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BOUNDS ON POSITIVE INTEGRAL SOLUTIONS OF 
LINEAR DIOPHANTINE EQUATIONS II 

BY 

I. BOROSH* A N D L. B. TREYBIG 

Abstract. Let A be an m x n matrix of rank r and B an m x 1 
matrix, both with integer entries. Let M2 be the maximum of the 
absolute values of the rxr minors of the augmented matrix (A | JB). 
Suppose that the system Ax = B has a non-trivial solution in non-
negative integers. We prove (1) If r = n - 1 then the system Ax = B 
has a non-negative non-trivial solution with entries bounded by M2. 
(2) If A has a r x n submatrix such that none of its rxr minors is 0 
and x > 0 is a solution of Ax=B in integers such that Zr=i*i is 
minimal, then £T= 1xi^(nr + n-r2)M2. 

Introduction. In [1] the following problem was considered: Let A be an 
mxn matrix, B a n m x l matrix, both with integral entries, and consider the 
system of equations: 

(1) Ax=B. 

Suppose (1) has a non-zero solution in non-negative integers. The problem is 
to find a bound K = K(A, B) such that the existence of such a solution with 
entries bounded by K is always guaranteed. The problem first arose in a 
topological setting [3,4,5] and a bounding function K = K(A, B) was found 
inductively in [5]. Let (A | B) denote the augmented matrix of (1); r denote the 
rank of A ; Mx, M2 denote, respectively, the maximum of the absolute values of 
all the minors of order r of A and (A | B); and M the maximum of the absolute 
values of all the minors of (A | B). 

It was conjectured in [1] that if (1) has a non-trivial solution in non-negative 
integers, then it has one whose entries are bounded by M2. The above bound is 
clearly sharp. The conjecture was proved in [1] only for the case m = 1 and the 
case in which the homogeneous system Ax = 0 has no non-trivial non-negative 
solutions. In [2] the conjecture was proved for the homogeneous case. Also in 
[1], the bound M2(l + l /M^ was obtained for the case r = n -1 and a bound of 
the order of M2 was obtained in the general case. 

In this paper the conjecture will be proved for the case r = n — 1, and a better 
bound of the order of M2 will be obtained in the general case. The main results 
are: 

THEOREM 1. If r = n —1 and (1) has a non-trivial non-negative solution then 
it has such a solution with maxe Xi ^ M 2 . 
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THEOREM 2. If none of the minors of order r of A is 0 and x = ( x 1 ? . . . xn) is a 
non-trivial non-negative solution in integers of (1) such that YA=I

 xi is minimum, 
then YÂ=\ x^inr + n-r2)M2. 

Proof of Theorem 1. We may suppose without loss of generality that m — r 
and that max xt is a minimum over all such solutions. Also, assume that the 
variables have been renamed so that xx ^ x2 ^ • * * ^ xr+l and that M2 < xr+1. We 
multiply both sides of Ax = B by the adjoint of the matrix A' whose columns 
are the first r columns of A, and easily derive: 

(2) cxt = - nt + ptxr+1, 1 < i < r, 

where each — ni9 pi? c or its negative is the determinant of an r x r submatrix of 
(A \B). We may assume without loss of generality that c > 0 . 

If c = 0, then — n{ + PiXr+1 = 0, 1 < i < r. But pt = 0, 1 < i < r, implies the rows 
of A are not linearly independent, and some p ^ O implies x r + 1<|nj | . Thus 
c > 0. Also notice that if x( = xr+1 for i < r, then pt 9^ 0 since Pi = 0 would imply 
x i < M 2 < x r + 1 . 

If P i<0 for some i, then (2) implies cxi—pixr+l= —nh which is impossible 
since x ^ H n j I . Thus Pi>0, l < / < r . If Pi^x i 7 l < / < r , then (x1-p1,..., 
xr — pn xr+l — c) is a non-trivial solution with a smaller maximum, a contradic
tion. Suppose then that Xi<Pi. 

Now, xr+1>c, xt<ph and (2) imply: 

ni=xr+1pi-xic = xi(xr+1-c) + (pi-xi)xr+l>xr+u 

a contradiction. 

COROLLARY. 1/ r = n — l and (1) has a solution in integers, then it has a 
solution in integers such that ma^ |x£ |^M2 . 

Proof. Suppose that (1) has a solution in integers x±,... xn and assume 
x 1 ? . . . , xk > 0 and xk+1,..., xn < 0 . Define 

yi " l-jq î > k 

Let A be the matrix obtained from A by changing the signs of the columns 
k + 1 , . . . , n of A. Then, the system Âx = B has the non-trivial solution y and, 
therefore, by Theorem 1, has a solution bounded by M2 (since the absolute 
value of the minors of A and Â are equal). A solution to (1) is then easily 
obtained by adjusting the signs. 

Proof of Theorem 2. We may assume without loss of generality that r = m 
and that j d > x 2 > - • - ^ x n . For i = 0, 1 , . . . r, let St denote the set of all rXr 
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submatrices of A whose first i columns coincide with the first i columns of A. 
In particular, S0 is the set of all rxr submatrices of A. In particular, S0 is the 
set of all rxr submatrices of A. Let Dt denote the maximum of the absolute 
values of the determinants of St for i = 0 , . . . , r. We have obviously: Mx = D 0 > 
Dx>* • *>D r . We now distinguish between two cases: 

CASE 1. For every j , j = 0 , . . . , r — 1, we have 

(3) x ^ D , . 

Let D = Dr7^0, and assume, without loss of generality that D > 0 . Let A ' be 
the submatrix whose columns are the first r columns of A. Solving for 
xl9..., xr we get: 

(4) DXi= t atek + b'i 
k=r+l 

where a'ik is the determinant of the rxr submatrix of A obtained from A' by 
replacing the ith column of A by kth column. This submatrix belongs to S ^ 
and therefore l a y ^ D ^ . The term b[ is the minor obtained by replacing the 
ith column of A ' by B. Let v be the largest integer / where x ^ > D . From (3) 
we see that u > r + 1 . If t> > r + 1 let p be any integer such that r + 1 < p < v, and 
let mp =Xi=i a'p + D. If mp^O, define a new solution y of (1) as follows: 

(5) y,-H 

x,- if j > r + l, jVp 

xp-(sgnmp)D j = p 

[ x r ( s g n m p ) a j p for j = l , . . . , r 

In (5) sgn mp = + l i f m p > 0 and - 1 if mp < 0. It is easily seen from (4) that y 
is a solution to (1). Since p<v, x p > D . So yp = x p - sgn mpD>0. Since |ajp |< 
Dj_t and from (3), xi>Di_1 we have for / = 1 , . . , r y,- = x,- - (sgn mp)afp>0. 

n n j r \ n 

Z %= Z ^ j - sgnmpfZ < P + D ) = X Xj-lmpl 

n 

< I *,• 
This contradicts the minimality of £ ï x,. We have therefore mp = 0 and: 

r 

(6) I « S p = - A p = r + l , . . . , e - l 
i = l 

Summing (4) for i = 1 , . . . , r we get: 

(7) D I x,= "f ( t a[p)xp+ t ( t aÙx. + t b>. 
i = \ p = r + l \ = 1 ' p=u M = l ' i = l 
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Using (6) we get: 

i = l p = u M = l ' i = l 

and since xp < D for p > u ; 

u - l 

X x i < ( n - u + l)rM1 + rM2 

i = l 

n 

X x i < ( ( n - u + l)r + ( n - u + l))M1 + rM2 
i = l 

< (n - u + l)(r + 1)M! + rM2 

< ( n - r ) ( r + l)M1 + rM2 

< ( w + n - r 2 ) M 2 . 

If v = r + 1 , then the first term on the right side of (7) may be replaced by zero. 

CASE 2. There exists /, 0 < / < r such that x f + 1 <D i . We rename the variables 
xj+1,..., xn in such a way that the matrix A' whose columns are the first 
r-columns, has determinant D = ±Dy; and we may assume D = Dj. We solve 
for xl9..., xr: 

n 

p=r + l 

where a-p and 6- are minors of A and (A/B) as in Case 1. Since xp <D for 
p = r + l , . . . , n we have ^ < ( n - r ) M 1 + M2, i = 1 , . . . , / 

n 

i = l 

< 0'(n - r - 1 ) 4- n)M1 + jM2 

<( r + l ) ( n - r ) M 1 + rM2 

<(nr + n - r 2 ) M 2 . 

REMARK. In the proofs of Theorems 1 and 2 we assume that r = m. In fact, 
we can choose among the r-tuples of rows of (A | B) the one for which M2 ^ 0 
is minimal. 
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