimensional normed space X is called a suf-

ficient enlargement (SE) for X (or of BX) if, for an arbitrary isometric embedding of

X into a Banach space Y , there exists a projection P : Y → X such that P(BY ) ⊂ A.

A sufficient enlargement A for X is called a minimal-volume sufficient enlargement

(MVSE) if vol A ≤ vol D for each SE D for X.

It was proved in [13, Theorem 3] that each MVSE is a zonotope generated by a

totally unimodular matrix, and the set of all MVSE’s (for all spaces) coincides with

the set of all space tiling zonotopes described in [4,7]. It is known (see [10, Theorem

6]; the result is implicit in [5, pp. 95–97]) that a minimum-volume parallelepiped

containing BX is an MVSE for X. It was discovered (see [12, Theorem 4] and [13,

Theorem 4]) that spaces X having a non-parallelepipedal MVSE are rather special:
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they should have a two-dimensional subspace whose unit ball is linearly equivalent

to a regular hexagon. In dimension two this provides a complete characterization

(see [12]). On the other hand, the unit ball of ℓn
∞, n ≥ 3, has a regular hexagonal

section, but the only MVSE for ℓn
∞ is its unit ball (so it is a parallelepiped). A natural

problem arises of characterizing Banach spaces having non-parallelepipedal MVSE in

dimensions d ≥ 3. The main purpose of this paper is to characterize such spaces in

terms of Auerbach bases. At the end of the paper we make some remarks on MVSE

for ℓn
1 and study relations between the class of spaces having non-parallelepipedal

MVSE and the class of spaces having a 1-complemented subspace whose unit ball is

linearly equivalent to a regular hexagon.

2 Auerbach Bases

We need to recall some well-known results on bases in finite dimensional normed

spaces. Let X be an n-dimensional normed linear space. For a vector x ∈ X by [−x, x]

we denote the line segment joining −x and x. For x1, . . . , xk ∈ X by M({xi}k
i=1) we

denote the Minkowski sum of the corresponding line segments, that is,

M({xi}k
i=1) = {x : x = y1 + · · · + yk for some yi ∈ [−xi , xi], i = 1, . . . , k}.

Let {xi}n
i=1 be a basis in X, its biorthogonal functionals are defined by x∗i (x j) = δi j

(Kronecker delta). The basis {xi}n
i=1 is called an Auerbach basis if ‖xi‖ = ‖x∗i ‖ = 1

for all i ∈ {1, . . . , n}. According to [2, Remarks to Chapter VII] H. Auerbach proved

the existence of such bases for each finite dimensional X.

Historical comment Banach [2] does not contain any proofs of the existence of

Auerbach bases. The two dimensional case of Auerbach’s result was proved in [1].

Unfortunately Auerbach’s original proof in the general case seems to be lost. Proofs

of the existence of Auerbach bases discussed below are taken from [3, 18]. Plichko

[16] contains interesting results on relation between upper and lower Auerbach bases

(which are defined below) and related references.

It is useful for us to recall the standard argument for proving the existence of

Auerbach bases (it goes back at least to [18]). Consider the set N(= N(X)) consisting

of all subsets {xi}n
i=1 ⊂ X satisfying ‖xi‖ = 1, i ∈ {1, . . . , n}. It is a compact set in

its natural topology, and the n-dimensional volume of M({xi}n
i=1) is a continuous

function on N. Hence it attains its maximum on N. Let U ⊂ N be the set of n-tuples

on which the maximum is attained. It is easy to see that each {xi}n
i=1 ∈ U is a basis

(for linearly dependent sets the volume is zero). Another important observation is

that M({xi}n
i=1) ⊃ BX if {xi}n

i=1 ∈ U . In fact, if there is y ∈ BX\M({xi}n
i=1) then

(since the volume of a parallelepiped is the product of the length of its height and the

(n − 1)-dimensional volume of its base), there is i ∈ {1, . . . , n} such that replacing

xi by y we get a parallelepiped whose volume is strictly greater than the volume of

M({xi}n
i=1). Since we may assume ‖y‖ = 1, this is a contradiction with the definition

of U .

The following lemma shows that each basis from U is an Auerbach basis.

Lemma 2.1 A system {xi}n
i=1 ∈ N forms an Auerbach basis if and only if

M({xi}n
i=1) ⊃ BX .
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Proof It is easy to see that

M({xi}n
i=1) = {x : |x∗i (x)| ≤ 1 for i = 1, . . . , n}

for each basis {xi}n
i=1. Hence M({xi}n

i=1) ⊃ BX if and only if ‖x∗i ‖ ≤ 1 for each i. It

remains to observe that the equality ‖xi‖ = 1 implies ‖x∗i ‖ ≥ 1, i = 1, . . . , n.

This result justifies the following definition.

Definition 2.2 A basis from U is called an upper Auerbach basis.

Another way of showing that each finite dimensional space X has an Auerbach

basis was discovered in [3] (see also [15]). It was proved that each parallelepiped P

containing BX and having the minimum possible volume among all parallelepipeds

containing BX is of the form M({xi}n
i=1) for some {xi}n

i=1 ∈ N(X). By Lemma 2.1

the corresponding system {xi}n
i=1 is an Auerbach basis.

Definition 2.3 A basis {xi}n
i=1 for which M({xi}n

i=1) is one of the minimum-

volume parallelepipeds containing BX is called a lower Auerbach basis.

The notions of lower and upper Auerbach bases are dual to each other.

Proposition 2.4 A basis {xi}n
i=1 in X is a lower Auerbach basis if and only if the

biorthogonal sequence {x∗i }n
i=1 is an upper Auerbach basis in X∗.

Proof We choose a basis {ei}n
i=1 in X and let {e∗i }n

i=1 be its biorthogonal functionals

in X∗. We normalize all volumes in X in such a way that the volume of M({ei}n
i=1)

is equal to 1, and all volumes in X∗ in such a way that the volume of M({e∗i }n
i=1) is

equal to 1 (one can see that normalizations do not matter for our purposes).

Let K = (xi, j)
n
i, j=1 be the matrix whose columns are coordinates of an Auerbach

basis {x j}n
j=1 with respect to {ei}n

i=1, and let K∗
= (x∗i, j)

n
i, j=1 be a matrix whose rows

are coordinates of {x∗i }n
i=1 (which is an Auerbach basis in X∗) with respect to {e∗j }n

j=1.

Then K∗ · K = I (the identity matrix). Therefore,

| det K∗| · | det K| = 1.

Hence vol(M({xi}n
i=1) · vol(M({x∗i }n

i=1) = 1, and one of these volumes attains its

maximum on the set of Auerbach bases if and only if the other attains its minimum.

3 The Main Result

Theorem 3.1 An n-dimensional normed linear space X has a non-parallelepipedal

MVSE if and only if X has a lower Auerbach basis {xi}n
i=1 such that the unit ball of the

two-dimensional subspace lin{x1, x2} is linearly equivalent to a regular hexagon.

Proof. “Only if ” part We start by considering the case when the space X is polyhe-

dral, that is, when BX is a polytope. In this case we may consider X as a subspace of
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ℓm
∞ for some m ∈ N. Since X has an MVSE that is not a parallelepiped, there exists

a linear projection P : ℓm
∞ → X such that P(Bm

∞) has the minimal possible volume,

but P(Bm
∞) is not a parallelepiped. We consider the standard Euclidean structure

on ℓm
∞. Let {q1, . . . , qm−n} be an orthonormal basis in ker P, and let {q̃1, . . . , q̃n}

be an orthonormal basis in the orthogonal complement of ker P. As was shown in

[11, Lemma 2], P(Bm
∞) is linearly equivalent to the zonotope spanned by rows of

Q̃ = [q̃1, . . . , q̃n]. By assumption, this zonotope is not a parallelepiped. It is easy to

see that this assumption is equivalent to the existence of a minimal linearly depen-

dent collection of rows of Q̃ containing ≥ 3 rows. This condition implies that we

can reorder the coordinates in ℓm
∞ and multiply the matrix Q̃ from the right by an

invertible n × n matrix C1 in such a way that Q̃C1 has a submatrix of the form



1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

a1 a2 . . . an




,

where a1 6= 0 and a2 6= 0. Let X be an m × n matrix whose columns form a basis of

X (considered as a subspace of ℓm
∞). The argument of [11] (see conditions (1)–(3) on

p. 96) implies that X can be multiplied from the right by an invertible n × n matrix

C2 in such a way that XC2 is of the form



1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

sign a1 sign a2 . . . ∗
...

...
. . .

...




,

where there is an n × n identity matrix at the top and all minors of the matrix XC2

have absolute values ≤ 1.

Observe that columns on XC2 also form a basis in X. Changing signs in the first

two columns and the first two coordinates of ℓm
∞, if necessary, we get that the subspace

X ⊂ ℓm
∞ is spanned by columns of the matrix

(3.1)




1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

1 1 bn+1,3 . . . bn+1,n

bn+2,1 bn+2,2 ∗ . . . ∗
...

...
...

. . .
...

bm,1 bm,2 ∗ . . . ∗




,

https://doi.org/10.4153/CMB-2011-043-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-043-3


730 M. I. Ostrovskii

in which absolute values of all minors are ≤ 1. This restriction on minors implies

|bi,1 − bi,2| ≤ 1, |bi,1| ≤ 1, and |bi,2| ≤ 1. A routine verification shows that these

inequalities imply that the first two columns span a subspace of X ⊂ ℓm
∞ whose unit

ball is linearly equivalent to a regular hexagon (see [12, p. 390] for more details).

It remains to show that the columns of (3.1) form a lower Auerbach basis in X.

Let us denote the columns of (3.1) by {xi}n
i=1 and the biorthogonal functionals of

{xi}n
i=1 (considered as vectors in X∗) by {x∗i }n

i=1.

We map {x∗i }n
i=1 onto the unit vector basis of R

n. This mapping maps BX∗ onto

the symmetric convex hull of vectors whose coordinates are rows of the matrix (3.1).

In fact, using the definitions we get

∥∥∥∥
n∑

i=1

αix
∗
i

∥∥∥∥
X∗

= max

{∣∣∣∣
n∑

i=1

αiβi

∣∣∣∣ : max
1≤ j≤m

∣∣∣∣
n∑

i=1

βib ji

∣∣∣∣ ≤ 1

}
.

Therefore, if {αi}n
i=1 ∈ R

n is in the symmetric convex hull of {b ji}n
i=1 ∈ R

n, j =

1, . . . ,m, then

∣∣∣∣
n∑

i=1

αiβi

∣∣∣∣ ≤ max
1≤ j≤m

∣∣∣∣
n∑

i=1

βib ji

∣∣∣∣ and

∥∥∥∥
n∑

i=1

αix
∗
i

∥∥∥∥
X∗

≤ 1.

On the other hand, if {αi}n
i=1 is not in the symmetric convex hull of {b ji}n

i=1 ∈ R
n,

j = 1, . . . ,m, then, by the separation theorem (see, e.g., [17, Theorem 1.3.4]), there

is {βi}n
i=1 such that

max
1≤ j≤m

∣∣∣∣
n∑

i=1

βib ji

∣∣∣∣ ≤ 1, but

∣∣∣∣
n∑

i=1

αiβi

∣∣∣∣ > 1,

and hence ∥∥∥∥
n∑

i=1

αix
∗
i

∥∥∥∥
X∗

> 1.

Thus the restriction on the absolute values of minors of (3.1) implies that {x∗i }n
i=1

is an upper Auerbach basis in X∗. By Proposition 2.4, {xi}n
i=1 is a lower Auerbach

basis in X.

Now we consider the general case. Let Y be an n-dimensional space, and let A be

a non-parallelepipedal MVSE for Y . By [13, Theorem 3] and [12, Lemma 1] there

is a polyhedral space X such that BX ⊃ BY and A is an SE (hence MVSE) for X. By

the first part of the proof there is a lower Auerbach basis {xi}n
i=1 in X such that the

unit ball of the subspace of X spanned by {x1, x2} is linearly equivalent to a regular

hexagon. The basis {xi}n
i=1 is a lower Auerbach basis for Y too. In fact, the spaces

have the same MVSE, hence a minimum-volume parallelepiped containing BX is a

also a minimum-volume parallelepiped containing BY . It remains to show that the

unit ball of the subspace spanned in Y by {x1, x2} is also a regular hexagon.

To achieve this goal we use additional information about the basis {xi} that we get

from the first part of the proof. Namely, we use the observation that the vertices of
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the unit ball of the subspace lin(x1, x2) are: ±x1, ±x2, ±(x1 − x2). So it remains to

show that (x1 − x2) ∈ BY . This has already been done in [13, pp. 617–618].

“If ” part. First we consider the case when X is polyhedral. Suppose that X has

a lower Auerbach basis {xi}n
i=1 and that x1, x2 span a subspace whose unit ball is

linearly equivalent to a regular hexagon. Then the biorthogonal functionals {x∗i }n
i=1

form an upper Auerbach basis in X∗. We join to this sequence all extreme points

of BX∗ . Since X is polyhedral, we get a finite sequence, which we denote by {x∗i }m
i=1.

Then

x 7→ {x∗i (x)}m
i=1

is an isometric embedding of X into ℓm
∞. Writing images of {xi}n

i=1 as columns, we

get a matrix of the form:

(3.2) (bi j) =




1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

bn+1,1 bn+1,2 ∗ . . . ∗
bn+2,1 bn+2,2 ∗ . . . ∗

...
...

...
. . .

...

bm,1 bm,2 ∗ . . . ∗




.

Since {x∗i }n
i=1 is an upper Auerbach basis, absolute values of all minors of this

matrix do not exceed 1.

Now we use fact that the linear span of {x1, x2} is a regular hexagonal space in

order to show that we may assume that at least one of the pairs (bk,1, bk,2) in (3.2) is

of the form (±1,±1). (Sometimes we need to modify the matrix (3.2) to achieve this

goal.)

The definition of the norm on ℓm
∞ implies that there is a 3 × 2 submatrix S of

the matrix (bi, j) (i = 1, . . . ,m, j = 1, 2) whose columns span a regular hexagonal

subspace in ℓ3
∞, and for each α1, α2 ∈ R the equality

(3.3) max
1≤i≤m

|α1bi,1 + α2bi,2| = max
i∈A

|α1bi,1 + α2bi,2|

holds, where A is the set of labels of rows of S.

To find such a set S we observe that for each side of the hexagon we can find

i ∈ {1, . . . ,m} such that the side is contained in the set of vectors of ℓm
∞ for which the

i-th coordinate is either 1 or −1 (this happens because the hexagon is the intersection

of the unit sphere of ℓn
∞ with the two dimensional subspace). Picking one side from

each symmetric with respect to the origin pair of sides and choosing (in the way

described above) one label for each of the pairs, we get the desired set A. To see

that it satisfies the stated conditions we consider the operator R : ℓm
∞ → ℓ3

∞ given

by R({xi}n
i=1) = {xi}i∈A. The stated condition can be described as follows: the

restriction of R to the linear span of the first two columns of the matrix (bi j) is an
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isometry. To show this it suffices to show that a vector of norm 1 is mapped to a

vector of norm 1. This happens due to the construction of A.

It is clear from (3.2) that the maximum in the left-hand side of (3.3) is at least

max{|α1|, |α2|}.

Hence at least one of the elements in each of the columns of S is equal to ±1. A

simple variational argument (described below) shows that changing signs in rows of

S, if necessary, we may assume that

(1) either S contains a row of the form (1, 0) or two rows of the forms (1, a) and

(1,−b), a, b > 0;

(2) either S contains a row of the form (0, 1) or two rows of the forms (c, 1) and

(−d, 1), c, d > 0.

Note At this point we allow the change of sign needed for (1) and for (2) to be

different.

The mentioned above variational argument consists of showing that in the cases

when (1) and (2) are not satisfied there are α1, α2 ∈ R such that

max
i∈A

|α1bi,1 + α2bi,2| < max{|α1|, |α2|}.

Let us describe the argument in one of the typical cases (all other cases can be treated

similarly).

Suppose that S is such that all entries in the first column are positive, S contains a

row of the form (1, b) with b > 0, but not a row of the form (1, a) with a ≤ 0 (recall

that absolute values of entries of (3.2) do not exceed 1). It is clear that we get the

desired pair by letting α1 = 1 and choosing α2 < 0 sufficiently close to 0.

The restriction on the absolute values of the determinants implies that if the sec-

ond alternative holds in (1), then a + b ≤ 1, and if the second alternative holds in (2),

then c + d ≤ 1. This implies that the second alternative cannot hold simultaneously

for (1) and (2), and thus, there is a no need for different changes of signs for (1) and

(2).

Therefore it suffices to consider two cases:

(I) The matrix S is of the form




1 0

0 1

u v


 .

(II) The matrix S is of the form

(3.4)




1 0

c 1

−d 1


 .
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Let us show that the fact that the columns of S span a regular hexagonal space

implies that all of its 2× 2 minors have the same absolute values. It suffices to do this

for any basis of the same subspace of ℓ3
∞. The subspace should intersect two adjacent

edges of the cube. Changing signs of the unit vector basis in ℓn
∞, if necessary, we may

assume that the points of intersection are of the forms

(3.5)




1

1

α


 and



β

1

1


 , |α| < 1, |β| < 1.

The points of intersection are vertices of the hexagon. One more vertex of the

hexagon is a vector of the form

(3.6)



−1

γ

1


 , |γ| < 1.

If the hexagon is linearly equivalent to the regular, then all parallelograms determined

by pairs of vectors of the triple described in (3.5) and (3.6) should have equal areas.

Therefore, the determinants of matrices formed by a unit vector and two of the vec-

tors from the triple described in (3.5) and (3.6) should have the same absolute values.

It is easy to see that the obtained equalities imply α = β = 0. The conclusion follows.

In case I the equality of 2 × 2 minors implies that |u| = |v| = 1, and we have

found a (±1,±1) row.

In the case II we derive c + d = 1. Now we replace the element x1 in the basis

consisting of columns of (3.2) by x1 − cx2. It is clear that the sequence we get is still

a basis in the same space, and this modification does not change values of minors of

size at least 2× 2. As for minors of size 1× 1, the only column that has to be checked

is column number 1. Its k-th entry is bk,1 − cbk,2. The condition on 2 × 2 minors

of the original matrix implies that |cbk,2 − bk,1| ≤ 1. The conclusion follows. On

the other hand, in the row (from (3.4)) that started with (−d, 1) we get (−1, 1), and

in the row that started with (c, 1) we get (0, 1). Reordering the coordinates of ℓm
∞ (if

necessary) we get that the space X has a basis of the form

(3.7) (bi j) =




1 0 0 . . . 0

0 1 b2,3 . . . b2,n

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

bn+1,1 bn+1,2 ∗ . . . ∗
bn+2,1 bn+2,2 ∗ . . . ∗

...
...

...
. . .

...

bm,1 bm,2 ∗ . . . ∗




.

satisfying the following conditions:
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(1) The absolute values of all minors do not exceed 1;

(2) |bn+1,1| = |bn+1,2| = 1.

Consider the matrix D obtained from this matrix in the following way: we keep

the values of bn+1,1, bn+1,2, and the entries in the first n rows with the exception of

b2,3, . . . , b2,n, and let all other entries equal 0.

Matrix D satisfies the following condition: if some minor of D is non-zero, then

the corresponding minor of (3.7) is its sign. By the results and the discussion in

[11, 12], the image of Bm
∞ in X whose kernel is the orthogonal complement of D is a

minimal volume projection which is not a parallelepiped. The extension property of

ℓm
∞ implies that this image is an MVSE.

To prove the result for a general, not necessarily polyhedral, space X, consider

the following polyhedral space Y : its unit ball is the intersection of the parallelepiped

corresponding to a lower Auerbach basis {xi} of X with whose half-spaces, which cor-

respond to supporting hyperplanes to BX at midpoints of sides of the regular hexagon

that is the intersection of BX with the linear span of x1, x2. As we have just proved

the space Y has a non-parallelepipedal MVSE. Since there is a minimal-volume par-

allelepiped containing BX that contains BY , each MVSE for Y is an MVSE for X.

Remark Theorem 3.1 solves Problem 6 posed in [14, p. 118].

4 Comparison of the Class of Spaces Having Non-Parallelepipedal
MVSE with Different Classes of Banach Spaces

4.1 MVSE for ℓn
1

Our first purpose is to apply Theorem 3.1 in order to analyze MVSE’s of classical poly-

hedral spaces. For ℓn
∞ the situation is quite simple: their unit balls are parallelepipeds

and are the only MVSE for ℓn
∞. It turns out that the space ℓ3

1 has non-parallelepipedal

MVSE, and that for many other dimensions parallelepipeds are the only MVSE’s for

ℓn
1 . To find more on the problem of characterizing n for which the space ℓn

1 has non-

parallelepipedal MVSE, one has to analyze known results on the Hadamard maximal

determinant problem. See [8] for some such results and related references. In this

paper we make only two simple observations.

Proposition 4.1 If n is such that there exists a Hadamard matrix of size n × n, then

each MVSE for ℓn
1 is a parallelepiped.

Proof Each upper Auerbach basis for ℓn
∞ in such dimensions consists of columns

of Hadamard matrices. Hence their biorthogonal functionals are also (properly nor-

malized) Hadamard matrices. It is easy to see that any two of them span a subspace

in ℓn
1 isometric to ℓ2

1.

Proposition 4.2 The three-dimensional space ℓ3
1 has a non-parallelepipedal MVSE.

Proof The columns of the matrix



1 1 1

1 1 −1

1 −1 1



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form an upper Auerbach basis in ℓ3
∞. The columns of the matrix




0 1
2

1
2

1
2

0 − 1
2

1
2

− 1
2

0




form a biorthogonal system of this upper Auerbach basis. It is easy to check that

the first two vectors of the biorthogonal system span a regular hexagonal subspace

in ℓ3
1.

4.2 The Shape of MVSE and Presence of a 1-Complemented Regular Hexagonal
Space

It would be useful to characterize spaces having non-parallelepipedal MVSE’s in

terms of their complemented subspaces. The purpose of this section is to show that

one of the most natural approaches to such a characterization fails. More precisely,

we show that the presence of a 1-complemented subspace whose unit ball is linearly

equivalent to a regular hexagon neither implies nor follows from the existence of a

non-parallelepipedal MVSE.

Proposition 4.3 There exist spaces having 1-complemented subspaces whose unit balls

are regular hexagons but such that each of their MVSE’s is a parallelepiped.

Proof Let X be the ℓ1-sum of a regular hexagonal space and a one-dimensional

space.

(1) The unit ball of the space does not have other sections linearly equivalent to reg-

ular hexagons. This statement can be proved using the argument presented im-

mediately after equation (3.6).

(2) Assume that the vertices of BX have coordinates

±(0, 0, 1), ±(1, 0, 0), ±( 1
2
,±

√
3

2
, 0).

Denote by H the hyperplane containing (1, 0, 0) and (0, 1, 0). We show that a

lower Auerbach basis cannot contain two vectors in H.

In fact, an easy argument shows that the volume of a parallelepiped of the form

M({xi}3
i=1) containing BX and such that x1, x2 ∈ H is at least 4

√
3. On the other

hand, it is easy to check that the volume of a minimal-volume parallelepiped con-

taining BX is ≤ 2
√

3.

Remark The argument of [12, pp. 393–395] implies that ℓ∞-sums of a regular

hexagonal space and any space have non-parallelepipedal MVSE’s.

Proposition 4.4 The existence of a lower Auerbach basis with two elements spanning

a regular hexagonal subspace does not imply the presence of a 1-complemented regular

hexagonal subspace.
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Proof Consider the subspace X of ℓ4
∞ described by the equation x1 +x2 +x3 +x4 = 0.

The fact that this space has a non-parallelepipedal MVSE follows immediately from

the fact that the columns of the matrix



1 0 0

0 1 0

0 0 1

−1 −1 −1




form a lower Auerbach basis in X (see the argument after equation (3.1)) and any two

of them span a subspace whose unit ball is linearly equivalent to a regular hexagon.

So it remains to show that the space X does not have 1-complemented subspaces

linearly equivalent to a regular hexagonal space. It suffices to prove the following

two claims. By a support of a vector in ℓm
∞ we mean the set of labels of its non-zero

coordinates.

Claim 1 The only two-dimensional subspaces of X that have balls linearly equiva-

lent to regular hexagons are the spaces spanned by vectors belonging to X and having

intersecting two-element supports.

Claim 2 Two-dimensional subspaces satisfying the conditions of Claim 1 are not

1-complemented in X.

Proof of Claim 1 Consider a two-dimensional subspace H of X. It is easy to check

that if the unit ball of H is a hexagon, then each extreme point of the hexagon is of

the form: two coordinates are 1 and −1, the remaining two are α and −α for some α

satisfying |α| ≤ 1. Two different forms cannot give the same extreme point unless the

corresponding value of α is ±1. Also two points of the same type cannot be present

unless the corresponding values of α are +1 and −1. Since BH is a hexagon, there are

3 pairs of extreme points. First we consider the case when none of αi , i = 1, 2, 3,

corresponding to an extreme point is ±1. Then ±1 either form a cycle or a chain in

the sense shown in (4.1):

(4.1)




1 α2 −1

−1 1 α3

α1 −1 1

−α1 −α2 −α3


 or




1 α2 α3

−1 1 −α3

α1 −1 1

−α1 −α2 −1


 .

If they form a cycle, by considering determinants (as after (3.6)) with other unit

vectors, we get that all involved αi are zeros. Thus we get a subspace of the form

described in the statement of the lemma.

We show that ±1 cannot form a chain as in the second matrix in (4.1) by showing

that in such a case they cannot be linearly dependent. In fact, multiplying the first

column by α3 and subtracting the resulting column from the third column we get




1 α2 0

−1 1 0

α1 −1 1 − α1α3

−α1 −α2 −1 + α1α3


 .
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It is clear that this matrix has rank 3.

It remains to consider the case when all of the coordinated of some of the extreme

points are ±1. Assume without loss of generality that one of the extreme points is

(1, 1,−1,−1). If there is one more ±1 extreme point (different from (−1,−1, 1, 1)),

the section is a parallelogram.

If the other extreme point is not a ±1 point, then it has both +1 and −1 either

in the first two positions or in the last two positions (otherwise it is not an extreme

point). In this case the section is also a parallelogram, because the norm on their

linear combinations is just the ℓ1-norm.

This completes the proof of Claim 1.

Proof of Claim 2 In fact, assume without loss of generality that we consider a two

dimensional subspace spanned by the vectors



1

−1

0

0


 and




0

1

−1

0


 .

We need to show that there is no vector in this subspace such that projecting the

vector 


0

0

1

−1




onto it we get a projection of norm 1 on X. Assume the contrary. Let



a

b − a

−b

0




be the desired vector. The condition that the images of the vectors



1

−1

±1

∓1




under the projection are vectors of norm ≤ 1 immediately implies that a = (b−a) =

0. hence a = b = 0. Now we get a contradiction by projecting the vector



1

1

−1

−1


 ;

its image has norm 2.

This completes the proof of Claim 2 and Proposition 4.4.
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