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Abstract

Let s/* m be the modular representation algebra of the cyclic group of order p" over the prime
field Zp. The characters of sf*pm are derived. For p = 2, this provides an alternative proof of a
result due to Carlson (1975), thatjs/j m ' s a 1°°^ ring- It>s shown that for p>2,s/* m is a direct
sum of 2m local rings. Their dimensions and primitive idempotents are derived.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 C 20, 12 C05, 12 C 30, 33 A65.

1. Introduction

Let G be a cyclic group of order p™, where p is a prime. Let Zp be the residue
field of integers modulo p. Let Vt be the isomorphism class of indecomposable
(Zp, G)-modules of dimension i.

For O^k^m, the elements of the set {Vt, i= 1,...,/?*} form a basis for an
algebra s/*Ptk over Zp. Products in the algebra are defined by

VlxVJ= £ aulVlt

where am is the number (reduced modulo p) of terms of Zp-dimension / in the
decomposition of Mt®ZpMj into the direct sum of indecomposable modules,
Mt and Mj being modules in Vt and V} respectively.

A character of sf*p>t is a non-trivial algebra homomorphism from sf'pjc to Zp.
By examining these characters in the case p = 2 it is shown that s/*2,m

 1S a ' o c a l rm8>
proved by Carlson (1975). For p > 2 it is shown that sf*pm has 2m distinct characters
and hence is isomorphic to a direct sum of 2m local rings. Their idempotents and
dimensions are derived.
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[2] Class of modular representation algebras of cyclic p-groups 411

A major part of this work is based on formulae due to Green (1962), extended by
the author (1977). The technique of using Chebyshev polynomials to derive the
characters can be used as an alternative method to that of Green in Section 2 of
his paper.

NOTATION. When a product decomposition formula is used, the expression
(modp) means the coefficients are to be regarded as elements of Zp. Similarly, the
expression resp(r) means the residue of r, modulo p.

2. The structure of s/*2m

THEOREM 1. There exists exactly one character of si\m, and this is defined by

Vr) = res2(r),

PROOF. (All references are to Green, 1962.) V1xV1 = Vu and by (2.7d),
V2xV2 = 0. Hence there exists only one character of s/*2l, defined by

Let 0 be any character of s/'2ik, 1 < k < m. Let q = 2k~1. By (2.7d),

VqxVq=V2qxV2q = 0.

Hence 6{Vq) = 6(V2q) = 0. By (2.8e), Vq+1 x Vq+l = Vu and hence 0(Vq+1) = 1.
By (2.8c), for l^r^g,

^ . x ^ . E ^ + ^ - l J F , (mod2)

and hence 0(Vq+ri) = 8(Vri).
Now any character of s/*2k is entirely defined by a character of sf*2,k-i- t n e

theorem follows by induction on k.

COROLLARY. (Carlson, 1975.) s/*2m is a local ring.

3. Preliminary formulae

The Chebyshev polynomial Sn, with integral coefficients, is as defined in Abra-
movitz and Stegun (1972), Section 22.7: for x indeterminate,

S0(x)=l, S1(x) = x, Sn(x) = xSn_1(x)-Stt_2(x).

The polynomials An and Fn are defined by

A0(x) = 1, Ai(x) = x-1, An{x) = (x-

F0(x) = 1, F.ix) = x, Fn(x) = (x-

These definitions may be extended to
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412 J. C. Renaud [3]

Induction on n now gives

(2) FJix) = AJtf + A^ix) (n>0).
Using the results in (2) and (8) of the formulae section of Snyder (1966) it is easy
to show that

By Section 22.7 in Abramovitz and Stegun and the above sections in Snyder,
together with equations (l)-(3) above, the following factorizations are straight-
forward exercises:

(4) F2n(x) +1 = Fn(x)[Fn(x)-f,.,W] («> 1),
(5) F2n^(x) + x = Fn(x) [Fn-1(x)-Fm.2(x)] (n>2),
(6) F2n(x)-l = A^x)[Fn+ ,(*)-*•„_,(*)] in> 1),
(7) F2n_x(x)-x = A^^IF^^-F^.ix)} («£ 1).

A further factorization is possible:
(8) F.+1(;C)-F11_1(JC) = ( - l)"(x+l)Fn(2-x) (n> 1).

(Direct calculation shows (8) holds at n = 1, n = 2 : induction on « yields the general
result.)

Let xeZp, p>2. Henceforth all polynomials have their coefficients in Zp. In
Section 4, the solutions (over Zp) of the following pairs of simultaneous equations
are required:

( a ) f , _ 1 ( x ) + l = 0 , F,_2(x)+x = 0,

( b ) F , - i M - l = 0 . Fp_2(x)-x = 0.
For p = 3, equations (a) have the solution x = 0, while for (b), x = 2. For /> > 3,
on setting/? = 2n+1 and applying equations (4)-(8) above, the equations reduce to

(a') FJLx) = 0,

provided only that:
(i) [FH(x)—Fn_i(x)] and [Fn^1{x)-Fn_2(x)] cannot be simultaneously zero, and
(ii) An_i(x) and An_2(x) cannot be simultaneously zero. These provisos are

immediate from the definitions of Fn and An, using descending induction on the
subscripts to reach a contradiction.

It remains to find the solutions to equations (a') and (b') above. Two lemmas are
required :

LEMMA 1

Sp _ j (x) = (x2 - 4)" (modp)

PROOF. Snyder (1966) gives the result

(In-.= i(-ir(2n
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[4] Class of modular representation algebras of cyclic p-groups 413

Hence on expansion of (x2 — 4)" it is sufficient to show that

0 (2n-2r\
= \ J (modp), Osjz-^w, where/J = 2/z + 1 .

This is an elementary though tedious exercise and is omitted here.

LEMMA 2

F,(x)s(x-3)" (modp) (p = 2n+l).

PROOF. Apply equations (1) and (3) and Lemma 1.

COROLLARIES.

(i) Sp_1(x) = 0 implies x = 2 or x s —2 (modp).
(ii) The solution to (a') is x = 3 (modp).

(iii) The solution to (W) is x = — 1 (modp).
Three further results are required in Section 4:

LEMMA 3. For r > - 1 , Sr(2) = r + l (modp).

PROOF. Apply induction on r using the definition of Sn.

LEMMA 4. For a > 0 , Fa(-1) = (-1)" (modp).

PROOF. Apply 22.4.5 in Abramovitz and Stegun to equation (3) above.

LEMMA 5. For a^O, Fa(3) = 2a+l (modp).

PROOF. Apply equations (1) and (3) and Lemma 3.

4. The characters of sf'p m

In this section, we assume that p>2. It is shown that sf'pm has exactly 2m

distinct characters: these are expressed in terms of the 2"1"1 characters of •s/p>m_1,

We first derive the characters of s/*pf j :

THEOREM 2. There exist exactly two characters of s/*pA, and these are defined by

<p\(VT) = resp(r)

for
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414 J. C. Renaud [5]

PROOF. By Green (1962) or Renaud (1977), products in sfp x are determined by

V1xVr=Vr

and
VrxVp = rVp (mod/>)

Let 9 be any character of sf'Pil. Now 0{Vi) = \, and since Vp x Vp = 0, 6{VP) = 0.
Let 0(V2) = x. Then for 2^r^p,B{Vr) = xO(V,_1)-0(Vr_2): that is,

as defined in Section 3 above.
The permissible values of x are now the solutions of 5p_x(x) = 0: by Lemma 1,

these are x = 2 or x H - 2 (mod/?). By Lemma 3, the first value gives q>\, while
since Sn(—JC) = (— 1)" £„(.*) by 22.4.5 in Abramovitz and Stegun, the second value
gives (pi.

For k> 1, we now derive the characters of s/'pk in terms of those of sf'pk_v Let
r = roq+ru l^rKp*^ = pk-\0^r1<q. Le t^" 1 , i = 0, . . . 2*" 1 - ! , be the char-
acters of s/'pk_1.

THEOREM 3. The characters of sf'pk are defined by

ftVr) = (- l)'o fc \Vri) (0 < /< 2*"2),
<P%VT) = (-\yo(2ro

and
* - 2 ^ i < 2*).

PROOF. (References are to Green, 1962.) Let 6 be any character of s/P>k. By
(2.7d), ^(FJ = e(FM) = 0. By (2.5b), ^ X ^ . E ^ + H I F , (mod/>) and
hence diV^j) = 1 or - 1 . Let 9(Vq+1) = x. By (2.9c), for 1

By(2.8d), fo

1),+ Fffl9_1 + F<,,+1 (mod/0-

CASE 1.6>(F,_ 0 = 1-
Now e(Ffl,_1) = 0(F(a_1),+1)) 1 ^ ^ . Hence

and so 0(Fa,+1) = Fa(x),

CASE2. 6»(F,_!)= - 1 .
The same reasoning as in Case 1 gives

0(Vaq+1)=-Fa(-x),
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[6] Class of modular representation algebras of cyclic />-groups 415

By (2.5b), FM_X x Vpq_l s V1-2VM (mod/>), and hence 0(Vpll_1) = 1 or - 1 .
Combining all possibilities, four situations arise:

(i) e{Vq_x) = 1, F^^x) = 1, Fp.2(x) = x,
(ii) BiY^,) = 1, Fp_t(x) = - 1 , Fp_2(x) = -x,
(iii) 0(V9.l)= - l ) F p _ 1 ( - ^ ) = - l , F p _ 2 ( - x ) = x

and
(iv) 0 0 ^ ) = - l . f , . ! ( - « ) = l ,Fp_2(-x) = - x .
By the results obtained in Section 3, the permissible values for x in these cases are:

( i ) * = - l ,
(ii) x = 3 (mod/?),

(iii) x = — 3 (mod/;)
and

(iv) x = l .
By Lemma 2.3 in Renaud (1977), an extension of Green's formulae, for l < r <pq,

V, s Fri x vrot+1-(ri-l) Vroq (modp).

Hence 0(Fr) = 0(Vri)x0(Vroq+1). Induction up to k-l on the characters in the
theorem shows that <fl~

l\v^l) = \ for 0^/<2k"2 , while $~1(Vt-1)= -I

Now result (i) above gives rise to the first set of characters, (ii) to the third set,
(iii) to the second set and (iv) to the fourth set, on applying Lemmas 4 and 5 in
Section 3.

COROLLARY. s/*pm has exactly 2m distinct characters. Hence s/*pm is isomorphic to a
direct sum of 2m local rings.

5. The structure of $t*p>m (p>2)

For k = \,...,m, let

and

where \ denotes the inverse of 2 in Zp. Application of the appropriate product
formulae in Green shows ekt0 and ekti are orthogonal idempotents.

For any integer j such that 0<7<2m, express j as its 2-adic expansion

Define fj = euioe2tii ...emJm_1. Now clearly fjfj. = Sjj.fj: that is, the set of
2mfj terms forms a set of primitive orthogonal idempotents in sf*Pjm, provided none
of these are zero.
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Consider the action of the characters y™ on /,.. Using Theorem 3, it is elementary
to show that

Now

= i n
* i

Hence the / , terms, being distinct and non-zero, form the set of primitive idem-
potents of s/'pm.

Let Ij=fJsrPim, 7 = 0 , l , . . . , 2 m - l . Now j ^ . = / 0 © . . . e / 2 l B _ 1 . We wish to
develop a method of calculating the Zp-dimension of these principal ideals, by
examining the effect of/} on the basis elements in st'pm.

Consider a heirarchy of blocks of basis elements of s/Pm, the blocks on the lowest
level being of type

those on the next level being of type

and so forth. Each block is composed of p blocks from the next lower level,
except for the lowest blocks, each of which has one element of type V(a+np and
(p— 1) elements of type Vap+r, r = 1, ...,p— 1.

Applying Green's product formulae (1962):

e l ,0 'ap + r = e l ,0

ei,oV(a+l)P = 0

and
e l , l ',ap + r = Vap

for a, r as above. Hence if e l i 0 appears as a factor of/,, each block at the lowest
level can contribute only Up—I) basis elements to /,-, while if elA appears, such
blocks can contribute only $(p +1) elements. It is shown below that not all blocks
contribute to /,.

Consider a higher level, whose blocks are of type
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Each such block is composed of a central smaller block of type

{^cpk + i f p - l j p k - i + r . r = 1» •••>/' ~ }

and (p— 1) other blocks belonging to that level.
Applying Green's formulae:

Zk.o Vcpk+s = ek,0 V(c+i)p*-s>

ek,o V(c+i)p* = 0
and

k-l, 0<s<pk. Hence if ekt0 is a factor in/ , , the (A:—l)th level contri-
butes only Up—I) blocks to / , in each block of the kth level, apart from the
central block (discussed below). Similarly, if ekA is a factor in/ / , the (A:-l)th level
again contributes K/> — 1) non-central blocks to /,.

The central blocks may or may not contribute basis elements to /,. Assume
eki0ek+l%0 is a factor in /,. The centre block at the kth level in each block of the
(&+l)th level is halved by eki0 and is then unaffected by ek+lt0- Hence / , has
1 +K/>~!) = i(f+1) £th level blocks in each (k + l)th level block.

Assume instead that ekAek+u0 is a factor in/ / . The central block now vanishes
in each (A:+ l)th level block in /,-, and there exist only i(p— 1) kth level blocks in
each such block. This also holds if ektOek+1A is a factor, while if ekilek+ltl is a
factor the central block does not vanish.

To summarize: the dimension of / , is the product of m factors, each being
Up+l) ori(p-l), where:

(i) the first factor is Up— 1) if e1>0 is a factor of /,-, K/>+1) otherwise,
(ii) the (fc+l)thfactor is $(p-l) if ekiOek+ul or ekilek+lr0 is a factor,

otherwise.

EXAMPLE. In st*p 4, / 3 = e l t l e 2 , i £3,0^4,0, and hence 73 has dimension

i(p+l)K/>+l)K/>-!)*(/>+1) = ^ 0 > ~ !)(/>+1)3-

The dimension of each summand is calculable by this method.

REMARK. Elementary number theory shows that there exist ( ) summands of

dimension (l/2m)(p-l)m-r(p+l)r, for r = 0,1,...m.
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