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Unitary equivalence and reducibility
orinvertibly weighted shifts

Alan Lambert

Let H be a complex Hilbert space and let {4,, 45, ...} be a
uniformly bounded sequence of invertible operators on H . The

operator S on I,(H) =H®H® ... given by
S<-‘CQ, L1 o) = <O, Alxo, Ale, el

is called the invertibly weighted shift on I,(H) with weight

sequence {An} . A matricial description of the commutant of §

is established and it is shown that S is unitarily equivalent
to an invertibly weighted shift with positive weights. After
establishing criteria for the reducibility of S the following
result is proved: Let {B;, By, ...} Dbe any sequence of
operators on an infinite dimensional Hilbert space K . Then
there is an operator T on K such that the lattice of
reducing subspaces of T 1is isomorphic to the corresponding
lattice of the W* algebra generated by {By, By, ...} .
Necessary and sufficient conditions are given for S5 to be

completely reducible to scalar weighted shifts.

1. Introduction

Much attention has been paid recently to shift operators on Hilbert
space. If H is a separable complex Hilbert space with orthonormal basis
{eg, ey, ...} and {a;, a3, ...} 1is a bounded sequence of scalars then

the operator S defined by Sen = Q is called the scalar

n+len+1

weighted shift with weight sequence {an} . Most investigations of shifts
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deal with shifts all of whose weights are non-zero. A natural
generalization of weighted shifts is given by considering the Hilbert
space H@H® ...., denoted by 1,(H) , and the operator S defined by
S(xg, X1, ---)> = (0, A1xg, Apxy, -..) vhere {4y, A2, ...} is a bounded

sequence of operators on H . The shift U, defined in this way with each

An = I , the identity operator on H , is of great interest and importance

originally in investigations of isometries and later in studying general
operators. It seems reasonable then to investigate these more general

weighted shifts. Two difficulties, both avoided by U, , are immediately

apparent. First, for scalar shifts the product of several weights is
independent of order and secondly, if the weights are all non-zero, one may
divide by a weight. When the weights are operators order of multiplication
is important and a non-zero operator need not be invertible. In this paper
only shifts with invertible weights are considered. Commutativity of the

weights is not assumed.

In §2 we establish the notation to be used in the remainder of this
paper and state without proof some easily verified properties of operator
weighted shifts and of operators commuting with such a shift. In §3 we
establish necessary and sufficient conditions for two operator weighted
shifts to be unitarily equivalent. We then show that every shift is
unitarily equivalent to a shift with positive weights. (An operator A is
said to be positive if the associated quadratic form (4z, x) is
positive.) We exhibit two shifts whose weights are pairwise unitarily
equivalent while the shifts are not unitarily equivalent. We also find
necessary and sufficient conditions for an operator weighted shift to have
a reducing subspace and characterize all its reducing subspaces. As an
application we show that the lattice of invariant subspaces of a countably
generated *algebra of operators on an infinite dimensional Hilbert space K
is always isomorphic to the lattice of invariant subspaces of a singly

generated *algebra of operators on K .

We point out now for future reference that a scalar shift may be

thought of as an operator weighted shift on 1,(C)
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2. Preliminaries

Throughout this paper H will denote a complex Hilbert space and

ZQ(H) will be the Hilbert space of all square summable sequences
-] (o)
<xn>n_o, x in H , with inner product ((xn), (yn)) = z (xn, yn) .

o]
When convenient we will write (x ) = z ®x or (x)=A(x., T, «..) .
n =0 n n 0

For any Hilbert space K , L(K) is the algebra of all bounded linear

transformations (operators) from K to K .

For each bounded sequence Al’ A ... of operators on H define the

2’
shift with weight sequence (An) to be the linear transformation S on
Zz(H) given by S(xo, x|, ...) =<0, Alxo, Ale, .. . We will sometimes

write S WV (An) to indicate S 1is the shift with weight sequence (An) .
If S5~ (An) and each An is invertible then we will say S 1is an

invertibly weighted shift. The set of all invertibly weighted shifts on
12(H) is denoted by IW12(H) . Let Sn (An) be in IWZe(H) . Define

the sequence 5., S., 8., ... by S.=1I (the identity operator on H )

0’ "1 "2 0
= > . . .
and Sn AnAn-l e Al s, mZ 1 . We note that each Sn is invertible
and Sn+l = An+lsn . If T is in L(Z2(H)) then T can be represented
(=]

by a matrix ETij] where each Tij is in L(H) . The rules for

1,J=0
adding, multiplying, and forming the adjoints of operator matrices are the
same as in the scalar matrix case. It is also easy to see that

”Tij“ < |7l for each %, § . The following two lemmas are stated without

proof, as their proofs differ only in notation from the proofs in [4] of

the corresponding results for scalar matrices.
LEMMA 2.1. Let S~ (4 ard T v (B,)) be in IWZE(H) and let X

be in L(1,(H)) with matriz [Xij] . Then SX = XT if and only if
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0 for 1 <j,

-1 -1 , .
Sisi-jxi-j,OTj for 7 zg.

LEMMA 2.2. Let S~ <An) be in IWZQ(H) . Then

(¢) {iSll = sup HAkll ;
k

(iZ) the spectral radius, r(S) , of S 4is

-1,1/n
I 3

X +nSk and

limit sup ||S
nre

(1ii) the spectrum of S is {X : |A| = »(S)} . In addition, the
point spectrum of S is empty.

3. Unitary equivalence and reducibility

It is shown in [4] that two scalar weighted shifts are unitarily
equivalent if and only if the n-th weights of the two shifts have the same
modulus for each n ., After establishing some necessary and sufficient

conditions for unitary equivalence of operators in IWZQ(H) we will give

an example of two such shifts whose weights are pairwise unitarily
equivalent but the shifts themselves are not unitarily equivalent. We will

also show that every shift in IWZe(H) is unitarily equivalent to a shift
with positive weights.

LEMMA 3.1, Let S and T be in IWZZ(H) . Then S and T are
unitarily equivalent if and only if there ts a unitary operator U on H

such that TnUs;l is unitary for all n .

Proof. Suppose U and TnUS;1 are unitary for all =n . Let

o)
-1 _ L . .
Vn = TnUSn and V = nzo ® Vn , which is unitary on ZQ(H) . Since

Vv.=U, Vn = TnVOS;l . Thus by Lemma 2.1 {with S and T interchanged)
VS = TV . Conversely, suppose V5 = TV where V is unitary with matrix

(v..] . Then 5SV* = V*T and so by Lemma 2.1 both V and V* are lower
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triangular. (We will say an operator B = Bij] on Z2(H) is lower
triangular if Bij =0 for 1< j .) This implies that V 1is diagonal,
say V = ; G)Vn and each Vn is unitary on H . Moreover,

n=0
Vv =TV S—l as required.
n nQ0n

COROLLARY 3.2. If S~ (An) and T ™ (Bn) are in IWZZ(H) where
each A, and each B, is unitary on H , then § and T are unitarily
equivalent.

Proof. T S7' is unitary for all n . Apply Lemma 3.1 with U= I .

The next corollary seems a reasonable generalization of the equal
modulus condition for equivalence of scalar shifts.

COROLLARY 3.3. Let S and T be in IWZZ(H) . Then S and T
are unitarily equivalent if and only if there is a unitary operator U on
H such that T;TnU = US;Sn for all n .

Proof. If S and T are unitarily equivalent then there is a
unitary operator U on H such that TnUS;l is unitary for all = .

Thus, for each n ,

- - *
I-= [T us 1][1’ us l]
n n n n
= 7 y(s*s ) tusrr
n nn n
so that
it o y(sas ) lus |
n n nn

from which it follows that (T*T JU .= U(S*S ) .
nn nn
Conversely, suppose U is unitary on H and T;THU = US;Sn for all
1/2 1/2 .
= *: = *
n . Let Tn Vﬁ(TnTn) . Sn Wn Snsn) be the polar decompositions

n)1/2 and

of Tn and Sn respectively (see [3, p. 68]). Since (T;T
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1/2 :

# i i mi * *
LSnSn) are the uniform limits of sequences {Pk(TnTn)} and {Pk(snsn)}
respectively where {Pk} is a sequence of polynomials [3, p. 48], it

/2, _ 1/2
follows that (T;Tn) U= U(S;Sn) / » hence

- 1/2
TU =V, (T )

vu(sxs )2 .
n\nn
Now, Tn and Sn are invertible so Vn and Wh are unitary. Thus

)1/2

T U=V W W (stS
n n n nv-nwn

VW ls |
n n n

so that IhUS;l is unitary for all n . By Lemma 3.1, S and 7 are
unitarily equivalent.

Using Corollary 3.3 it is easy to exhibit two non-unitarily equivalent
operators in IWl,(H) whose weights are pairwise unitarily equivalent.
Let A be an invertible positive operator on H and let ¥ be a unitary

operator on H which does not commute with 4 . If S~ (An> where

An = A forall =n and T (Bn) where Bn = A for even n and

B
n

WAW* for odd n , then An is unitarily equivalent to B for all

n . However, suppose S and T are unitarily equivalent. Then there is

a unitary operator U on H such that T;TnU = US;Sn for all »n . In

particular, since T, =5, =4, S, =A% , and T, = WAW*A we have
A2U = UA? end

US3S,

T3T,U

(AWAW* ) (WAW*A)U

AWAZW*AY

uA+

But A4%U = UAY , so
A2 = wAZp+

hence
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A%W = WA?
But then AW = WA , contradicting the choice of A4 and W .

A useful form of the unitary equivalence theorem for scalar weighted
shifts is that every scalar weighted shift is unitarily equivalent to a
shift with non-negative real weights. We now state and prove the analogue

of this statement for operators in IWLZ,(H) .
THEOREM 3.4. Let S v (An) be in IWZQ(H) . Then S5 1is unitarily

equivalent to a shift T ™~ (8,) in IWZ2(H) wvhere each B, 18 positive.

Proof. Let An = UnPn be the polar decomposition of An .
n=1, 2, ... . Then Pn is positive and invertible and Un is unitary.
) ™
Let P= ) ®P . endlet U= ] @®U . . If U  denotes the

n=0 n=0
unilateral shift given by U+(xo, xl, .0 = (0, xo, x ...) then U+

l,
is in IWZZ(H) and S = (U+U)P . Moreover, this last equation gives the
usual polar decomposition of S . Now U,U is in IWZQ(H) and has
unitary weights since U+U 47 (Un) . Thus by Corollary 3.2, there is a

unitary operator W such that U+U = WU+W* . Moreover, W can be chosen

to be diagonal. Thus

¥}
)

(v,v)p

*
WU _W*P

w(u wew)w*

that is S 1is unitarily equivalent to U+(W*PW) . Now W*PW 1is a
diagonal operator with positive invertible operators on its diagonal and so
U+(W*PW) is an operator in IWZZ(H) with positive weights.

The operator U+ mentioned in the above proof is used extensively in

the study of canonical models and isometries (see [/, p. 21], [2]). The

lattice of reducing subspaces of U, is well known to be the collection of
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[»]
all spaces of the form Z @ &q where Kh = K for all n and K is a
n=0

subspace of H [2].

For an arbitrary shift S in IWl,(H) the lattice of its reducing

subspaces need not be as simple as that of U+ , however it does admit a

reasonably simple description in terms of the lattice of invariant

[+

subspaces for the weakly closed *algebra generated by {S;Sn} . We
n=0

introduce the following notation:

For S in IWL,(H) , T(S) 1is the weakly closed *subalgebra of L(H)

o«
*
generated by {Snsn} .
n=0
For any algebra of operators A , latA is the lattice of all
invariant subspaces of A . By relatA we mean the lattice of all

reducing subspaces of A . Similar definitions are assumed for 1latS etc.

By "projection" we mean orthogonal projection. Also Qn is, for each
n , the projection of I,(H) onto 0®O® ... ®H®O0® ... , with H in
the n-th position.

In this section we will show that relatS is lattice isomorphic to

1atT(S) . As a corollary we show that for any countable collection {Bn}

of operators there is a single operator B such that the lattice of

reducing subspaces for the *algebra generated oy {Bn} is isomorphic to

relatB . We also find a necessary and sufficient condition for an operator
S in IWZZ(H) to be decomposable into a direct sum of scalar weighted
shifts.

Let S~ <An> be in IWZQ(H) and suppose M is a subspace of 12(H)

reducing S . Then for P the projection of Zz(H) onto M, PS=S5P .

o

Since P#* = P it follows that P = Z ® Pn where each Pn is a
n=0

-1
projection. Moreover for each n, P = SnPoSn . Let Mn = PnH ,
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oo

) @)Mn . Also

n=0

n=0,1,2, ... . Then PL,(H)

S M

n o0 SnPOH

PSHcM
nn n

P H

n

=PS [s'lH]
nnn

5P [s‘lHJ cs M. .
n n 0

n o0

Hence Mn = SnM , n=0,1,2, ... . We have thus proved the following

lemma:

oo

LEMMA 3.5. If M reduces S, then M= 1} @)SnMo for some
n=0

subspace M0 of H . In particular QnM 18 closed for all n .

o]

Note that for any subspace MO of H, z @)SnMO is invariant for
7n=0

S but need not reduce S . We now give some necessary and sufficient

conditions for a subspace to reduce S .

THEOREM 3.6. Let M= ]| @S M, be a subspace of 1,(H) . The
n=0
Following are equivalent:
(i) M reduces S ;
(i1) S M. is imvariant for A* _A , n=0,1, «.. 3

no n+l n+l

.« . L L
(iii) [SnMO) = Sn[MO ] , m=0,1, ... ;
(iv) S;SnMO = MO , n=0,1,

Proof. We show that (7) and (i) are equivalent, (Z) and (iii) are

equivalent, and (42%1) and (iv) are equivalent. Suppose M reduces S

https://doi.org/10.1017/5000497270004702X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270004702X

166 Alan Lambert

<0
Then S*SMc M . It is easily seen that for z @xn in Z2(H) ,
n=0

S* nZQ@xn= z ® A n+l %, 41 - Thus for nZQ@Sn:cn in M,

5% ] @5z, s*(o@ Z ®A45, ixn-l]

n=0 n=
= *
oo f osr,)
n=1
= nZ ®4 n+1 n+1 n °
. . % a4 R
Hence for fixed n and x in MO R An+1An+lSnx( An+lsn+lx) is in
X Sy . .. % Y
SnMO , showing that (7) implies (77). But if 4 ] n+1S M. c S H for all

n then for z @Sm in M,
n=0

0
E S
™~
<
N
8
I

z & An+l n+l n+l
n=0 n=

n+l n+l n n+l

Z ® A* Sz <} ® 5 My s
n=0

showing that (Z7) implies (7).

To show that (%) implies (ZZZ) note that if M reduces S then so

€ s
does M . Thus by Lemma 3.5, M = Z ® SnNO for some N0 cH . Itis
n=0

1 o
M LZ ® S M
=0

Z ® (s Mo)

easily seen that

L ) L L L
so that SnNO = (SnMo) - In particular Nj = MO and so S5 MO = (SnMO) s
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4 s
that is (Z2Z) holds. Conversely if (SnMO) = Sn[MOJ for all =n ,

2 *® L *® 1
M = 2 ® (S M ) = Z &S M is invariant for S , hence M reduces
n o0 nt 0
n=0 n=0
S .

Finally, to show that (Z1%Z) and (Zv) are equivalent note that since
S;Sn is an invertible self-adjoint operator, if S;SnK c K for a subspace
K , then S;SnK = K . Thus it suffices to show that for any invertible

L
operator A and a subspace K , (4K) = A(KA] if and only if A#*K =K .

This is a straightforward calculation and is omitted.

COROLLARY 3.7. The lattice of reducing subspaces of S 1is
igomorphic to 1atT(S) . In particular S 4is irreducible if and only if
T(s) = L(H) .

Proof. Since

1atT(S) = {M, : M a subspace of H and S;SnMO =M

0 0 0°?

we have, by Theorem 3.6, the reformulation

T(S) = {MO cH: (snMO)J'= sn[M;L], n=0,1, }

relatsS = {nzo ® SnMO : MO in T(S)} .

0
We now show that the map T : M0 + z @)SnMO is a lattice isomorphism of
n=0

latT(S) onto relatS . Clearly [ is bijective. Note that
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L

T (,)

2,05

pat 4L
nzo ® (5,4,)

Fosld

n=0

il

We must show that for M; and M, in 1atT(5) ,

F(Ml v Mz) = F(Ml) v F(Mz)

and

I(My n My) = T(My) n T(Mp) .
Clearly

(M) + T(My) c T(M; v M)
SO

F(My) v T{My) < T(M; v My) .
Alse

(T(My) v I‘(Mz))-L= (r(M1>)Ln (I‘(Mz))L

= r(MJD n F(MJZ) .

0
But if Z @S x is in I‘(Mh n I‘(MJQ then for all n , Snxn is in

ML MJ- s . K] - s > ML A,‘L
Sn 1 n Sn of - By the invertivility of Sn > %, is in 1 n My,
n=0,1, ... . Thus

(P(Ml) \ F(Mz))-LC F(M-;- n M-;] = I‘((Ml \ Mz)-‘_)
(T, v M)

and so TI(My) v F(Mz) = T'(M; v My) . By repeatedly using the fact that
I‘(KJ-) (I‘(K for K in 1atT(S) and by replacing M; and M, by

Ml and M2 respectively in the above calculation we see that
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T(M) n My) = T(M,) n T(My) .

Finally, S is irreducible if and only if 1atT(S) = {0, H} . Since
T(S) is a weakly closed *algebra with identity, 1atT(S) = {0, H} if and
only if T(S) = L(H) .

REMARK. If S~ (An) is in IWZ2(H) where each An is positive it

follows that 1latT(S) equals the lat algebra generated by

{Al, A2, ...} . But if MO is invariant for An , n=1l,2, ... then

AnMO = M0 and so SnMO = M0 . Thus if each An is positive then

relatS = {ZZUWOJ : M invariant for An , n=1, 2, ...} .

0

We then have the following curious result.

THEOREM 3.8. Let {Bn} be any sequence of operators on H and
n=1 '

let B be the weakly closed *algebra generated by {Bn} . Then there
n=1

ig an operator S in IWZQ(H) such that relatS is isomorphic to latB .

Proof. By taking suitable scalar multiples of translations of the
fo o]

real and imaginary parts of each Bn we can find a sequence {An} of
n=1

positive invertible operators with “An“ <1 for all n which generate
B . Then for S~ (An) » T(S) =B , hence 1latB and relatS are
isomorphic.

@«

A long but straightforward calculation shows that if M = Z @)SnMo
n=0

reduces S then the restriction 7 of S to M is unitarily equivalent

to an operator in IWZ2(MO] . It is reasonable then to ask under what

conditions S can be decomposed into a direct sum of scalar weighted

<0
shifts, that is, when can ZZ(H) be written as } ®M in such a vay
n=0
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that each M71 reduces S and S restricted to Mn is unitarily
equivalent to an operator in some IWZE(Kn) where Kn is one-dimensional.
This question is also motivated by noting that U, may be represented as

the countable direct sum of the scalar weighted shift all of whose weights
are 1 . For convenience we will say that an algebra B of operators is
diagonalizable if there is an orthonormal basis for the underlying space

such that each operator in B 1is diagonal with respect to this basis.

THEOREM 3.9. Let d be the dimension of H and assume d = RO .

Let 8~ <(A) be in IWZ2(H) . Then S 1is a direct sum of secalar
weighted shifts if and only if T(S) <is diagonaliazable.
Proof. By Theorem 3.4 we may assume that each An is positive and

hence that T(S) is the weakly closed *algebra generated by

{r, 4,, A, ...} . Since each A, 1is positive T(S) 1is diagonalizable if

17 2’

o0
and only if the set of common eigenvectors of {An} spans H . Suppose
n=1

d

first that {xk} is an orthonormal basis for H consisting of common
k=0

eigenvectors of {An} . Let [xk] denote the one-dimensional space

spanned by x, . Since [:x:k] is invariant for T(S) , 7,2([ka) reduces

d d
S . Moreover since H= )} @ [xk] , 12(H) = 7 ® 12([xk]) . Now the
k=0 k=0

restriction of S to 12([xk]) is a shift and since [xk] is

one-dimensional, this restriction is a scalar-weighted shift. Thus S§ 1is

a direct sum of scalar weighted shifts.

m
Conversely suppose VSV-l = z @Tk where V 1is unitary on
k=0

ZQ(H) , m= RO , and each Tk is a scalar weighted shift on some

m
-1
separable subspace M, of L,(H) . Then 1,(H) = } ®V M, and the

k=0 k
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restriction of S to V_le is a scalar weighted shift. Let
1 m
Nk =V Mk . Since {NR} is a family of pairwise orthogonal reducing
k=0
m
subspaces of § , {QONk} is a family of pairwise orthogonal reducing
k=0

subspaces of T(S) . (Here we have identified QONk with the set of its
first coordinates since all other coordinates of QONk are O . We have

also used Lemma 3.5 to say that QONk is closed.) Moreover, since

m m
1L H) = J @eN, , H=@l1l(H) = } ®@QN, . Thus to show that T(S) is
2 o 0“2 2l 0k

diagonalizable it suffices to show that QONk is one dimensional for

0<k=m. Fix k and let {fb, f., ...} be a basis for Nk shifted by

S , say Sf3 = uj+lf3+l . (Note that %oy #0 for all J since S is

L=-]

kernel free.) For each j let fj = z ® 9, P be the decomposition of
n=0 ’

fj with respect to Z2(H) . Then

Sf. = Otj+lfj+l

)
[+ ]
= . . .
nZO ® J+1gnac7+l
However
(o]

Sf.=85 J ®g_ .

J n=0 n,d

0 A .
®n£l® n‘gn-l,,] ?

so that for all J and =

%+190,4+1 = °

aj+lgn+l SJ+1 = An+lgn,j .
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which is one-dimensional.

REMARKS. (1) Only slight modifications of the above proof lead to
the following result. If S is in IWI,(H) then S is unitarily
equivalent to an operator of the form R @® T where R is a direct sum of

scalar weighted shifts and no restriction of T to a reducing subspace is

0
a scalar weighted shift. Here R acts on ) @SnMO where MO is the
n=0

closed span of the common eigenvectors of all the operators in T(S) .

(2) 1£ 7, T T, areshifts on L,(H ), 1,(H,), ..., 2,(H )

by tees
respectively (n < ) then Ty ® T, ®...0 T, is unitarily equivalent

n
to a shift on 12[ I ® Hk] . This follows easily from the fact that the
k=0

map from El ® 12 [Hk) to 12[ VZZ ® Hk] is & unitary isomorphism.
k=0 k=0
Shields and Wallen proved in [5] that the weakly closed algebra

generated by the identity and an injective scalar weighted shift § is
exactly the algebra of all bounded operators commuting with S . Although
this no longer holds for operators in IWZZ(H) , it seems plausible that
the algebra A"(S) of all operators commuting with every bounded operator
commuting with S is the weakly closed algebra generated by I and S ,

S in IWIo(H) . We have not been sble to prove this conjecture or find a
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counterexample,
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