BOUNDS ON POSITIVE INTEGRAL SOLUTIONS OF LINEAR DIOPHANTINE EQUATIONS II

BY
I. BOROSH* AND L. B. TREYBIG

Abstract

Let A be an $m \times n$ matrix of rank r and B an $m \times 1$ matrix, both with integer entries. Let M_{2} be the maximum of the absolute values of the $r \times r$ minors of the augmented matrix $(A \mid B)$. Suppose that the system $A x=B$ has a non-trivial solution in nonnegative integers. We prove (1) If $r=n-1$ then the system $A x=B$ has a non-negative non-trivial solution with entries bounded by M_{2}. (2) If A has a $r \times n$ submatrix such that none of its $r \times r$ minors is 0 and $x \geq 0$ is a solution of $A x=B$ in integers such that $\sum_{i=1}^{n} x_{i}$ is minimal, then $\sum_{i=1}^{n} x_{i} \leq\left(n r+n-r^{2}\right) M_{2}$.

Introduction. In [1] the following problem was considered: Let A be an $m \times n$ matrix, B an $m \times 1$ matrix, both with integral entries, and consider the system of equations:

$$
\begin{equation*}
A x=B \tag{1}
\end{equation*}
$$

Suppose (1) has a non-zero solution in non-negative integers. The problem is to find a bound $K=K(A, B)$ such that the existence of such a solution with entries bounded by K is always guaranteed. The problem first arose in a topological setting $[3,4,5]$ and a bounding function $K=K(A, B)$ was found inductively in [5]. Let $(A \mid B)$ denote the augmented matrix of (1); r denote the rank of $A ; \mathrm{M}_{1}, \mathrm{M}_{2}$ denote, respectively, the maximum of the absolute values of all the minors of order r of A and $(A \mid B)$; and M the maximum of the absolute values of all the minors of $(A \mid B)$.

It was conjectured in [1] that if (1) has a non-trivial solution in non-negative integers, then it has one whose entries are bounded by M_{2}. The above bound is clearly sharp. The conjecture was proved in [1] only for the case $m=1$ and the case in which the homogeneous system $A x=0$ has no non-trivial non-negative solutions. In [2] the conjecture was proved for the homogeneous case. Also in [1], the bound $M_{2}\left(1+1 / M_{1}\right)$ was obtained for the case $r=n-1$ and a bound of the order of M^{2} was obtained in the general case.

In this paper the conjecture will be proved for the case $r=n-1$, and a better bound of the order of M_{2} will be obtained in the general case. The main results are:

Theorem 1. If $r=n-1$ and (1) has a non-trivial non-negative solution then it has such a solution with $\max _{i} x_{i} \leq \mathrm{M}_{2}$.

[^0]Theorem 2. If none of the minors of order r of A is 0 and $x=\left(x_{1}, \ldots x_{n}\right)$ is a non-trivial non-negative solution in integers of (1) such that $\sum_{i=1}^{n} x_{i}$ is minimum, then $\sum_{i=1}^{n} x_{i} \leq\left(n r+n-r^{2}\right) \mathrm{M}_{2}$.

Proof of Theorem 1. We may suppose without loss of generality that $m=r$ and that max x_{i} is a minimum over all such solutions. Also, assume that the variables have been renamed so that $x_{1} \leq x_{2} \leq \cdots \leq x_{r+1}$ and that $\mathrm{M}_{2}<x_{r+1}$. We multiply both sides of $A x=B$ by the adjoint of the matrix A^{\prime} whose columns are the first r columns of A, and easily derive:

$$
\begin{equation*}
c x_{i}=-n_{i}+p_{i} x_{r+1}, \quad 1 \leq i \leq r, \tag{2}
\end{equation*}
$$

where each $-n_{i}, p_{i}, c$ or its negative is the determinant of an $r \times r$ submatrix of $(A \mid B)$. We may assume without loss of generality that $c \geq 0$.

If $c=0$, then $-n_{i}+p_{i} x_{r+1}=0,1 \leq i \leq r$. But $p_{i}=0,1 \leq i \leq r$, implies the rows of A are not linearly independent, and some $p_{i} \neq 0$ implies $x_{r+1} \leq\left|n_{i}\right|$. Thus $c>0$. Also notice that if $x_{i}=x_{r+1}$ for $i \leq r$, then $p_{i} \neq 0$ since $p_{i}=0$ would imply $x_{i} \leq \mathrm{M}_{2}<x_{r+1}$.

If $p_{i}<0$ for some i, then (2) implies $c x_{i}-p_{i} x_{r+1}=-n_{i}$, which is impossible since $x_{r+1}>\left|n_{i}\right|$. Thus $p_{i} \geq 0,1 \leq i \leq r$. If $p_{i} \leq x_{i}, 1 \leq i \leq r$, then $\left(x_{1}-p_{1}, \ldots\right.$, $\left.x_{r}-p_{r}, x_{r+1}-c\right)$ is a non-trivial solution with a smaller maximum, a contradiction. Suppose then that $x_{i}<p_{i}$.

Now, $x_{r+1}>c, x_{i}<p_{i}$, and (2) imply:

$$
n_{i}=x_{r+1} p_{i}-x_{i} c=x_{i}\left(x_{r+1}-c\right)+\left(p_{i}-x_{i}\right) x_{r+1} \geq x_{r+1}
$$

a contradiction.
Corollary. If $r=n-1$ and (1) has a solution in integers, then it has a solution in integers such that $\max _{i}\left|x_{i}\right| \leq \mathrm{M}_{2}$.

Proof. Suppose that (1) has a solution in integers $x_{1}, \ldots x_{n}$ and assume $x_{1}, \ldots, x_{k} \geq 0$ and $x_{k+1}, \ldots, x_{n}<0$. Define

$$
y_{i}=\left\{\begin{array}{rl}
x_{i} & i \leq k \\
-x_{i} & i>k
\end{array}\right.
$$

Let \bar{A} be the matrix obtained from A by changing the signs of the columns $k+1, \ldots, n$ of A. Then, the system $\bar{A} x=B$ has the non-trivial solution y and, therefore, by Theorem 1 , has a solution bounded by M_{2} (since the absolute value of the minors of A and \bar{A} are equal). A solution to (1) is then easily obtained by adjusting the signs.

Proof of Theorem 2. We may assume without loss of generality that $r=m$ and that $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$. For $i=0,1, \ldots r$, let S_{i} denote the set of all $r \times r$
submatrices of A whose first i columns coincide with the first i columns of A. In particular, S_{0} is the set of all $r \times r$ submatrices of A. In particular, S_{0} is the set of all $r \times r$ submatrices of A. Let D_{i} denote the maximum of the absolute values of the determinants of S_{i} for $i=0, \ldots, r$. We have obviously: $\mathrm{M}_{1}=D_{0} \geq$ $D_{1} \geq \cdots \geq D_{r}$. We now distinguish between two cases:

Case 1. For every $j, j=0, \ldots, r-1$, we have

$$
\begin{equation*}
x_{i+1} \geq D_{i} \tag{3}
\end{equation*}
$$

Let $D=D_{r} \neq 0$, and assume, without loss of generality that $D>0$. Let A^{\prime} be the submatrix whose columns are the first r columns of A. Solving for x_{1}, \ldots, x_{r} we get:

$$
\begin{equation*}
D x_{i}=\sum_{k=r+1}^{n} a_{i k}^{\prime} x_{k}+b_{i}^{\prime} \tag{4}
\end{equation*}
$$

where $a_{i k}^{\prime}$ is the determinant of the $r \times r$ submatrix of A obtained from A^{\prime} by replacing the i th column of A by k th column. This submatrix belongs to S_{i-1} and therefore $\left|a_{i k}^{\prime}\right| \leq D_{i-1}$. The term b_{i}^{\prime} is the minor obtained by replacing the i th column of A^{\prime} by B. Let v be the largest integer j where $x_{j-1} \geq D$. From (3) we see that $v \geq r+1$. If $v>r+1$ let p be any integer such that $r+1 \leq p<v$, and let $m_{p}=\sum_{i=1}^{r} a_{i p}^{\prime}+D$. If $m_{p} \neq 0$, define a new solution y of (1) as follows:

$$
y_{j}= \begin{cases}x_{j} \quad \text { if } \quad j \geq r+1, & j \neq p \tag{5}\\ x_{p}-\left(\operatorname{sgn} m_{p}\right) D & j=p \\ x_{j}-\left(\operatorname{sgn} m_{p}\right) a_{i p}^{\prime} \text { for } & j=1, \ldots, r\end{cases}
$$

In (5) $\operatorname{sgn} m_{p}=+1$ if $m_{p}>0$ and -1 if $m_{p}<0$. It is easily seen from (4) that y is a solution to (1). Since $p<v, x_{p} \geq D$. So $y_{p}=x_{p}-\operatorname{sgn} m_{p} D \geq 0$. Since $\left|a_{i p}^{\prime}\right| \leq$ D_{j-1} and from (3), $x_{j} \geq D_{j-1}$ we have for $j=1, \ldots, r y_{j}=x_{i}-\left(\operatorname{sgn} m_{p}\right) a_{j p}^{\prime} \geq 0$.

$$
\begin{aligned}
\sum_{j=1}^{n} y_{j} & =\sum_{j=1}^{n} x_{j}-\operatorname{sgn} m_{p}\left(\sum_{j=1}^{r} a_{i p}^{\prime}+D\right)=\sum_{j=1}^{n} x_{j}-\left|m_{p}\right| \\
& <\sum_{j=1}^{n} x_{j}
\end{aligned}
$$

This contradicts the minimality of $\sum_{1}^{n} x_{j}$. We have therefore $m_{p}=0$ and:

$$
\begin{equation*}
\sum_{i=1}^{r} a_{i \mathrm{p}}^{\prime}=-D, \quad p=r+1, \ldots, v-1 \tag{6}
\end{equation*}
$$

Summing (4) for $i=1, \ldots, r$ we get:

$$
\begin{equation*}
D \sum_{i=1}^{r} x_{i}=\sum_{p=r+1}^{v-1}\left(\sum_{i=1}^{r} a_{i p}^{\prime}\right) x_{p}+\sum_{p=v}^{n}\left(\sum_{i=1}^{r} a_{i p}^{\prime}\right) x_{p}+\sum_{i=1}^{r} b_{i}^{\prime} . \tag{7}
\end{equation*}
$$

Using (6) we get:

$$
D \sum_{i=1}^{v-1} x_{i}=\sum_{p=v}^{n}\left(\sum_{i=1}^{r} a_{i p}^{\prime}\right) x_{p}+\sum_{i=1}^{r} b_{i}^{\prime}
$$

and since $x_{p}<D$ for $p \geq v$;

$$
\begin{aligned}
\sum_{i=1}^{v-1} x_{i} & \leq(n-v+1) r \mathrm{M}_{1}+r \mathrm{M}_{2} \\
\sum_{i=1}^{n} x_{i} & \leq((n-v+1) r+(n-v+1)) \mathrm{M}_{1}+r \mathrm{M}_{2} \\
& \leq(n-v+1)(r+1) \mathrm{M}_{1}+r \mathrm{M}_{2} \\
& \leq(n-r)(r+1) \mathrm{M}_{1}+r \mathrm{M}_{2} \\
& \leq\left(n r+n-r^{2}\right) \mathrm{M}_{2} .
\end{aligned}
$$

If $v=r+1$, then the first term on the right side of (7) may be replaced by zero.
Case 2. There exists $j, 0 \leq j<r$ such that $x_{j+1}<D_{i}$. We rename the variables x_{i+1}, \ldots, x_{n} in such a way that the matrix A^{\prime} whose columns are the first r-columns, has determinant $D= \pm D_{i}$; and we may assume $D=D_{j}$. We solve for x_{1}, \ldots, x_{r} :

$$
D x_{i}=\sum_{p=r+1}^{n} a_{i p}^{\prime} x_{p}+b_{i}^{\prime}
$$

where $a_{i p}^{\prime}$ and b_{i}^{\prime} are minors of A and (A / B) as in Case 1 . Since $x_{p}<D$ for $p=r+1, \ldots, n$ we have $x_{i} \leq(n-r) \mathrm{M}_{1}+\mathrm{M}_{2}, i=1, \ldots, j$

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} & \leq j(n-r) \mathrm{M}_{1}+(n-j) \mathrm{M}_{1}+j \mathrm{M}_{2} \\
& \leq(j(n-r-1)+n) \mathrm{M}_{1}+j \mathrm{M}_{2} \\
& \leq(r+1)(n-r) \mathrm{M}_{1}+r \mathrm{M}_{2} \\
& \leq\left(n r+n-r^{2}\right) \mathrm{M}_{2} .
\end{aligned}
$$

Remark. In the proofs of Theorems 1 and 2 we assume that $r=m$. In fact, we can choose among the r-tuples of rows of $(A \mid B)$ the one for which $M_{2} \neq 0$ is minimal.

References

[^1]3. W. Haken, Theorie der Normal flacken Acta. Math. 105 (1961), 245-375
4. H. Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Zeit., 76 (1961), 116-148.
5. L. B. Treybig, Bounds in piecewise linear topology, Trans. Amer. Math. Soc., 201 (1975), 383-405.

Department of Mathematics
Texas a \& m University
College of Science
College Station, Texas 77840

[^0]: Received by the editors August 3, 1977 and in revised form, September 12, 1978.

 * This author was partially supported by NSF grant MCS 76-06092.

[^1]: 1. I. Borosh and L. B. Treybig, Bounds on positive integral solutions of linear diophantine equations, Proceedings of the A.M.S. Vol. 55 Number 2 March 1976, 299-304.
 2. I. Borosh, A sharp bound for positive solutions of homogeneous linear diophantine equations, Proceedings of the A.M.S. Vol. 60 October 1976, 19-21.
