BOUNDS ON POSITIVE INTEGRAL SOLUTIONS OF LINEAR DIOPHANTINE EQUATIONS II

BY

I. BOROSH* AND L. B. TREYBIG

Abstract. Let A be an $m \times n$ matrix of rank r and B an $m \times 1$ matrix, both with integer entries. Let M_2 be the maximum of the absolute values of the $r \times r$ minors of the augmented matrix (A | B). Suppose that the system Ax = B has a non-trivial solution in nonnegative integers. We prove (1) If r = n - 1 then the system Ax = Bhas a non-negative non-trivial solution with entries bounded by M_2 . (2) If A has a $r \times n$ submatrix such that none of its $r \times r$ minors is 0 and $x \ge 0$ is a solution of Ax = B in integers such that $\sum_{i=1}^{n} x_i$ is minimal, then $\sum_{i=1}^{n} x_i \le (nr + n - r^2)M_2$.

Introduction. In [1] the following problem was considered: Let A be an $m \times n$ matrix, B an $m \times 1$ matrix, both with integral entries, and consider the system of equations:

Ax = B.

Suppose (1) has a non-zero solution in non-negative integers. The problem is to find a bound K = K(A, B) such that the existence of such a solution with entries bounded by K is always guaranteed. The problem first arose in a topological setting [3, 4, 5] and a bounding function K = K(A, B) was found inductively in [5]. Let (A | B) denote the augmented matrix of (1); r denote the rank of A; M₁, M₂ denote, respectively, the maximum of the absolute values of all the minors of order r of A and (A | B); and M the maximum of the absolute values of all the minors of (A | B).

It was conjectured in [1] that if (1) has a non-trivial solution in non-negative integers, then it has one whose entries are bounded by M_2 . The above bound is clearly sharp. The conjecture was proved in [1] only for the case m = 1 and the case in which the homogeneous system Ax = 0 has no non-trivial non-negative solutions. In [2] the conjecture was proved for the homogeneous case. Also in [1], the bound $M_2(1+1/M_1)$ was obtained for the case r = n - 1 and a bound of the order of M^2 was obtained in the general case.

In this paper the conjecture will be proved for the case r = n - 1, and a better bound of the order of M₂ will be obtained in the general case. The main results are:

THEOREM 1. If r = n - 1 and (1) has a non-trivial non-negative solution then it has such a solution with $\max_i x_i \leq M_2$.

Received by the editors August 3, 1977 and in revised form, September 12, 1978.

^{*} This author was partially supported by NSF grant MCS 76-06092.

[September

THEOREM 2. If none of the minors of order r of A is 0 and $x = (x_1, ..., x_n)$ is a non-trivial non-negative solution in integers of (1) such that $\sum_{i=1}^{n} x_i$ is minimum, then $\sum_{i=1}^{n} x_i \leq (nr+n-r^2)M_2$.

Proof of Theorem 1. We may suppose without loss of generality that m = r and that max x_i is a minimum over all such solutions. Also, assume that the variables have been renamed so that $x_1 \le x_2 \le \cdots \le x_{r+1}$ and that $M_2 < x_{r+1}$. We multiply both sides of Ax = B by the adjoint of the matrix A' whose columns are the first r columns of A, and easily derive:

(2)
$$cx_i = -n_i + p_i x_{r+1}, \quad 1 \le i \le r,$$

where each $-n_i$, p_i , c or its negative is the determinant of an $r \times r$ submatrix of $(A \mid B)$. We may assume without loss of generality that $c \ge 0$.

If c = 0, then $-n_i + p_i x_{r+1} = 0$, $1 \le i \le r$. But $p_i = 0$, $1 \le i \le r$, implies the rows of A are not linearly independent, and some $p_i \ne 0$ implies $x_{r+1} \le |n_i|$. Thus c > 0. Also notice that if $x_i = x_{r+1}$ for $i \le r$, then $p_i \ne 0$ since $p_i = 0$ would imply $x_i \le M_2 < x_{r+1}$.

If $p_i < 0$ for some *i*, then (2) implies $cx_i - p_ix_{r+1} = -n_i$, which is impossible since $x_{r+1} > |n_i|$. Thus $p_i \ge 0$, $1 \le i \le r$. If $p_i \le x_i$, $1 \le i \le r$, then $(x_1 - p_1, \ldots, x_r - p_r, x_{r+1} - c)$ is a non-trivial solution with a smaller maximum, a contradiction. Suppose then that $x_i < p_i$.

Now, $x_{r+1} > c$, $x_i < p_i$, and (2) imply:

$$n_i = x_{r+1}p_i - x_ic = x_i(x_{r+1} - c) + (p_i - x_i)x_{r+1} \ge x_{r+1},$$

a contradiction.

COROLLARY. If r = n - 1 and (1) has a solution in integers, then it has a solution in integers such that $\max_i |x_i| \le M_2$.

Proof. Suppose that (1) has a solution in integers x_1, \ldots, x_n and assume $x_1, \ldots, x_k \ge 0$ and $x_{k+1}, \ldots, x_n < 0$. Define

$$y_i = \begin{cases} x_i & i \le k \\ -x_i & i > k \end{cases}$$

Let A be the matrix obtained from A by changing the signs of the columns $k+1, \ldots, n$ of A. Then, the system $\overline{A}x = B$ has the non-trivial solution y and, therefore, by Theorem 1, has a solution bounded by M_2 (since the absolute value of the minors of A and \overline{A} are equal). A solution to (1) is then easily obtained by adjusting the signs.

Proof of Theorem 2. We may assume without loss of generality that r = m and that $x_1 \ge x_2 \ge \cdots \ge x_n$. For $i = 0, 1, \ldots, r$, let S_i denote the set of all $r \times r$

submatrices of A whose first *i* columns coincide with the first *i* columns of A. In particular, S_0 is the set of all $r \times r$ submatrices of A. In particular, S_0 is the set of all $r \times r$ submatrices of A. Let D_i denote the maximum of the absolute values of the determinants of S_i for i = 0, ..., r. We have obviously: $M_1 = D_0 \ge D_1 \ge \cdots \ge D_r$. We now distinguish between two cases:

CASE 1. For every $j, j = 0, \ldots, r-1$, we have

$$(3) x_{i+1} \ge D_i.$$

Let $D = D_r \neq 0$, and assume, without loss of generality that D > 0. Let A' be the submatrix whose columns are the first r columns of A. Solving for x_1, \ldots, x_r we get:

(4)
$$Dx_i = \sum_{k=r+1}^n a'_{ik}x_k + b'_i$$

where a'_{ik} is the determinant of the $r \times r$ submatrix of A obtained from A' by replacing the *i*th column of A by kth column. This submatrix belongs to S_{i-1} and therefore $|a'_{ik}| \leq D_{i-1}$. The term b'_i is the minor obtained by replacing the *i*th column of A' by B. Let v be the largest integer j where $x_{j-1} \geq D$. From (3) we see that $v \geq r+1$. If v > r+1 let p be any integer such that $r+1 \leq p < v$, and let $m_p = \sum_{i=1}^r a'_{ip} + D$. If $m_p \neq 0$, define a new solution y of (1) as follows:

(5)
$$y_{j} = \begin{cases} x_{j} & \text{if } j \ge r+1, \quad j \ne p \\ x_{p} - (\operatorname{sgn} m_{p})D & j = p \\ x_{j} - (\operatorname{sgn} m_{p})a_{jp}' & \text{for } j = 1, \dots, r \end{cases}$$

In (5) sgn $m_p = +1$ if $m_p > 0$ and -1 if $m_p < 0$. It is easily seen from (4) that y is a solution to (1). Since p < v, $x_p \ge D$. So $y_p = x_p - \text{sgn } m_p D \ge 0$. Since $|a'_{ip}| \le D_{i-1}$ and from (3), $x_i \ge D_{i-1}$ we have for $j = 1, ..., r y_j = x_j - (\text{sgn } m_p)a'_{ip} \ge 0$.

$$\sum_{j=1}^{n} y_{j} = \sum_{j=1}^{n} x_{j} - \operatorname{sgn} m_{p} \left(\sum_{j=1}^{r} a_{jp}' + D \right) = \sum_{j=1}^{n} x_{j} - |m_{p}|$$

$$< \sum_{j=1}^{n} x_{j}.$$

This contradicts the minimality of $\sum_{i=1}^{n} x_{i}$. We have therefore $m_{p} = 0$ and:

(6)
$$\sum_{i=1}^{r} a_{ip}' = -D, \qquad p = r+1, \ldots, v-1$$

Summing (4) for $i = 1, \ldots, r$ we get:

(7)
$$D\sum_{i=1}^{r} x_{i} = \sum_{p=r+1}^{\nu-1} \left(\sum_{i=1}^{r} a_{ip}' \right) x_{p} + \sum_{p=\nu}^{n} \left(\sum_{i=1}^{r} a_{ip}' \right) x_{p} + \sum_{i=1}^{r} b_{i}'.$$

Using (6) we get:

$$D\sum_{i=1}^{\nu-1} x_i = \sum_{p=\nu}^{n} \left(\sum_{i=1}^{r} a'_{ip} \right) x_p + \sum_{i=1}^{r} b'_i$$

and since $x_p < D$ for $p \ge v$;

$$\sum_{i=1}^{v-1} x_i \leq (n-v+1)rM_1 + rM_2$$

$$\sum_{i=1}^n x_i \leq ((n-v+1)r + (n-v+1))M_1 + rM_2$$

$$\leq (n-v+1)(r+1)M_1 + rM_2$$

$$\leq (n-r)(r+1)M_1 + rM_2$$

$$\leq (nr+n-r^2)M_2.$$

If v = r + 1, then the first term on the right side of (7) may be replaced by zero.

CASE 2. There exists $j, 0 \le j < r$ such that $x_{j+1} < D_j$. We rename the variables x_{j+1}, \ldots, x_n in such a way that the matrix A' whose columns are the first *r*-columns, has determinant $D = \pm D_j$; and we may assume $D = D_j$. We solve for x_1, \ldots, x_r :

$$Dx_i = \sum_{p=r+1}^n a_{ip}' x_p + b_i'$$

where a'_{ip} and b'_i are minors of A and (A/B) as in Case 1. Since $x_p < D$ for $p = r+1, \ldots, n$ we have $x_i \le (n-r)M_1 + M_2$, $i = 1, \ldots, j$

$$\sum_{i=1}^{n} x_{i} \leq j(n-r)M_{1} + (n-j)M_{1} + jM_{2}$$
$$\leq (j(n-r-1)+n)M_{1} + jM_{2}$$
$$\leq (r+1)(n-r)M_{1} + rM_{2}$$
$$\leq (nr+n-r^{2})M_{2}.$$

REMARK. In the proofs of Theorems 1 and 2 we assume that r = m. In fact, we can choose among the *r*-tuples of rows of $(A \mid B)$ the one for which $M_2 \neq 0$ is minimal.

REFERENCES

1. I. Borosh and L. B. Treybig, Bounds on positive integral solutions of linear diophantine equations, Proceedings of the A.M.S. Vol. 55 Number 2 March 1976, 299-304.

2. I. Borosh, A sharp bound for positive solutions of homogeneous linear diophantine equations, Proceedings of the A.M.S. Vol. 60 October 1976, 19-21.

[September

360

1979]

DIOPHANTINE EQUATIONS

3. W. Haken, Theorie der Normal flacken Acta. Math. 105 (1961), 245-375.

4. H. Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Zeit., 76 (1961), 116-148.

5. L. B. Treybig, Bounds in piecewise linear topology, Trans. Amer. Math. Soc., 201 (1975), 383-405.

DEPARTMENT OF MATHEMATICS TEXAS A & M UNIVERSITY COLLEGE OF SCIENCE COLLEGE STATION, TEXAS 77840