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On Projectively Flat (α, β)-metrics

Zhongmin Shen

Abstract. The solutions to Hilbert’s Fourth Problem in the regular case are projectively flat Finsler

metrics. In this paper, we consider the so-called (α, β)-metrics defined by a Riemannian metric α and

a 1-form β, and find a necessary and sufficient condition for such metrics to be projectively flat in

dimension n ≥ 3.

1 Introduction

Projectively flat Finsler metrics on a convex open set in Rn are the solutions to

Hilbert’s Fourth Problem. Beltrami’s theorem tells us that a Riemannian metric is

locally projectively flat if and only if it is of constant sectional curvature. For Finsler
metrics, the flag curvature is a natural extension of the sectional curvature. However

the situation is much more complicated. It is well known that every locally projec-
tively flat Finsler metric is of scalar flag curvature, namely, the flag curvature is a

scalar function on the tangent bundle, which might not necessarily be constant as in

the Riemannian case. Thus locally projectively flat Finsler metrics form a rich class of
Finsler metrics. Below are two important examples defined by a Riemannian metric

and a 1-form on the unit ball Bn ⊂ Rn: Let

ᾱ =

√

(1 − |x|2)|y|2 + 〈x, y〉2

1 − |x|2 ,

β̄ =
〈x, y〉

1 − |x|2 +
〈a, y〉

1 + 〈a, x〉 ,

λ =
(1 + 〈a, x〉)2

1 − |x|2 ,

where a ∈ Rn is a constant vector with |a| < 1. Then

(a) F̄ := ᾱ + β̄ is projectively flat on the unit ball Bn(1) ⊂ Rn with constant flag

curvature K = −1/4 (see [8]).
(b) F := (α + β)2/α, where α = λᾱ and β = λβ̄, is projectively flat on the unit ball

Bn(1) ⊂ Rn with zero flag curvature K = 0 (see [6]).

These two examples inspire us to study projectively flat Finsler metrics F = αφ(β/α)

defined by a Riemannian metric α and a 1-form β. Metrics in this form are called

(α, β)-metrics. When φ = 1 + s, we get Randers metrics F = α + β. Randers metrics
are the simplest (α, β)-metrics.
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On Projectively Flat (α, β)-metrics 133

It is well known that a Randers metric F = α + β is locally projectively flat if and
only if α is locally projectively flat and β is closed (see [1, 3]). For a general (α, β)-

metric F = αφ(β/α), if β is parallel with respect to α, then F is locally projectively
flat if and only if α is locally projectively flat. This can be easily seen from (2.3) below.

The main purpose of this paper is to study and characterize locally projectively flat

(α, β)-metrics which are not of Randers type.

Theorem 1.1 Let F = αφ(s), s = β/α, be an (α, β)-metric on an open subset U in

the n-dimensional Euclidean space Rn (n ≥ 3), where φ(0) = 1, α =
√

ai j(x)yi y j and

β = bi(x)yi 6= 0. Let b := ‖βx‖α. Suppose that the following conditions hold:

(a) β is not parallel with respect to α;

(b) F is not in the form F =
√

α2 + kβ2 + ǫβ for some constants k and ǫ;

(c) db 6= 0 everywhere or b = constant on U.

Then F is projectively flat on U if and only if

{

1 + (k1 + k2s2)s2 + k3s2
}

φ′ ′(s) = (k1 + k2s2)
{

φ(s) − sφ′(s)
}

,(1.1)

bi| j = 2τ
{

(1 + k1b2)ai j + (k2b2 + k3)bib j

}

,(1.2)

Gi
α = ξyi − τ

(

k1α
2 + k2β

2
)

bi ,(1.3)

where τ = τ(x) is a scalar function on U and k1, k2 and k3 are constants with

(k2, k3) 6= (0, 0).

When (k2, k3) = (0, 0), the solution φ of (1.1) with φ(0) = 1 is given by

φ(s) =

√

1 + k1s2 + ǫs,

where ǫ is a constant. The (α, β)-metric defined by φ is of Randers type

F =

√

α2 + k1β2 + ǫβ.

For the above metric with ǫ 6= 0, it is projectively flat if and only if β is closed and

α̃ :=
√

α2 + k1β2 is projectively flat, in other words, β is closed and α can be ex-

pressed as α =
√

α̃2 − k1β2 where α̃ is projectively flat. We do not consider this case
in Theorem 1.1.

Consider the following functions:

φ = es + ǫs, φ =
1

1 − s
+ ǫs,

where ǫ is a constant. Clearly, they do not satisfy (1.1). Thus F = α exp(β/α) + ǫβ
(the exponential metric) and F = α2/(α − β) + ǫβ (the Matsumoto metric) are
projectively flat on U if and only if β is parallel with respect to α (Cf. [10], [5]).

We conjecture that these metrics are of scalar flag curvature if and only if α is of

constant sectional curvature and β is parallel with respect to α. On the other hand,
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134 Z. Shen

there are many functions φ satisfying (1.1) for some constants ki . Below are the most
important ones.

(1.4)

φ = 1 + s, φ = 1 + ǫs + s2,

φ = 1 + ǫs + s arctan(s), φ = 1 + ǫs + 2s2 − 1

3
s4,

where ǫ is a constant. See [6] and [9] for the metrics defined by φ = 1 + ǫs + s2, [11]

for the metrics defined by φ = 1 + ǫs + s arctan(s), and [7] for the metrics defined by
φ = 1 + ǫs + 2s2 − 1

3
s4.

Corollary 1.2 If φ satisfies

(1.5) φ(s) − sφ′(s) = (p + rs2)φ′ ′(s),

where p 6= 0, r are constants, then it satisfies (1.1) with k1 = 1/p, k2 = 0 and k3 =

(r − 1)/p. In this case, F = αφ(β/α) is projectively flat if and only if there is a scalar

function τ = τ(x) such that

bi| j =
2τ

p

{

(p + b2)ai j + (r − 1)bib j

}

,(1.6)

Gi
α = ξyi − τ

p
α2bi .(1.7)

This corollary slightly generalizes the theorem in [2], where the authors assume

that φ = φ(s) is analytic in s. The functions in (1.4) are particular solutions of (1.5).

For these functions, one can find some special non-trivial solutions to (1.6) and (1.7).
If φ = φ(s) satisfies (1.5) with r 6= 0, then the (α, β)-metric

F :=
(

1 − r

p
|x|2

)− 1
2r |y|φ

( 〈x, y〉
|y|

√

1 − r
p
|x|2

)

is projectively flat on a ball around the origin in Rn. However, so far, we do not have

any explicit examples satisfying (1.1)–(1.3) with k2 6= 0.

2 Preliminaries

Consider a Finsler metric F = F(x, y) on an open domain U ⊂ Rn. The geodesics of

F satisfy the following equations:

d2xi

dt2
+ 2Gi

(

x,
dx

dt

)

= 0,

where Gi
= Gi(x, y) are called the geodesic coefficients of F, which are given by

Gi
=

1

4
g il

{

[F2]xm yl ym − [F2]xl

}

.
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F is said to be projectively flat in U if all geodesics are straight lines. This is equivalent
to saying that the geodesic coefficients Gi of F take the following form

(2.1) Gi
= P(x, y)yi.

There is another system of equations that characterizes projectively flat metrics. Ac-
cording to G. Hamel [4], F is projectively flat if and only if it satisfies

(2.2) Fxm yl ym − Fxl = 0.

In the study of projectively flat (α, β)-metrics, (2.2) is more useful than (2.1).
Let φ = φ(s), |s| < bo, be a positive C∞ function satisfying the following

φ(s) − sφ′(s) + (ρ2 − s2)φ′ ′(s) > 0, (|s| ≤ ρ < bo),

Let α =
√

ai j yi y j be a Riemannian metric and β = bi yi a 1-form on a manifold
M. Assume that ‖βx‖α < bo, then the scalar function F := αφ(s), s = β/α, is a

Finsler metric which is called an (α, β)-metric. (α, β)-metrics form a special class of
Finsler metrics. Most important, they are “computable” although the computation

sometimes runs into very complicated situations.

Let ∇β = bi| jdxi ⊗ dx j denote covariant derivative of β with respect to α. Let

ri j :=
1

2
(bi| j + b j|i), si j :=

1

2
(bi| j − b j|i ), s j := b jsi j .

We can express the geodesic coefficients Gi of F in terms of the geodesic coefficients

Gi
α of α and the covariant derivatives of β.

(2.3) Gi
= Gi

α + Pyi + Qi ,

where

P = α−1
Θ(−2αQs0 + r00),

Qi
= αQsi

0 + Ψ(−2αQs0 + r00)bi,

and

Θ =
φφ′ − s(φφ′ ′ + φ′φ′)

2φ
(

(φ − sφ′) + (b2 − s2)φ′ ′
) ,

Q =
φ′

φ − sφ′
,

Ψ =
1

2

φ′ ′

(φ − sφ′) + (b2 − s2)φ′ ′
.

We have the following trivial lemmas.
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Lemma 2.1 If φ(0) = 1 and Q = k1s, where k1 is independent of s, then φ =√
1 + k1s2.

Lemma 2.2 If φ(0) = 1 and 2Ψ = k1/(1 + k1b2), where k1 is a number independent

of s, then φ =
√

1 + k1s2 + ǫs, where ǫ is a number independent of s.

By (2.2), one can easily get the following.

Lemma 2.3 (see [9]) An (α, β)-metric F = αφ(s), where s = β/α, is projectively

flat on an open subset U ⊂ Rn if and only if

(2.4) (amlα
2 − ym yl)Gm

α + α3Qsl0 + Ψα(−2αQs0 + r00)(blα − syl) = 0,

where yl := alm ym.

To simplify equation (2.4), we shall prove the following

Theorem 2.4 Let F = αφ(s), s = β/α, be an (α, β)-metric on an open subset

U ⊂ Rn, where α =
√

ai j(x)yi y j and β = bi(x)yi . Suppose that

(a) β is not parallel everywhere;

(b) F is not of Randers type at any point x ∈ U;

(c) either db 6= 0 everywhere or b = constant 6= 0 on U .

Then F is projectively flat if and only if the function φ = φ(s) satisfies

φ′ ′

(φ − sφ′) + (b2 − s2)φ′ ′
=

λs2 + µ(b2 − s2)

δs2 + η(b2 − s2)
,(2.5)

dβ = 0,(2.6)

r00 = 2τ
{

δβ2 + η(b2α2 − β2)
}

,(2.7)

Gi
α = ξyi − τ

(

λβ2 + µ(b2α2 − β2)
)

bi ,(2.8)

where λ, µ, δ, η and τ are scalar functions on U , with δ = 0 if b is constant.

3 The 1-form β is closed

In this section, we are going to prove the following

Lemma 3.1 Suppose that Q/s is not independent of s. If an (α, β)-metric F = αφ(s),

s = β/α, is projectively flat on an open subset in U in Rn (n > 2) and β 6= 0, then β is

closed.

Proof Let F = αφ(β/α) be a projectively flat (α, β)-metric on U, namely, its geode-

sics are straight lines. Fix an arbitrary point xo ∈ U ⊂ Rn. There is an affine
transformation ϕ = Au + xo : (ui) ∈ Rn → (xi) ∈ Rn such that ϕ(0) = xo and

αxo
=

√

ai jviv j , and βxo
= biv

i at u = 0 are given by

ai j = δi j, bi = boδ1i,
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where bo := ‖βxo
‖α 6= 0. The above identities hold only at u = 0. Since ϕ is affine,

in the new coordinate system (ui) the geodesics of F = F(u, v) are still straight lines.

Thus (2.4) holds for F with (ui, vi) in place of (xi, yi ). At u = 0, we have

(3.1) (δmlα
2 − vmvl)Gm

α + α3Qsl0 + Ψα(−2αQs0 + r00)(blα − svl) = 0,

where vl := δlmvm.

With xo fixed, we make another change of coordinates: (s, va) → (vi) by

v1
=

s√
b2 − s2

ᾱ, va
= va,

where

ᾱ :=

√

n
∑

a=2

(va)2.

Then

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ.

Let

r̄10 :=

n
∑

a=2

r1ava, r̄00 :=

n
∑

a,b=2

rabvavb,

s̄10 =

n
∑

a=2

s1ava, s̄0 :=

n
∑

a=2

sava.

Note that
s̄0 = bs̄10, s1 = bs11 = 0.

Express

Gi
α =

1

2
Gi

jkv jvk, Gi
jk = Gi

k j.

Let

Ḡa
10 = Ga

1bvb, Ḡ0
10 = Ḡ0

01 = Ga
1bvavb, Ḡ0

00 = Ga
bcvavbvc,

where va = δabvb.

Plugging the above identities into (3.1) we get a system of equations in the form

Φl + Ψlᾱ = 0,

where Φl and Ψl are polynomials in va. We must have

Φl = 0, Ψl = 0.

For l = 1, by (3.1) we get

sḠ0
00 = −sC̄0ᾱ

2 +
{

bQBs̄10 + 2sĀ10

}

ᾱ2,(3.2)

s2A11ᾱ
2 − 2s2Ḡ0

10 + (b2 − s2)Ā00 = 0.(3.3)
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For l = a, 2 ≤ a ≤ n, we get from (3.1) that

sḠa
00 = −sCaᾱ

2 + {2sĀ10 + bQBs̄10}va,(3.4)

{2sb2Ḡa
10 − s3A11va + b3Qs̄a0}ᾱ2

= s(b2 − s2){2Ḡ0
10 + Ā00}va.(3.5)

Here

Ai j := G1
i j + bΨri j , Γ := 1 − 2Ψb2, Ca =

s

b2 − s2
{Ga

11s − bQs1a}.

C̄0 = Cava, Ā10 = A1ava, Ā00 = Aabvavb.

Note that contracting (3.4) with va yields (3.2) and contracting (3.5) with va yields
(3.3). We can use (3.3) to eliminate A11 and A00 in (3.5).

(3.6) (2sḠa
10 + bQs̄a0)ᾱ2

= 2sḠ0
10va.

Dividing (3.6) by 2s yields

(3.7)
(

Ḡa
10 +

bQ

2s
s̄a0

)

ᾱ2
= Ḡ0

10va.

Note that except for bQ/(2s), other terms in (3.7) are independent of s . By assump-

tion, Q/s is not independent of s. We conclude that s̄a0 = 0, i.e.,

(3.8) sab = 0.

In this case, (3.7) is reduced to

(3.9) Ḡa
10ᾱ

2
= Ḡ0

10va.

Differentiating (3.4) with respect to vb and vc , we get

(3.10) 2sGa
bc = −2sCaδbc +

{

(2sA1b + bQΓs1b)δa
c + (2sA1c + bQΓs1c)δ

a
b

}

.

Taking trace in (3.10) over a = b = 2, . . . , n yields

(3.11) 2sA1c + bQΓs1c =
2s

n
{Gm

mc + Cc}.

Plugging (3.11) into (3.10), we get

(3.12) Ga
bc −

1

n
{Gm

mbδ
a
c + Gm

mcδ
a
b} = −Caδbc +

1

n
{Cbδ

a
c + Ccδ

a
b}.

By assumption, n > 2. For any 2 ≤ a ≤ n, one can take b = c 6= a. In this

case, (3.12) becomes Ga
bc = −Ca. Note that Ca = 0 at s = 0. We get Ga

bc = 0

(b = c 6= a). Thus Ca = 0, (|s| ≤ b) By the definition of Ca, we get Ga
11 − bQ

s
s1a = 0.

By assumption, Q/s is not independent of s, we conclude that

(3.13) s1a = 0.

In this case, we also have

(3.14) Ga
11 = 0.

Since s11 = 0, it follows from (3.8) and (3.13) that si j = 0.
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4 Determining ri j and Gi
α

In this section, we are going to derive two formulas for ri j and Gi
α. We shall always

assume that

(a) F is projectively flat on U;
(b) F is not of Randers type at any point;

(c) b 6= 0 at any point;
(d) db 6= 0 at any point or b = constant ;

(e) β is not parallel everywhere.

We continue to use the coordinate system (ui, vi) at u = 0. Express α =
√

ai jviv j

and β = biv
i . We have at u = 0, ai j = δi j , bi = bδ1i .

In the previous section, we have shown that Ca = 0 and s1b = 0 under the as-
sumption that n ≥ 3. Now (3.10) is reduced to

(4.1) Ga
bc = A1bδ

a
c + A1cδ

a
b .

We can rewrite (4.1) as

(4.2) Ga
bc − (G1

1bδ
a
c + G1

1cδ
a
b) = bΨ(r1bδ

a
c + r1cδ

a
b).

Note that the left side is independent of s. If r1c 6= 0 for some 2 ≤ c ≤ n, then
bΨ is independent of s. We can express Ψ as 2Ψ =

k1

1+k1b2 where k1 is a number

independent of s. By Lemma 2.2, φ is given by φ =
√

1 + k1s2 + ǫs, where ǫ is a
number independent of s. This case is excluded in the theorem. Thus we conclude

that

(4.3) r1b = 0.

Then (4.2) is further reduced to the following

(4.4) Ga
bc − (G1

1bδ
a
c + G1

1cδ
a
b) = 0.

It follows from (3.3) that

(4.5) s2{G1
11δab − (Ga

1b + Gb
1a)} + (b2 − s2)G1

ab = −bΨ{s2r11δab + (b2 − s2)rab}.

Case I db 6= 0 at u = 0. Observe that at u = 0,

[b2]u j = 2bibi| j = 2biri j + 2bisi j = 2br1 j = 2br11δ1 j .

Thus r11 6= 0. By (4.5), there are numbers λ, µ, δ 6= 0 and η independent of s such

that

(4.6) 2Ψ =
λs2 + µ(b2 − s2)

δs2 + η(b2 − s2)
.
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Actually, we may take

δ = −br11, η = −br22, λ =
1

2
(G1

11 − 2G2
12), µ =

1

2
G1

22.

Plugging (4.6) into (4.5) yields

δ
{

G1
11δab − (Ga

1b + Gb
1a)

}

= −bλ

2
r11δab

δG1
ab + η

{

G1
11δab − (Ga

1b + Gb
1a)

}

= −bµ

2
r11δab −

bλ

2
rab

ηG1
ab = −bµ

2
rab.

Let τ be a number such that r11 = 2b2δτ . If µδ − ηλ = 0, then 2Ψ = λ/δ is

independent of s. We can express Ψ as 2Ψ = k1/(1 + k1b2) where k1 is a number

independent of s. Then φ =
√

1 + k1s2 + ǫs, where ǫ is a number independent of s.
This is the case excluded in the theorem. Therefore we conclude that µδ − ηλ 6= 0.

By this fact, we get from the above linear system that

rab = 2b2ητδab,(4.7)

G1
ab = −b3µτδab,(4.8)

G1
11δab − (Ga

1b + Gb
1a) = −b3λτδab,(4.9)

Contracting (4.9) with va and vb yields Ḡ0
10 =

1
2
(G1

11 + b3λτ)ᾱ2 . Plugging it into (3.9)

gives Ḡa
10 =

1
2
(G1

11 + b3λτ)va. Differentiating the above identity with respect to vb,

we get

(4.10) Ga
1b =

1

2
(G1

11 + b3λτ)δa
b .

Finally, let us summarize what we have proved so far:

s11 = 0, sab = 0, s1a = 0.(4.11)

r11 = 2b2δτ, rab = 2b2ητδab, r1a = 0.(4.12)

It is easy to see that (4.11) is equivalent to si j = 0, and (4.12) is equivalent to ri j =

2τ{δbib j + η(b2δi j − bib j)}. The above identities hold in (ui) at u = 0. Back to the
local system (xi) at xo, we get ri j = 2τ{δbib j + η(b2ai j − bib j)} . By (3.14), (4.4),

(4.8) and (4.10), we get

Ga
11 = 0, G1

ab = −b3µτδab,

G1
11 = k1 − b3µτ, Ga

1b =
1

2
k1δ

a
b , G1

1a = ka, Ga
bc = kbδ

a
c + kcδ

a
b ,

where ki are numbers independent of s. It is easy to verify that the above identities
are equivalent to Gi

α = ξvi − τ{λβ2 + µ(b2α2 − β2)}bi , where ξ = k jv
j . The above

identities hold in (ui , vi) at u = 0. Clearly, Gi
α take the same form in (xi , yi) at xo

(hence at any point x since xo is chosen arbitrarily).
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Case II b 6= 0 is constant. In this case, r11 = 0. We have proved that si j = 0 and
r1a = 0. Since we assume that β is not parallel, (rab) 6= 0. By (4.5), there are numbers

λ, µ and η 6= 0 independent of s such that

(4.13) 2Ψ =
λs2 + µ(b2 − s2)

η(b2 − s2)
.

Plugging (4.13) into (4.5) yields

G1
ab = −bµ

2η
rab,(4.14)

G1
11δab − (Ga

1b + Gb
1a) = −bλ

2η
rab.(4.15)

In this case, there is no restriction on rab.

Contracting (4.15) with va and vb, we obtain that

(4.16) Ḡ0
10 =

1

2

(

G1
11ᾱ

2 +
bλ

2η
r̄00

)

.

Plugging (4.16) into (3.9) yields

(4.17)
(

Ḡa
10 −

1

2
G1

11va
)

ᾱ2
=

bλ

4η
r̄00va.

By (4.17), there is a number τ independent of s such that

(4.18) rab = 2b2τηδab,

and Ga
1b =

1
2
(G1

11 + b3λτ)δa
b .

It follows from the fact r11 = 0, (4.3) and (4.18) that ri j = 2τη(b2δi j − bib j).

Plugging (4.18) into (4.14) and (4.15) yields

G1
ab = −b3µτδab,(4.19)

G1
11δab − (Ga

1b + Gb
1a) = −b3λτδab.(4.20)

Contracting (4.20) with va and vb yields Ḡ0
10 =

1
2
(G1

11 + b3λτ)ᾱ2. Plugging it into

(3.9) gives Ḡa
10 =

1
2
(G1

11 + b3λτ)va . Differentiating the above identity with respect to

vb, we get

(4.21) Ga
1b =

1

2
(G1

11 + b3λτ)δa
b .

It follows from (4.4) and (4.21) that there are numbers k1 and ka such that

G1
11 = k1 − b3λτ, Ga

1b =
1

2
k1δ

a
b, G1

1a = ka, Ga
bc = kbδ

a
c + kcδ

a
b.

Together with (3.14) and (4.19) we get Gi
α = ξvi − τ(λβ2 + µ(b2α2 − β2))bi ,where

ξ = ki v
i .
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5 The Equation on φ

To prove Theorem 1.1, we consider

(5.1) 2Ψ =
φ′ ′(s)

φ(s) − sφ′(s) + (b2 − s2)φ′ ′(s)
=

λs2 + µ(b2 − s2)

δs2 + η(b2 − s2)
,

where λ, µ, δ and η are scalar functions with (λ, µ) 6= (0, 0) and (δ, η) 6= (0, 0),
possibly depending on b = ‖βx‖α.

Lemma 5.1 Assume that φ = φ(s) with φ(0) = 1 and b 6= 0 satisfies (5.1). Then

φ(3)(0) = φ(5)(0) = 0 and one of the following holds:

(i) φ(4)(0) + 3(φ′′(0))2 6= 0 and

(5.2)
φ′ ′(s)

φ(s) − sφ′(s) + (b2 − s2)φ′′(s)
=

k1 + k2s2

1 + k1b2 + k2b2s2 + k3s2
,

where k1 = φ′ ′(0), k2 and k3 are constants depending on φ′ ′(0), φ(4)(0) and

φ(6)(0).

(ii) φ(4)(0) + 3(φ′′(0))2 = 0, and then

(5.3)
φ′ ′(s)

φ(s) − sφ′(s) + (b2 − s2)φ′ ′(s)
=

k1

1 + k1b2
,

where k1 = φ′ ′(0).

The equations (5.2) and (5.3) can be rewritten as one equation independent of b:

{1 + k1s2 + k2s4 + k3s2}φ′ ′(s) = (k1 + k2s2){φ(s) − sφ′(s)}.

Proof Rewrite (5.1) as

(5.4) [δs2 + η(b2 − s2)]φ′ ′
= [λs2 + µ(b2 − s2)][φ − sφ′ + (b2 − s2)φ′ ′].

Let φ = 1 + a1s + a2s2 + a3s3 + a4s4 + a5s5 + a6s6 + a7s7 + o(s7). Plugging the above
Taylor expansion into (5.4), we get some linear equations on λ, µ, δ and η. We can

actually solve these equations for λ, µ, δ and η based on the values of the following
quantities:

a2, 1 + 2a2b2, 2a4 + a2
2.

Case 1 a2 = 0 or a2 = −1/2b2. Then by a comparison on the coefficients of the
polynomials on both sides of (5.4), we conclude that 2a4 + a2

2 6= 0 and

µ = k1ǫ,

η = (1 + k1b2)ǫ,

λ = (k1 + k2b2)ǫ,

δ = (1 + k1b2 + k2b4 + k3b2)ǫ,

https://doi.org/10.4153/CMB-2009-016-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-016-2


On Projectively Flat (α, β)-metrics 143

where ǫ is a number with ǫ 6= 0 and ki are given by

k1 : = 2a2,

k2 : = 2
a4a2

2 − 5a6a2 + 12a2
4

2a4 + a2
2

,

k3 : = −11a4a2 + 5a6 + 3a3
2

2a4 + a2
2

.

In this case,

φ′ ′(s)

φ(s) − sφ′(s) + (b2 − s2)φ′′(s)
=

k1 + k2s2

1 + k1b2 + k2b2s2 + k3s2
.

Case 2 a2 6= 0,−1/2b2 and 2a4 + a2
2 = 0. By a comparison on the coefficients of

the polynomials on both sides of (5.4), we get 2a6 − a3
2 = 0 and

µ = k1ǫ,

η = (1 + k1b2)ǫ,

λ =
k1

1 + k1b2
δ,

where ǫ is a number with ǫ 6= 0 and k1 = 2a2. In this case,

φ′ ′(s)

φ(s) − sφ′(s) + (b2 − s2)φ′ ′(s)
=

k1

1 + k1b2
.

Case 3 a2 6= 0, − 1
2b2 , and 2a4 + a2

2 6= 0. By a comparison on the coefficients of the
polynomials on both sides of (5.4), we still get

µ = k1ǫ,

η = (1 + k1b2)ǫ,

λ = (k1 + k2b2)ǫ,

δ = (1 + k1b2 + k2b4 + k3b2)ǫ,

where ǫ is a number with ǫ 6= 0 and ki are given in Case 1. In this case

φ′ ′(s)

φ(s) − sφ′(s) + (b2 − s2)φ′′(s)
=

k1 + k2s2

1 + k1b2 + k2b2s2 + k3s2
.
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