ABSTRACTS FROM THE SCIENTIFIC AND TECHNICAL PRESS.

Issued by the

Directorates of Scientific Research and Technical Development, Air Ministry. (Prepared by R.T.P.)

No. 96 NOVEMBER, 1941.

Notices and abstracts from the Scientific and Technical Press are prepared primarily for the information of Scientific and Technical Staffs. Particular attention is paid to the work carried out in foreign countries, on the assumption that the more accessible British work (for example, that published by the Aeronautical Research Committee) is already known to these Staffs.

Requests from scientific and technical staffs for further information or translations should be addressed to R.T.P.3, Ministry of Aircraft Production.

Only a limited number of the articles quoted from foreign journals are translated and usually only the *original* can be supplied on loan. If, however, translation is required, application should be made in writing to R.T.P.3, the requests being considered in accordance with existing facilities.

Note.—As far as possible, the country of origin quoted in the items refers to the original source.

LIST OF ABBREVIATIONS OF TITLES AND JOURNALS.

	-
A	Abstracts from the Scientific and Technical Press.
Aeron. Eng	Aeronautical Engineering (U.S.S.R.)
Aer. Res. Inst. Tokyo	Aeronautical Research Institute of Tokyo.
A.C.I.C	Air Corps Information Circular.
Ann. d. Phys	Annalen der Physik
Army Ord	Army Ordnance.
Autom. Eng	Automobile Engineer
	Automotive Industries.
Autom. Tech. Zeit	Automobiltechnische Zeitschrift.
Bell Tele, Pubs	Bell Telephone Publications.
	Bureau of Standards (U.S.A.) Journal of Research.
Chem. Absts	Chemical Abstracts.
Chem. and Ind	Chemistry and Industry.
Comp. Rend	Comptes Rendus de L'Académie des Sciences.
Eng. Absts	Engineering Abstracts.
E.N.S.A	Revue Technique de l'Association des Ingénieurs de l'Ecole Nationale
	Supérieure de L'Aéronautique.
Forschung	Forschung auf dem Gebiete des Ingenieurwesens.
Fuel	Fuel in Science and Practice.
H.F. Technik	Hochfrequenztechnik und Elektroakustik.
Ind. and Eng. Chem	Industrial and Engineering Chemistry.
IngArch	Ingenieur-Archiv.
Inst. Autom. Eng	Institute of Automobile Engineers (Research and Standardisation Committee).
J. Aeron. Sci	Journal of the Aeronautical Sciences.
	Journal of Applied Mechanics.
	Journal of American Society of Naval Engineers.
	Journal of Royal Aeronautical Society.
	Journal of Franklin Institute.
-	490

ABSTRACTS FROM THE SCIENTIFIC AND TECHNICAL PRESS.

J. Inst. Civ. Engs.	Journal of Institute of Civil Engineers.
J. Inst. Elec. Engs	Journal of Institute of Electrical Engineers.
J. Inst. Petrol	Journal of the Institute of Petroleum.
J. Met. Soc	Journal of Meteorological Society.
J. Sci. Inst	Journal of Scientific Instruments.
J. Soc. Chem. Ind.	Journal of the Society of Chemical Industry (British Chemical
(Abstracts B)	Abstracts B)
J.S.A.E	Journal of Society of Automotive Engineers.
L'Aéron	L'Aéronautique.
L.F.F	Luftfahrt-Forschung.
Luschau	Luftfahrt-Schrifttum des Auslandes
Met. Mag	Meteorological Magazine.
Met. Prog	Metal Progress.
	National Advisory Committee for Aeronautics (U.S.A.).
Phil. Mag	Philosophical Magazine.
Phil. Trans. Roy. Soc.	Philosophical Transactions of the Royal Society.
Phys. Berichte	Physikalische Berichte.
Phys. Zeit	Physikalische Zeitschrift.
Proc. Camb. Phil. Soc.	Proceedings of Cambridge Philosophical Society.
Proc. Inst. Rad. Engs.	Proceedings of Institute of Radio Engineers.
Proc. Roy. Soc	Proceedings of Royal Society.
Pub. Sci. et Tech	Publications Scientifiques et Techniques du Ministère de l'Air.
Q.J. Roy. Met. Soc	Quarterly Journal of the Royal Meteorological Society.
R. and M	Reports and Memoranda of the Aeronautical Research Committee.
Rev. de l'Arm. de l'Air	Revue de l'Armée de l'Air.
Riv. Aeron	Rivista Aeronautica.
Sci. Absts. (A. or B.)	Science Abstracts (A or B.).
Sci. Am	
Sci. Proc. Roy. Dublin	Scientific Proceedings of Royal Dublin Society.
Soc.	
Tech. Aéron	La Technique Aéronautique.
Trans. A.S.M.E	Transactions of the American Society of Mechanical Engineers.
Trans. C.A.H.I	Transactions of the Central Aero-Hydrodynamical Institute, Moscow.
U.S. Nav. Inst. Proc.	U.S. Naval Institute Proceedings.
Veröffent (Siemens)	Veröffentlichungen aus dem Gebiete der Nachrichtentechnik (Siemens).
W.R.H	Werft Reederei Hafen.
W.T.M	Wehrtechnische Monatshefte.
Z.A.M.M	Zeitschrift für Angewandte Mathematik und Mechanik.
Z.G.S.S	Zeitschrift für das gesamte Schiess- und Sprengstoffwesen mit der
	Sonderabteilung Gasschutz.
Z. Instrum	Zeitschrift für Instrumentenkunde.
	Zentralblatt für Mechanik.
	Zeitschrift für Metallkunde.
Z.V.D.I	Zeitschrift des Vereines Deutscher Ingenieure.

New Solution of the First Main Problem of External Ballistics. (K. Eggers, Wiss. Abh. Reichsamt f. Wetterdienst, Vol. 5, No. 11, 1939, pp. 11-16.) (96/1 Germany.)

The paper is a development of Popoff's investigations as laid down in "The Main Problem of External Ballistics," Leipzig, 1932. The motion of the projectile is related to a system of co-ordinate axes \overline{x} , \overline{z} , intersecting at an acute angle, and adapting itself step by step (by partial arcs), to the development of the trajectory. Calculation is based on a zone law for the air resistance F(v), which is developed into a series $F(v)/v = f(v) = f(w) + \ldots$, with $w = \overline{x} + \overline{z}$. If this series is interrupted after the first term the variables in the equations of motion can be separated. It is then possible to find the time of flight t and the horizontal velocity \overline{x} , in terms of w. The error in each individual step arising out of this approximation, and the propagation of the error into the final values are exhaustively investigated.

The method can be improved either by selecting the limits of the stages of the calculation so as to cause the error arising from the neglect of the second term in F(v)/v to assume partly positive and partly negative values within the stages (in this case the total error at the end of the stage is practically zero);

or by substituting a mean value (constant over the stage) for the variable factor in the neglected second term of the expansion. A check of the method by Cranz's standard trajectory gave good results.

To enable convenient calculation of an entire family of trajectories for setting up a range table, a number of basic integrals must first be calculated, of which the simplest has the form :—

$$A(\tilde{g}_{o}, w) = \int_{w_{o}}^{w} dw / \{ \tilde{g}_{o} - c_{o}F(w) \} ; \tilde{g}_{o} = \text{const.}; c_{o} = \text{const.}$$

No information on the time taken by the new method is given. According to the abstracter, it is considerably more than the time required to calculate a range table by existing methods (Runge-Kutta, Cranz-Rothe). One disadvantage is that these integrals need evaluation, not only for each type of air resistance F(w), but also for each projectile (c_0) .

The variation of gravity, air density, and temperature with altitude, is to be allowed for by replacing these variables at each stage of the calculation by their corresponding, constant "ballistic" equivalents. Finally, a method for including the diurnal influences of air density, longitudinal and lateral winds, is indicated, entirely new formulæ being developed for the wind effect. The opinion of the author, that the methods hitherto current in ballistic practice for calculation of the relative wind effect are erroneous, is not shared by the abstracter.

(Abstract from Zent. B, Vol. 10, No. 4, 11/11/40, pp. 151-152.)

- Ballistics of Anti-Aircraft Gunmery. (I. Lintes, C.R. Inst. Sci., Roum., Vol. 3, 1939, pp. 263-268, 549-558, 683-690.) (96/2 Roumania.)
- 1. THE CALCULATION OF BALLISTIC AND ATMOSPHERIC CORRECTIONS FOR ANTI-AIRCRAFT FIRE.

The starting point is the solution of the ballistic problem derived from the approximate principal ballistic equation (C. Cranz, "External Ballistics," Berlin, 1925, pp. 151 and 153). The author assumes an exponential law $[F(w)=Cw^n]$ for the air-drag function. On this assumption, he develops equations for variation of the horizontal distance dx/x, height dz/z, and time of flight dt/t, which are linked with variation of the muzzle velocity, angle of departure, and ballistic coefficient. These equations include as a special case, the familiar difference formulæ of Stübler (C. Cranz, supra, p. 282), and are applied to determine the effects of wind and rain on the trajectory.

2. ANTI-AIRCRAFT BALLISTICS (NADIRAL BALLISTICS).

A method is developed, subject to certain limiting conditions, for the calculation in a self-contained form of the ascending limb of a trajectory. The assumptions are equivalent to making the ratio $\gamma = w/v$ (w=retardation due to air drag; v = projectile velocity) a function of the time of flight t, of the form $\gamma(t) = \gamma(0)/[1 + \gamma(0), t]$.

By means of this method, calculations are made for the envelope of the family of trajectories, the lines of equal inclination to the horizontal, equal times of flight, equal elevation and of equal fuse-setting. In the opinion of the abstracter, the equation for $\gamma(t)$ is only a rough approximation to the actual conditions.

3. AERIAL BALLISTICS (ZENITHAL BALLISTICS).

For notation, see preceding abstract. On the assumption that from the vertex S onwards, the ratio $\gamma = w/v$ takes the form $\gamma(t) = \gamma_s/(1 + \gamma_s \cdot t)$, the (x, z)—co-ordinates of the descending limb of the trajectory of a projectile or an aerial bomb are calculated in a self-contained form as functions of the time t. In the opinion of the abstracter, the equation for $\gamma(t)$ is inapplicable to the descending part of the trajectory.

(Abstracts from Zent. B., Vol. 10, No. 4, 11/11/40.)

On Tactical Requirements in the Design of Fighter Aircraft. (J. P. Nikolaef, Aeronautical Engineering, U.S.S.R., Vol. 15, No. 3, March, 1941, pp. 56-58.) (96/3 U.S.S.R.)

A rejoinder to an article under the same title by M. P. Stroyev in "Aeronautical Engineering," U.S.S.R., No. 12, of 1940 (R.T.P. Abstract No. 28,109), specifically dealing with the contention of the original author that the twin-engined single-seater fighter type presents no advantages by comparison with the "Standard" single-engined fighter (*i.e.*, with a tractor airscrew).

As against this, the development of the latest fighter types as twin-engined models—*cf*. Grumman "Skyrocket," Lockheed "P.38," Westland "Whirlwind"—appears to prove that the twin-engine arrangement does have certain advantages, which are accordingly examined.

Treating manœuvrability as a function of the power loading (G/Ne in kg./h.p.), it is found that single engined types have power loadings between 2.6-2.7 kg./h.p., and twin-engined types between 2.2 and 2.3 kg./h.p.

Calculating the "coefficient of manœuvrability" $(G/N) \checkmark (G/lS)$ —where G=all-up weight, N=engine h.p., l=wing span, S=wing area) the following values are obtained:—

Single-engined fighters :	-			
Curtiss " Hawk "		•••		20
" Spitfire "	•••	•••		19.5
·" Me. 109 "				18.5
Twin-engined fighters :				•
Grumman " Skyrod	eket "	•••		17
Lockheed "P.38"		•••	•••	žo

Manœuvrability and power loading being approximately the same in both groups, the conclusion is justified that the efficiency is also the same. Stability and controllability (with suitable design!) will be no worse for the twin-engined than the single-engined type. Top speeds are at least 5-6 per cent. better. The arrangement of two engines admits better provision for armament and fuel (longer range!), and avoids " blind spots " for the pilot.

The following conclusions are arrived at :----

- 1. The design of the twin-engined single-seater fighter, particularly with air-cooled engines, affords considerable tactical advantages in flight by comparison with the single-engine design.
- 2. In aerial combat the twin-engined fighter will be better by reason of higher speed, vertical manœuvrability, service ceiling, armament and visibility for the pilot.
- 3. Operations against bomber aircraft will be easier for the twin-engined fighter by reason of its greater fire power. This will also be useful for anti-tank operations.
- 4. The additional operational scope of the twin-engined fighter will be far greater.
- The Oerlikon "Oblique Pin" Impact Fuse for 20 mm. Aircraft Cannon. (Flugwehr and Technik, Vol. 3, No. 6, June, 1941, pp. 161-162.) (96/4 Switzerland.)

Aircraft cannon ammunition must be safe during transport and whilst in the gun. This is usually achieved by providing a locking pin which is ejected by centrifugal action (spin) when the shell leaves the barrel. Cases having arisen when the ejected pin caused damage to the aircraft, the Oerlikon firm have developed an alternative safety device, still operated by centrifugal action, but retained in the shell and not ejected. The device consists of two inclined cylindrical members, pressed inward by a retaining spring and gripping the striking pin of the shell. The angle of inclination is so chosen that the inertia

forces due to longitudinal acceleration overbalance the centrifugal forces due to spin as long as the shell is still moving along the barrel. In free flight, however, the longitudinal acceleration stops and the cylindrical members now move outward under centrifugal force and free the striking pin. It is stated that the new type of fuse is perfectly safe during transport (dropping, shaking, blows, etc.), and has been designed specially to take into account present day difficulties in obtaining materials. Thus no copper is required in its manufacture.

Some Notes on Repair and Maintenance at an Advance German Air Base in Sicily. (Junkers Journal, Vol. 12, No. 5-6, May-June, 1941, pp. 70-72.) (96/5 Germany.)

Repair and maintenance units of the German Air Force are known by the initials F.B.K. and are provided with a number of lorries carrying the necessary tools and equipment so that a change of base can be carried out quickly. A mobile power plant supplies the necessary electric current. Photographs illustrate work being carried out on Ju. 88 bombers and include welding operations, engine overhaul (dust proof tent) and replacement of complete power plant.

Some Properties of the Hodograph and Their Application in the Construction of the Hodograph in the Problem of External Ballistics. (T. Lewis, Phil. Mag., Vol. 32, No. 214, Nov., 1941, pp. 427-435.) (96/6 Great Britain.)

The equations of motion of a projectile in a resisting medium can be integrated analytically only for special forms of the law of resistance and, except for the case in which the resistance is proportional to the velocity, the analysis is very complicated and great labour is involved before numerical results are obtained. The equations for an arbitrary law of resistance can be solved numerically with any degree of precision required. But all the calculations have to be repeated for every set of initial conditions and for each value of the ballistic coefficient. The labour of integration would be greatly reduced if the hodograph were known beforehand, or if a quick method of constructing the hodograph were known. Knowledge of the hodograph is equivalent to the knowledge of a first integral of the equations of motion.

The author shows that the tangents to all hodographs at the points corresponding to the velocity v pass through a fixed point on the y' axis provided c, the ballistic coefficient, remains constant. This property leads to a quick method of constructing the hodograph, which is described. It can be extended so as to allow for the variation of density and it does not require the construction of a different set of curves for each value of c; all that is needed is polar graph paper and tables of values of η , which can be calculated from the tables for f(v).

Owing to the uncertainty in the value of the ballistic constant, it is of greater importance to be able to calculate accurately the difference in the elements of two trajectories due to a change in the initial conditions. If the difference in the initial conditions is a small quantity of order Δv , it follows that the error in the difference at any stage, due to the method of constructing the hodograph alone, is of the third order. So considered as a graphical method it appears to be highly satisfactory.

The Design of High Speed Military Aeroplanes. (C. L. Johnson, J. Aeron. Sci., Vol. 8, No. 12, Oct., 1941, pp. 467-474.) (96/7 U.S.A.)

The hardest problem which the designer of military aeroplanes must face is the proper evaluation of the following fundamental factors in their relative importance, one to the other:—

- (a) Performance.
- (b) Armament.
- (c) Ease of production.

- (d) Manœuvrability.
- (e) Time required for development.
- (f) Flight qualities.
- (q) Cost.

All aircraft design is made up of compromises between these considerations and the success of the basic design depends on which of the above factors have been favoured without too great a loss in the other items. The element of time is of paramount importance under wartime conditions because the manufacturer, or, more properly, the nation, cannot afford to gamble too far on new and untried design features for fear that trouble experienced in their development may make the aeroplane obsolete and waste the production facilities at a time when the greatest output is required. It is better to have 1,000 four hundred m.p.h. aeroplanes in service than to have the finest four hundred and fifty m.p.h. design in the world on paper struggling with problems of design and production. Only after sound fundamental research and the highest type of engineering can the manufacturer afford to use some of the newer developments now on the horizon of progress.

A gross weight analysis of a typical twin-engine fighter is given below.

· I.		, II.
Useful load, pilot, fuel,		Pilot, fuel, oil 14.5%
armour, guns	23.61%	Stressed material 28.0
Wings	12.30	Miscellaneous material 12.5
Tail unit	2.82	Purchased equipment (engine,
Landing gear	5.67	prop., etc.) 45.0
Fuselage and fixed equip-		
ment		
Nacelles		
Power plant, propellers, fuel,		
and cooling systems	36.30	

The designer thus has direct control over only 40 per cent. of the gross weight. As aeroplane speeds increase, the percentage of weight in the power plant increases also. Developments in the present war have shown the need for increased equipment rather than a reduction of what is now used. It can be seen that future military aeroplanes tend to become larger and more expensive as the performance is pushed up.

In spite of the fact that the pusher propeller has many problems, it seems fairly certain on the basis of present data that it should be used. Before they can be widely used, the problem of the pilot leaving the aeroplane with parachute must be considered. With a rotating propeller behind him, it is absolutely impossible to leave the aeroplane safely, so means for stopping it in a given position, dropping it or throwing the pilot clear, must be incorporated.

Visual Experimentation with Centrifugal Pumps (American Society of Naval Engineers). (H. L. Cooper, Engineer, Vol. 172, No. 4,476, 24/10/41, pp. 278-281.) (96/8 U.S.A.)

The tests were carried out on a 1:6 model of a 28 in. dredger pump. The model was of composite construction (transparent plastic and light alloy). Velocity and pressure distribution were obtained by means of pitot tubes and flow conditions were examined by means of silk threads.

Outstanding phenomena, brought to light as a result of this visual investigation, are the existence of large dead water areas within the impeller and the consequent existence of extremely high velocities over a small percentage of the cross-sectional area within the impeller. The magnitude of these velocities is often six times the average for the entire area. On account of these extreme velocities, considerable energy losses occur as a result of the transformation from

potential to kinetic energy, and vice versa. It is believed that these losses may be materially reduced by changes in design after further experimental effort.

The phenomena of dead water areas and maldistribution of velocities are also existent in conjunction with fluid flow through bends in pipes and conduits resulting in extensive energy losses. These influences must be detrimental to the transfer of fluid through the various piping systems of naval vessels, where space is at a premium and elbows, manifolds, and bends are in abundance. The decrease in power requirements and improvement in efficiency of these systems could well offset the cost of further experimental effort in this field.

Flow Properties of Lubricants Under High Pressure (with Discussion). (A. E. Norton and others, Trans. A.S.M.E., Vol. 63, No. 7, Oct., 1941, pp. 631-643.) (96/10 U.S.A.)

In this paper, results are given of a preliminary study of the rate-of-shear versus shear-stress relationship for several oils known to undergo apparent solidification when subjected to high pressure. Lard, rapeseed, sperm, and one mineral oil were tested under a temperature range of -5 C. to 20 C. while subjected to pressures up to 50,000 psi. Experimental curves of flow versus pressure difference were obtained for capillary flow, and these curves were transformed mathematically to the desired curves of rate of shear versus shear stress. A brief discussion of some of the problems inherent in capillary testing of plastic materials is included in this report.

The consistency of an oil near apparent solidification is dependent upon time of application of pressure as well as upon the amount of pressure and the temperature. The consistency is very likely dependent upon the amount of shear as well.

The Characteristics of the Aerofoil with Discontinuities Along the Span, with Special Reference to the Effects of Cut-out. (T. Okamoto, Aero. Res. Inst., Tokyo, No. 208, May, 1941, pp. 207-263.) (96/11 Japan.)

The present paper deals theoretically with the aerofoil with discontinuities along the span (such as rectangular cut-out, flap or aileron) and consists of three parts. In the first part, the approximate method of calculating the lift distribution of the aerofoil with discontinuities is obtained, and it is shown that the method described may conveniently be used in practice with satisfactory accuracy. In the second part, the characteristics of the aerofoil with longitudinal slots are studied, and the special cases of the divided aerofoil and the aerofoil with cut-out are solved. The calculated results agree satisfactorily with the measured results. In the third part, the characteristics of the aerofoil with rectangular cut-out are calculated, showing that the calculated results agree satisfactorily with the experimental results. (Twelve references.)

The Friction and Heat Transmission Coefficients of Rough Pipes. (W. F. Cope, Procs. Inst. Mech. Engs., Vol. 145, No. 3, June, 1941, pp. 99-105.) (96/12 Great Britain.)

In a previous paper (Cope, Procs. I.Mech.E., Vol. 137, 1937, p. 165) an account was given of the simultaneous measurement of the heat transmission and friction coefficients of a series of smooth pipes of various shapes of cross section. The results formed the first part of a comprehensive research into the problem of heat transmission. The present paper, which describes the results of tests on rough pipes, forms the second section. Three pipes were tested, their internal surfaces being artificially roughened by a special knurling process which produced a series of pyramids geometrically similar in form but varying in absolute size from pipe to pipe. The roughness ratios (radius of pipe/height of pyramid) were approximately 8/1, 15/1, and 45/1. The apparatus used was basically the same as that used in the previous tests; the working fluid was

water, and the Reynolds number ranged from $2,\infty\infty$ to $60,\infty\infty$. The results indicate that when fully turbulent conditions are established, the roughness has very little effect on the heat transmission coefficient, but that in the transition region between laminar and fully turbulent flow, the roughness may increase that coefficient to considerably more than its value for a smooth pipe; and that the heat transmission graphs for the three pipes are in better agreement if shearing force velocity is used instead of mean velocity, in forming the non-dimensional parameters used for plotting purposes. The broad conclusions from the practising engineer's standpoint are (1) for a given pressure drop across a heat transmission apparatus more heat will be transmitted if the pipes are smooth than if they are rough; (2) the velocity of the working fluid will, of course, be greater with smooth pipes; and (3) the smooth pipe is more efficient if the comparison is made on a basis of heat transmission for equal power.

On the Statistical Theory of Turbulence. (C. L. Pekeris, J. Aeron. Sci., Vol. 8, No. 12, Oct., 1941, pp. 475-476.) (97/13 U.S.A.)

A method is given of determining the distribution function of turbulent velocities. The distribution function P(u) of a component turbulent velocity u(t) is defined as the probability that u shall have the value between u and u+du. The part $P_{\bullet}(u)$ of P(u) which is an even function of u can be determined by first measuring the mean with respect to time of $\cos zu(t)$ for all value of z. If this function be denoted by $\psi(z)$ the $P_{\bullet}(u)$ is given by

$$P_{\bullet}(u) = (\mathbf{1}/\pi) \int_{0}^{\infty} \cos uz\psi(z) \, dz.$$

Design and Production Procedure for Prototype Aircraft. (N. N. Polikarpov, Aeronautical Engineering, U.S.S.R., Vol. 15, No. 5-6, May-June, 1941, pp. 1-8.) (96/14 U.S.S.R.)

The author examines the methods and procedure for the design and development of experimental (properly speaking—prototype) aircraft. The need for these is apparent from the tremendous scale of modern aerial warfare and the consequent imperative necessity of utilising materials and technical resources to the very best advantage. The modern military aircraft is becoming an increasingly complicated machine—comparable almost to a warship—and this, together with the large-scale production required, imposes the most stringent conditions on the designer.

Two methods of development are available—the design and construction of experimental machines and prototypes for series production as an ancillary activity of large construction plants; and the establishment of special "experimental" or "prototype" plants. Both have their advantages—the latter appears more efficient under conditions of high-pressure wartime production.

A full scheme of design and development, up to the stage of the "prototype - series" capable of actual, operational testing, consists of the following steps:—

- 1. Examination of the problem and determination of the fundamental characteristics of the new design. Specialization and concentration on individual characteristics (speed etc.) should be avoided; the military aircraft should be an "all round" machine as far as possible. Scope for modification and "modernization" is essential.
- 2. Setting up the preliminary design (sketch plan).
- 3. Construction of the mock-up.
- 4. Preparation of the constructional drawings. For mass production this requires to be very carefully done.
- 5. Construction of the prototype series, followed by strength tests under both static and dynamic loads, vibration tests, etc.

6. Flight tests, preliminary and operational.

7. The type is passed into mass production.

Some design points to be watched:-

Durability of materials.

Rapid readiness for service.

Critical analysis of earlier designs which have failed in practice.

Control, take-off speed as well as landing speed; length of run in both cases.

Production methods' and economy of materials.

Weight Reduction in Aircraft Design. (E. E. Roberts, Aero Digest, Vol. 39, No. 2, August, 1941, pp. 146-150, 232-233.) (96/15 U.S.A.)

As recently as ten years ago, the existence of a separate weight department as such was relatively unknown in aircraft plants. Necessary weight and balance calculation were made by personnel who could find the time to do them. Only within the last five years has the weight engineer elevated his function from that of estimating, calculating and recording, to one of actual control. The methods by means of which this has been achieved are described by the author with special reference to the Lockheed firm. Success can only be achieved if there exists the closest co-operation between the aerodynamic design and production departments. It is interesting to note that of the total (empty) weight of an aircraft, only about 50 per cent., covering the main structural parts such as wings, fuselage, etc., is controlled by the firm.

The remainder represents purchased equipment (power plant, etc.) or parts supplied by the Government (armament, etc.).

Excluding such items as ducts, fairings, pipe line and electric wiring, seats, flooring, etc., less than '30 per cent. of the empty weight remains in the form of stressed material under full control of the aircraft firm. It is evident that further progress is only possible if the firm or Government departments supplying the non-structural equipment are rendered as "weight conscious" as those responsible for the complete aircraft.

Photo-Loft-Template Process Film Developed. (Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 196-198.) (96/16 U.S.A.)

With the use of Matte Transfer Film, developed by Kodak, engineering drawings can be printed either by contact or by projection on photo-sensitive metal sheets and the processed plates bearing the photographic image are then sent directly to the Template Department to be cut out and used as a pattern. The templates are made by cutting around the photographic outline by a saw or mechanical shears. Other machining operations to which the photo-sensitised metal sheets are subjected are filing, drilling and punching. By this means the costly and time-consuming step of making the layouts on metal by hand from the blueprints or the necessity of duplicate inspection is avoided. Also, by this method, copies of a drawing can be produced for checking purposes, for blueprints, (by using photographic tracing cloth), or for use in re-designing a part.

In the contact method of making prints on photo-sensitised metal, the engineering drawings are made on metal plates which have been given a coating of a material which will fluoresce in the presence of X-rays. This coating is likewise of such a nature that it can be drawn upon satisfactorily. If positive prints on the metal are desired, a photo-sensitive glass plate is placed in contact with a treated surface of the plate bearing the mechanical drawing and the exposure is made by X-ray through the back of the metal plate. The processed glass negative is then printed on to a sheet of photo-sensitised metal in the usual way. If a mirror image negative on metal is used for the templates, the photo-sensitised metal sheet is placed in contact with the above treated metal drawing sheet and exposed through the back of the metal by X-ray. The negative mirror images obtained may be made into "right" images by simply turning over the finished template.

Lockheed Aircraft Corp., a pioneer user of Eastman Matte Transfer Film, has made satisfactory use of enlargements of mechanical drawings on photosensitised metal plates. In this process the mechanical drawings are made directly upon lacquered metal sheets. The drawings are then photographed on glass plates in a special camera. The glass negatives are then enlarged on to the photo-sensitised metal sheets. By this method photo-templates as large as 4 ft. by 12 ft. have been made.

It has been found that the most simple and effective method of producing sheets of photo-sensitised metal consists of laminating Matte Transfer Film to lacquered metal sheets. The film consists of a sensitive emulsion coated on a thin film support, the latter backed by a paper base. When used, the sensitised strip is transferred (or stripped) from the supporting paper base to the lacquered metal plate. This film has a matte surface, so that it will take a pencil line in case changes or additional developments on the processed photographic image are desired.

At present, width of Matte Transfer Film is limited to a maximum of 34.5 in. If wider plates are desired, several strips of film are used to give the desired width and the plate is passed through the machine the required number of times for proper lamination of the film.

Performance of Aircraft Wheels and Brakes. (H. Burkhardt, Luftwissen, Vol. 8, No. 9, September, 1941, pp. 289-291.) (96/19 Germany.)

A typical German aircraft wheel is described and illustrated. The body of the wheel is made of Mg. alloy with cast iron inserts for the two brake drums. Two oil-operated band brakes are fitted (one on either side). The wheel without tyre weighs about .012 kg. per kg. of static load and has a factor of safety of 8. In spite of the low weight, the quantity of material is ample to absorb and subsequently radiate the heat generated during the braking. This energy is very considerable and amounts to about 500 K cal per wheel for the case of an aircraft weighing 9,000 kg. landing at 160 km./hour and pulled up in 300 m. It is interesting to note that the brake lining contains no asbestos but consists of a highly polished steel strip mounted on buna rubber. The friction generated between this strip and the cast iron brake drum is satisfactory, provided both surfaces are highly polished and all grease or oil is excluded. For this reason all the ball bearings are fitted with buna sealing washers and require no subsequent lubrication.

[•] The great art in wheel design is to combine lightness and small bulk with adequate shock-absorbing capacity (size of tyre). With the advent of retractable undercarriages, the dimension of the wheel will to some extent determine the depth of the wing required to house it and this has a direct effect on aero-dynamics characteristics.

The possibility of rapid replacement of the wheel as a whole in case of damage is also of importance. According to the author, the German design of wheel satisfies all requirements, besides needing only home-produced materials for its manufacture.

Range at Constant Speed. (N. B. Moore, J. Aeron. Sci., Vol. 8, No. 12, Oct., 1941, pp. 456-466.) (96/22 U.S.A.)

The difference, at constant speed, between the thrust horse-power required at the average weight, as commonly used in range estimates, and the exact "mean effective thrust horse-power" required over the weight interval is investigated. Use of this m.e.t.hp. in estimates of range at constant speed for high-altitude, heavily loaded aeroplanes is facilitated by curves giving it as a function of t.hp. required at the initial weight, of the ratio of final to initial weights, and of the basic performance parameter Δ_{*1} at the initial weight of the aeroplane.

Cable Weights of Electrical Installations in Aircraft. (E. Ruhlemann, Flughafen, Vol. 9, No. 4, April, 1941, pp. 3-5.) (96/23 Germany.)

Details of the electric cable system on a Dornier aircraft (unspecified) are given.

The cable range from multi-strand (5 mm.² cross section of each wire) to single wires of 25 mm.² cross section. On a basis of actual length of wire used (i.e. in the case of multi-strand, length of cable \times number of strands) the smaller cross sections up to 1.5 mm.² account for over 90 per cent. of the total length installed. Of this 90 per cent., 60 per cent. are accounted for by wires up to .75 mm.² cross section. On a weight basis, however, sections up to 1.5 mm.² account for only 60 per cent. of the total, the remaining 40 per cent. being made up by sections of 2.5 mm.² and above. This weight basis of course refers to the complete cable, copper core plus insulation. It is interesting to note that the total weight of insulation of all the cable is roughly equal to the total weight of metal and from the point of view of weight reduction, both materials are thus equally important. The general substitution of Al. for Copper has not found favour in aircraft installations due to corrosion difficulties, especially for the smaller sections. Since, however, the larger sections (2.5 mm.² and upwards) account for 27 per cent. of the total metal weight, the utilisation of Al. for the heavier sections is well worth considering. It is stated that the substitution of synthetic materials for the normal rubber insulation would lead to a reduction in weight of the total installation by about 10 per cent.

Flexible Couplings for Internal Combustion Engines (with Discussion). (J. Ormondroyd, Trans. A.S.M.E., Vol. 63, No. 7, Oct., 1941, pp. 577-582.) (96/24 U.S.A.)

Four typical dynamical cases of torsionally flexible "linear" couplings are examined: (1) Instantaneous applications of the maximum engine torque; (2) instantaneous stoppage of the engine or the driven member; (3) dangerous torsional resonance; and (4) tooth chatter in geared drives.

In this paper only the effects of the elastic properties of the couplings have been considered. The ability of the flexible elements to withstand the twisting torques encountered in operation has been completely omitted. A great variety of couplings could be used to get the same flexibility. Each one considered would have to be analysed to ascertain its adequacy to meet the operating conditions at resonance. If it is strong enough to take the torques at resonance safely, it is more than safe at all other operating speeds. The most general remark that can be made in this connection is that safety in a flexible coupling is to be attained by using the largest possible volume of elastic material which gives the desired spring constant in the space available for the coupling. Also, the most efficient use of elastic materials in couplings is obtained by stressing the materials in pure tension, pure compression, or pure shear. This is usually only practical in couplings in which rubber is the elastic medium. Where metals form the elastic elements, reasonable deflections are obtained only by using the material in twist or bending. Under these modes of stressing, a fair percentage of the metal is not carrying large stresses, and either very high fatigue limits must be used or volumes of metal hard to pack into reasonable space limitations must be considered.

It is a popular misconception that flexible couplings which have torquedeflection curves that are not straight lines are cure-alls for torsional-vibration troubles. It is often imagined that torsional resonance cannot occur if such a coupling is introduced into the rotating systems. This belief may be based on the statements made by recognized authorities that no infinite amplitudes of motion are possible in a system which contains a non-linear coupling, even if frictional damping were completely absent. While this is true, and it is also a fact that very complicated relationships exist between torque, frequency, and amplitude of motion, it should be understood that conditions resembling resonance with linear couplings also exist with non-linear couplings. Amplitudes of motion large enough to cause trouble can exist at certain frequencies even if non-linear couplings are used. The reader is referred to a paper entitled "Steady Oscillations of Systems With Non-Linear and Unsymmetrical Elasticity," by Manfred Rauscher, Trans. A.S.M.E., vol. 60, 1938, p. A-169. This paper indicates methods by which such couplings can be analysed and also refers to numerous other papers on this subject that could be perused to get a complete picture of the situation existing when non-linear couplings are used.

Rotating Boiler Turbine. (Nott, Eng. and Boiler House Rev., Oct., 1941, pp. 114, 116, 118 and 120.) (96/25 Great Britain.)

The author discusses the principle of operation, construction and tests of a novel light-weight steam power plant of the rotating "U" tube type, which is entirely self-contained, combining within a single housing the burners, boiler, turbine and condenser. It is claimed that the machine works satisfactorily with no reciprocating mechanism whatsoever. Pressurising of water takes place wholly under the action of centrifugal force. Results obtained with two models were successful enough to warrant the building of a larger unit of 100 kw. capacity. Thermal efficiency and specific weights of the rotating surfaces are also discussed.

(Abstract supplied by Research Dept., Met. Vick.)

Icing of Carburettor Air Induction Systems of Aeroplanes and Engines. (V. J. Skoglund, J. Aeron. Sci., Vol. 8, No. 12, Oct., 1941, pp. 437-464.) (96/26 U.S.A.)

In conjunction with the development of a new commercial air-line power plant installation, laboratory tests were made of the icing of all critical parts of the carburettor air induction system, from the air scoop entrance to the supercharger impeller. Flight tests were made to establish a basis for the laboratory tests. The laboratory programme and apparatus were examined by all concerned and the results obtained were compared with actual operating experience to insure that they had a direct practical application. Laboratory tests included about 75 runs of full scale icing of the scoop in an 18×36 in. refrigerated wind tunnel and about 275 full scale runs of carburettor and engine induction system icing with a selected fuel in a complete running engine rear section. A laboratory was constructed for the latter tests, which included refrigeration, heating, and humidification equipment for producing cold and pre-heated carburettor air over a wide range of conditions.

The results of this investigation were: (1) A recommendation for radical changes in the original design of an air scoop which should make it possible to operate the scoop, without danger, under the most severe impact icing conditions; (2) the effect of a wide range of a large number of variables on the formation of ice on all parts of the induction system; (3) the extent of the induction system icing hazards, and effectiveness of pre-heat in preventing and removing ice formed with a conventional type and a new type of fuel discharge nozzles; (4) the relative effectiveness of pre-heat and alcohol in removing induction system ice.

An extensive bibliography completes the article.

Engine Stresses Due to Rapid Rise of Combustion Pressure or Knock. (J. Geiger, A.T.Z., Vol. 44, No. 13, 10/7/41, pp. 327-335.) (96/27 Germany.) The piston, connecting rod, crank throw combination in an engine forms an elastic system capable of undergoing longitudinal vibrations. The author reduces

this system to an equivalent 3 mass system which is subjected to the application of gas pressure varying according to some simple law. The response of the system, expressed in terms of the longitudinal force in the connecting rod, depends not only on the elasticity of the system and the gas pressure but also on the relation between natural frequency of the system and the periodicity of the applied force. Thus the rate of pressure rise, frequently put forward as the sole criterion, is not sufficient as a stress criterion of the engine transmission system. The force in the connecting rod may exceed the maximum explosion pressure by over 50 per cent. with quite moderate rate of pressure rise, provided the frequency of the gas cycle is of the order of .4 of the natural frequency of the system. The gas frequencies accompanying a knocking explosion are generally very high (8-10 times the natural frequency of the piston-rod-crank system) and the pressure accompanying knock are thus transmitted without amplification.

The author substantiates his conclusion by reference to piezo-electric records of the cylinder acceleration under various conditions of engine operation. For further confirmation, a previous paper by Le Mesurier & Stansfield is cited.

Time and Distance Computor. (Aero Digest, Vol. 39, No. 2, August, 1941, p. 198.) (96/30 U.S.A.)

The instrument enables a pilot to formulate accurately and quickly a flight plan based on actual visual indications directly from the flight chart.

The instrument is set to the ground speed of the aircraft and is then placed on the standard aeronautical chart along the route to be flown. It will then indicate the time the aircraft will pass over landmarks or radio check points along the route to be flown.

In flight, when time is established between two points shown on the chart the actual ground speed made good will be indicated and a corrected estimate for time required between other points ahead on the chart will be shown by the instrument.

Two models are manufactured which provide computations for all present type aircraft with speeds up to 400 m.p.h. and are operated in connection with Coast Geodetic Survey Charts (U.S.A.). The instrument is 13.5 in. long and 1.25 in. wide, with fixed distance scales conforming with the scale of the aeronautical charts, and movable and expanding time scale to provide time distance ratio.

The near edge of the computor is the miles scale, reading 8 miles per inch, like the chart. In the centre of the computor is an elastic band 5/16 in. wide, attached at left end of computor and imprinted with divisions representing minutes. The right end of the elastic terminates in a cylindrical knob which permits locking at any point for any degree of extension desired. In use the computor is laid on map, the elastic scale is extended until the number of minutes coincides with the number of miles indicated between desired points on map. If these points are the leg of flight just completed, the distance to next point, actual ground speed made good, minutes to next check point or destination, etc., are instantly readable from scale without further setting or intermediate figuring.

Metal Rectifiers (with Discussion). (A. L. Williams and L. E. Thompson, J. Inst. Elect. Eng., Vol. 88, No. 10, Pt. 1, Oct., 1941, pp. 353-383.) (96/31 Great Britain.)

The paper deals in detail only with the two types of metal rectifier which have found general application in industry, namely the copper-oxide and selenium rectifiers.

The history of these is given briefly, with particular reference to the main developments which have brought them to their present state of efficiency. This section leads up to modern methods of manufacture. The fundamental direct-current electrical characteristics, upon which the performance depends, and the manner in which they are influenced by various factors, are described.

The simple basic theory which governs all types of rectifier is discussed with reference to metal rectifiers in relation to their chemical and physical forms.

Finally, the method by which the correct working conditions are deduced from the characteristics is described.

Electrical Moisture Detector. (Mech. World, 10/10/41, p. 250.) (96/32 Great Britain.)

The determination of moisture in wood, plaster, masonry, acoustical and other materials is often a tedious operation involving weighing, drying and calculation. It is claimed for the Delmhorst Instrument, which is briefly described, that the range covered is from 8 to 24 per cent. of moisture in woods, being accurate to within 1 per cent. No skill is necessary in its operation, the electrode needles being plunged into the material, a dial turned and a direct reading in percentage is obtained. Electric power is supplied to the instrument by a self-contained battery.

(Abstract supplied by Research Dept., Met. Vick.)

Self Re-Winding Cable Reel. (Colliery Guardian, 3/10/41, pp. 288-289.) (96/33 Great Britain.)

In certain mobile electrically-driven equipment there are often objections, due to damage, deterioration and entanglement, to using long lengths of trailing cable. A self re-winding reel is described which can take cable up to 1.5 in. in diameter. Essentially, it consists of a metal rotating reel (with enclosed slip-rings) carrying the cable, which, on unwinding, operates a spring mechanism, similar in principle to the spring roller blind. It is claimed that the cable is always maintained at a suitable tension, but when the latter decreases, the cable is automatically re-wound by the action of the spring.

(Abstract supplied by Research Dept., Met. Vick.)

A Simple Method of Successive Approximations for Solving Equations of Elasticity. (R. V. Halasz, Bautechnik, Vol. 18, 1940, pp. 233-235.) (96/34 Germany.)

The author gives a series approximation for the solution of a linear equation of the type

$$\sum a_{\mathbf{k}\mathbf{h}}x_{\mathbf{h}} - a_{\mathbf{k}\mathbf{o}} = \mathbf{o}$$

allowing the unknowns x_k contained in the principal diagonal to be calculated as functions of the remaining terms. Iteration commences with the approximation $x_k^{(1)} = a_{ko}$ and is conducted in separate steps, the improved results $x_1^{(v)} \dots x_m^{(v)}$ of any iteration step v being already used for the solution of $x_{m+1}^{(v)}$ of the same step.

As an aid to calculation a modification of the solution to enable use of the slide-rule is given.

(Abstract from Zentral B., Vol. 10, No. 3, 29/12/40, p. 103.)

Solution of Equations of Elasticity. (H. Borges, Beton u. Eisen, Vol. 39, 1940, pp. 120-124.) (96/35 Germany.)

The author deals with the solution of equations of condition for girder lattices and similar systems, having simple and double symmetry of the principal system. This leads to symmetry of the matrix about two or four main axes, and thus to subdivision of the calculation. By the addition and subtraction of equations of symmetrical order, two or four mutually independent partial groups are obtained equivalent statically to the introduction of redundant group loads. The conjugated coefficients appertaining to the principal matrix are calculated by recursion from the solutions of the partial groups.

(Abstract from Zent. B., Vol. 10, No. 3, 29/10/41, pp. 104/105.)

Combustion Explosions in Pressure Vessels Protected with Rupture Disks. (M. D. Creech, Trans. A.S.M.E., Vol. 63, No. 7, Oct., 1941, pp. 583-588.) (96/37 U.S.A.)

The object of this investigation was the determination of the effectiveness of a rupture disk for relieving the rapid pressure rise in a pressure vessel during a combustion explosion of its contents. The experimental data presented here are merely a first step toward the solution of this problem. This matter is quite complicated and much must yet be learned about combustion explosions in general before the problem can be called solved. Many of the variables which might affect the results were either disregarded or only crudely or partially controlled. However, the results thus far obtained do indicate that by using a higher factor of safety in designing the vessel together with a rupture disk of suitable size, every vessel containing an explosive combustible mixture can be protected. For many of the less violently explosive mixtures, a rupture disk alone will give absolute protection from a destructive explosion.

The Permissible Stressing of Gears and its Calculation in Machine Tool Construction. (H. Hofer, Friedrichshafen Gear Wheel Company, Werkstattstechnik, Vol. 25, No. 5, 1/3/31, pp. 128-131.) (96/38 Germany.)

The various types of possible gear loading are reviewed and, according to the author, the most important stress is that resulting from the normal contact pressure between the flanks (crushing of material). The loading due to bending of the blade root or slip during contact can generally be neglected in comparison.

According to the Hertz theory of cylindrical contact, the permissible contact pressure of two cylinders at rest varies as the square of the material strength (mainly surface hardness) and the mean radius of curvature at contact. This shows the great importance of case hardened gears. In the stationary case, the limiting stress is the same for either cylinder, irrespective of diameter. If, however, the cylinders are in relative motion, the contact zones of high pressure have a higher frequency on the cylinder of smaller diameter and for this reason the author suggests that in the case of gear wheels, the actual radius of curvature of each flank should be considered. In the case of involute teeth, this radius of curvature on the pitch circle $= z (m/2) \sin \varepsilon$ where

z = number of teeth.

m =modulus.

 $\epsilon = obliquity$ of action.

(ms = diameter of pitch circle).

If P=maximum permissible circumferential force (kg.) (along pitch circle). b=width of tooth (mm.),

the normal force on flank surface $=P/(b \cos \epsilon)$ per unit width of tooth.

Inserting this in the Hertz formula, we have

$$\frac{P}{b\cos\epsilon} = KR^2 \cdot z\left(\frac{m}{2}\right)\sin\epsilon$$

where K = empirical factor.

R =Rockwell hardness of material.

This can be rewritten in the form

 $S nR^2 zm \sin 2\epsilon = \text{constant}$, which in the case of hardened ground gears with normal lubrication

 $=10^9$ for continuous operation and indefinite life

= 10⁸ for very short life (\simeq 50 hours) (n=r.p.m.)

In the above

 $S_a = mzb/20N$ (N=h.p. transmitted)

= 1 to prevent excessive heating up of the gear.

At very low and very high speeds, $S_a \approx 2$ since under these conditions lubrication is imperfect. Inertia stresses due to inaccuracy of manufacture (nonuniform angular velocities) also put an upper limit to the permissible r.p.m.

Resistance Welding of Light Alloys. (Original in Japanese.) (R.W. Research Committee, Aero. Res. Inst., Tokyo, No. 210, May, 1941, pp. 301-482.) (96/39 Japan.)

The following are the factors controlling resistance welding :--

- (1) Magnitude of welding current.
- (2) Time of current flow,
- (3) Mechanical pressure between electrodes.
- (4) Material of electrodes,
- (5) Shape of electrode tips,
 (6) Material of the metal sheets to be welded,
- (7) Thickness of the sheets,
- (8) Surface conditions of the sheets.

An investigation of the resistance welding of light alloys is being carried on since 1936 at the Aeronautical Research Institute, Japan, with the collaboration of its five departments (Aircraft, Electrical Engineering, Materials, Metallurgy and Central Work Shop).

This report gives a general account of the resistance welding of light metals and the results of the investigations on spot welding up to the present.

A good many of the authorities on the subject have reported that in producing satisfactory welds, three of the variables-welding current, time and pressure -must be accurately controlled. According to the experiments in the Aeronautical Research Institute, however, the shape of electrodes is considered to be one of the most critical variables and the proper values of current, time and pressure cannot be recommended without the specification of the shape of electrodes.

At present the static shear strength of welds is already satisfactory. Under shock, welds of 1.5 to 2.0 mm. thickness have shown equal or better results than with 5 mm. rivets.

Under fatigue, however, the weld is inferior to the riveted joint. Subsequent mechanical treatment, however, can improve the strength characteristics of the weld and this is being investigated further.

New Gear-Tooth Flame Hardening Machine. (Iron Age, 28/8/41, p. 57.) (Met. (96/40 Great Britain.) Vick.)

The article describes a new machine for flame hardening the surfaces of sprockets, bevel, spur and internal gears up to 33 in. pitch diameter. It is stated that both sides of the tooth are hardened simultaneously without distortion, and that each tooth on the wheel is hardened to exactly the same depth. Α non-rusting coolant is used. The machine is fully automatic after starting, even to the extent of indexing, rolling, pre-heating and hardening, also stopping the motor and shutting off the gas supply when all the teeth have been hardened.

(Abstract supplied by Research Dept., Met. Vick.)

Aircraft Spot Welding Problems (Digest). (M. M. Rockwell, J.S.A.E., Vol. 49, No. 4, Oct., 1941, p. 441.) (96/41 U.S.A.)

Aluminium alloys have low electrical resistance and high heat conductivity; hence very welding heavy currents and pressures must be used. Even then, most of the generation of heat occurs at the surface of contact between the sheets being welded.

These conditions have imposed difficulties which have somewhat retarded the application of spot welding in the aircraft industry. However, of recent years, development has come very rapidly.

The increase in requirements for spot welding equipment in turn brought to the fore a very serious problem—the magnitude of the power supply necessary for such equipment.

At this point a saving factor appeared in the form of the "stored-energy" type spot welder first introduced into the U.S.A. two years ago by a French firm. The "stored-energy" spot welder introduces a new principle—that of charging the transformer up slowly with magnetic energy, then discharging it quickly to make the weld.

Consistent maintenance of the proper pressure is essential to successful spot welding because pressure controls the surface contact resistance. In many machines, pneumatic force is used to produce electrode pressure and, if the air lines to the welder are too small, the air pressure will drop when the machines are operated rapidly, and mysterious troubles will ensue. It was found necessary to install a large air receiver near the welder to overcome this trouble. Hydraulic pressure systems should be a helpful improvement.

Probably the greatest single cause of spot welding trouble is improper surface preparation. Oil, grease, or paint left on the surface to be welded produce cracked, burned, weak, or even "blown" spots. Careful cleaning is essential and, in most cases, it is also necessary to remove part of the oxide film which always covers the surface of aluminium alloys.

Static Fatigue Life of Rubber. (S. M. Cadwell and others, S.A.E.J., Vol. 49, No. 4, Oct., 1941, pp. 442-447.) (96/42 U.S.A.)

Static fatigue of rubber is defined by the authors as a progressive breakdown under the influence of a static load, whereas dynamic fatigue is defined as the progressive loss of strength due to successive cycles of stress. The static fatigue life is the time required for rupture under a static load.

Test data presented on the tension static fatigue of rubber indicate that the static fatigue lives of the samples are functions of the stresses acting on them; that the static fatigue lives fall off rapidly with increasing stresses; and that the dependents of static fatigue life on the stress is a function of the stock, among other things.

Curves of reduction of tensile due to static fatigue show that the tensiles of samples under load actually decrease and that the decrease is greater, the greater the time under load.

Referring to the effect of degree of cure, the data indicate that resistance to static fatigue decreases as degree of cure is increased beyond a certain optimum value which varies with the stock.

Other data show that large flow during cure in a particular region reduced the static fatigue resistance of that region in comparison with the remainder of the body of the stock; and that lateral pressure is highly beneficial in increasing the static fatigue lives of bonded rubber parts used in shear.

Chafing (Fretting) Fatigue Strength of Some Metals and Alloys. (G. Sachs and P. Stefan, Trans. of Am. Soc. Met., Vol. 29, No. 2, June, 1941, pp. 373-401.) (96/44 U.S.A.)

Endurance tests on cylindrical bars offer a simple method for determining the effect of stress raisers on the fatigue strength. The resulting chafing fatigue strength appears closely related to the notch fatigue strength obtained on specimens with very severe notches. The effects of cold work and heat treatments on the regular and on the chafing fatigue strength respectively are very different. Generally, annealed wrought metals have a higher chafing fatigue strength but a lower regular fatigue strength than the harder cold-worked and heat-treated conditions. Cast steels and aluminium alloys may have a higher chafing fatigue strength than wrought metals of the same type.

The trend curve for the chafing fatigue strength of the heat-treated cast al. alloys is located about 30 per cent. higher than that of the heat-treated wrought alloys. However, the actual differences are smaller, because the cast alloys have generally lower regular fatigue strength than the wrought alloys. The sand cast aluminium alloy, in particular, shows a lower chafing fatigue strength and even a lower regular fatigue strength than the chafing fatigue strength of the forged alloy.

It would appear, therefore, that suitably selected cast alloys may offer some advantage for applications where moving machinery parts are exposed to severe surface attacks by notches, corrosion and chafing.

Correlation of High Temperature Creep and Rupture Tests Results. (R. H. Thilemann, Trans. Am. Soc. Met., Vol. 29, No. 2, June, 1941, pp. 355-372.) (96/43 U.S.A.)

The tests were carried out on 4 in. specimen over periods up to 10,000 hrs. of exterpolated to 100,000 hrs. The results are given in table:---

* .		•		
		(SR) 100,000	(SC)* 100,000	
	Temp.	Hour Rupture	Hour 1% Creep	•
Material.	of Test °F.	Stress (lb. sq. in.).	Stress (lb. sq. in.).	Ratio (SR/SC)
Ni-Cr-Mo	900	20,000	13,500	1.48,
Cr-Mo-V	1,000	22,000	22,000	1.00
$C-\frac{1}{2}$ per cent. Mo	1,000	9,000	7,300	1.23
7 per cent. Cr-Mo-Si	1,200	3,750	1,700	2.20
MT 1 1	1 1	•• • • •	C . 1 1.1	

*Indicates total creep and should not be confused with 1 per cent. creep rate per 100,000 hour commonly used.

It appears that both the creep and rupture properties of a material must be known before the behaviour over long periods of time at elevated temperatures can be predicted with any degree of certainty. A combined plot of creep and rupture test results, as presented, is found to be useful in correlating the creep and rupture properties. This method of plotting affords a convincing means of arriving at safe working stresses for design purposes.

With some materials there is good reason to believe that the amount of elongation accompanying long time fractures will be very small indeed. Usually, these materials possess high creep strengths and fail by a process of intergranular cracking. As indicated by the results, for materials of this type, long-time factors of safety against failure may be almost lacking if design stresses are based on the value that will produce I per cent. of creep in 100,000 hours. On the same basis, materials that do not fail by intergranular cracking in tests of long duration usually show much larger factors of safety against failure.

The Vibration Damping Capacity of Mn-Cu. Alloys. (R. S. Dean and others, Trans. Am. Soc. Metals, Vol. 29, No. 2, June, 1941, pp. 402-414.) (96/45 U.S.A.)

Preliminary measurements showed that certain manganese-copper alloys which possess a remarkable deadness or lack of metallic ring also have unusually high vibration damping capacity at low stresses.

An instrument for the determination of this property is described and the results obtained with manganese-copper alloys are discussed.

The results indicate that the high values obtained by certain heat treatments are due to the formation of ordered anti-phase nuclei in the mass of the alloy.

The vibration damping capacity appears to reach a maximum with some critical distribution of these anti-phase nuclei and decrease as a state of equilibrium order is approached. The effect of cold work is to decrease the vibration damping capacity of the alloys as would be expected from its disordering effect. The unusually high vibration damping capacity of the quenched alloys drops with

time, and it is suggested that it is due to their failure to come to an equilibrium volume when quenched. There would thus seem to be simillarity in structure with regard to its effect on vibration damping capacity between an alloy in a super-cooled state and an alloy in a partly ordered state. In both instances, some of the atoms of the metal are not in the equilibrium positions required by the temperature. High vibration damping capacity appears to be an attribute of such metastable systems.

Fatigue and Damping Studies of Aircraft Sheet Materials (Dural Alloy 24ST, Alclad 24ST and Several 18-8 Type Stainless Steels). (R. M. Brick and A. Phillips, Trans. of Am. Soc. Metals, Vol. 29, No. 2, June, 1941, pp. 435-469.) (96/46 U.S.A.)

The strong wrought aluminium alloys, 24ST and Alclad 24ST, and nine 18-8 type commercial grades of stainless steels of low and moderate carbon contents, and in the annealed, cold-rolled, stabilized and aged conditions were fatigue tested under constant deflection conditions. The results are given in Tables 1 and 2:—

TABLE I.

Material.	Fatigue Strength 5 × 10 Pounds sq. in.	Probable 5 × 10 ⁸ Cycle Endurance Limit Pounds sq. in.	Tensile Pounds sq. in.
24ST-L ⁽¹⁾ 24ST-T ⁽²⁾ Alclad-L	20,500 ⁽⁸⁾ 18,500 ⁽⁴⁾ 13,000 ⁽⁸⁾	18,000 ⁽⁴⁾ 16,500 ⁽⁴⁾ 11,000 ⁽⁴⁾	66,000 65,000 64,000
Alclad-T	11,500 ⁽⁸⁾	10,000(4)	63,000

(1) L-rolling direction parallel to specimen axis.

⁽²⁾ T-rolling direction transverse to specimen axis.

⁽³⁾ Error from stress measurement and extrapolation:

 $=\pm 1,000$ pounds per square inch.

(4) Error; ±2,000 pounds per square inch.

TABLE II.

RESULTS OF FATIGUE TESTS OF STAINLESS STEELS.

Alloj No.	y Type and Condition.	• •	Tensile Strength Pounds sq. in.	Indicated Endur- ance Limit Pounds sq. in.	Endurance by	Surface Finish.
1.	Annealed •		84,000	50-55,000	59-65	No. 4
2.	Cold rolled 10 per c	ent.	96,000	65-70,000	68-73	No. 4
3.	Annealed		75,000	22-24,000	29-32	No. 2-B
4.	Annealed	•••	89,000	32-34,000	36-38	No. 2-B
5.	Cold rolled 50 per c	ent.	158,000	53-58,000	33-37	No. 2-B
6.	Cold rolled		180,000	70-74,000	39 - 41 ·	Rolled
7.		ged	194,000	75-81,000	39-42	No. 2-B
8.	Cold rolled 50 per ce	ent.	195,000	63-78,000	32-40	No. 2-B
9.	Aged		243,000			Rolled

The S-N data so obtained indicate the probable endurance limits but are incomplete because of lack of time for aluminium alloys and the scatter of results for many of the stainless steels. The ratio of endurance limit to tensile strength of the stainless steels was found to be relatively constant for one type of surface condition but to change a maximum of from 30 to 70 per cent. with different commercial finishes. Errors considered were mechanical or inherent in the test method; i.e., increases of stress at constant deflection near the endurance

ABSTRACTS FROM THE SCIENTIFIC AND TECHNICAL PRESS. .

limit accompanied by plastic behaviour resulted from work hardening or decreases in apparent stress from crack formation and propagation, particularly in Alclad. The effects of the two opposing factors, work hardening and cracking, were studied by means of damping and mechanical hysteresis (load-bending) tests on actual fatigue specimens at various intervals during stressing above and near the endurance limit. Very considerable changes took place in Alclad specimens but changes in the stainless steels were relatively slight although considerable differences were found among the various types studied

Low Amperage Electronic Arc Welding. (D. B. Scott, Welding Engineer, Vol. 26, No. 7, July, 1941, pp. 21-24.) (96/47 U.S.A.)

The electronic welder produces a direct current output at the welding terminals, though it is operated from a three-phase alternating current source. Output characteristics are such that a stable arc can be held at any setting to supply welding currents from 5 amperes to 75 amperes, thereby providing for the welding of materials from 32 gauge to 10 gauge with equal ease and success.

The following Table shows etectrode diameter versus welding current and material gauge:-

ELECTRODE SIZES FOR VARIOUS CURRENTS AND MATERIAL THICKNESSES.

Electrode Diameier.	Welding Current Amperes.	Thickness Material to be Welded.
1/32 in.	5 to 10	32 to 26 gauge
3/64 in.	10 to 20	26 to 20 gauge
1/16 in.	20 to 40	20 to 14 gauge
3/32 in.	40 to 60	14 to 10 gauge
1/8 in.	60 to 75	10 to 1/4 in.

Low current arc welding equipment has made possible the arc welding of all types of aircraft tubing and has been approved by the Army and Navy Air Corps and the Civil Aeronautics Administration, U.S.A., subject only to the qualification of the welding operators. It has cut the necessary welding time in certain cases to as much as one quarter of that required by previous methods.

Other products in the aircraft field which have been improved by the introduction of low current arc welding are the collector rings, exhaust manifolds, air to air heat exchangers for cabin heating, and exhaust manifold shrouds. These parts are usually made from Inconel or a heat-resisting stainless alloy such as 25 Cr-20 Ni, and are made from matching half sections that are welded together.

The Stresses in and the Deflection of Circular Flat Plates, with a Central Hole Under Normal Force. (S. Labrow, Procs. Inst. Mech. Engs., Vol. 145, No. 3, June, 1941, pp. 115-125.) (96/48 Great Britain.)

Solutions are given, and presented in graphical form, for the stresses in, and the deflection of, a thin circular plate when loaded by normal (transverse) forces only, with various prescribed conditions of supporting or fixing the edges.

The method used in deriving these results is an application of a general method for obtaining the direct and, or alternatively, the bending stresses in a thin circular plate under any type of loading. Because of the ease with which it can be applied to problems in which the loading on the plate is quite complex, this general method, due to Professor William Kerr, deserves to be more widely known, and a brief account of it is given by the author as an introduction to the special problem with which the paper is primarily concerned.

Kerr has shown that provided certain conventional forms are chosen to express the external forces on the disk—whether these are due to normal pressure (transverse) loading, to radial loading (as in a rotating disk), or to temperature differences giving rise to either transverse or radial temperature gradients and

stresses, then the fundamental equations for the disk under the most general type of loading can be considerably simplified. Briefly, this simplification consists in a division of these equations into two groups, one of which contains only the "bending stress" terms, whilst the other group contains only the "direct" or "Membrane" stress terms. The feature of Kerr's method is that these two groups are absolutely identical in form, due to the conventional forms which are chosen to represent the external forces, and thus it is only necessary to obtain the solution of one group. As would be expected, the resulting general solution possesses a high degree of symmetry and is particularly well suited to presentation in tabular form, from which expressions for the stresses for simple and complex loading conditions can be written down immediately.

The author has applied Kerr's method to obtain the solution of one type of example which finds frequent application in many engineering problems. This is the case of a disk, with a central hole, and loaded by transverse forces. In all, twelve variations, representing different edge conditions and different loading have been investigated, each covering a range of disk proportions. The results of this analysis are presented in the form of tables and curves and illustrate the usefulness of Kerr's method in solving problems of this sort.

The Relationship Between Stress and Strain in the Tensile Impact Test. (A. F. C. Brown and N. D. G. Vincent, Proc. Inst. Mech. Eng., Vol. 145, No. 3, June, 1941, pp. 126-134.) (96/49 U.S.A.)

In impact testing, the notched bar test is that most frequently used and is valuable for the detection of brittleness; but the notch introduces an extremely complicated stress system and, despite frequent discussions, no universal agreement has been reached as to the method of test or form of specimen. The static tensile test, on the other hand, has been fully investigated and test bars of widely different sizes can be relied on to give comparable results.

Apparatus has been devised for the measurement of the relationship between stress and strain on metallic specimens broken in tensile impact. The stress was measured piezo-electrically and the strain photo-electrically.

Five ferrous materials have been examined at rates of extensional strain ranging up to 800 inches per inch per second, with the following results:—

With wrought iron there was an increase in tensile strength and considerable increase in yield point as the rate of strain was raised. With medium-carbon steel there was some increase in the yield point. With low-carbon manganese steel, nickel-chromium steel and "Vibrac" steel there was little difference between the impact and static stress-strain diagrams. The energy absorbed in fracture of the specimens in the impact tests was only slightly greater than that absorbed in the static tests.

On the whole, the measurements of impact stress bear out the results of earlier investigators. Some increase in ultimate stress had been expected with materials besides wrought iron but, after careful examination of the results, the authors cannot find any evidence for increase except for this one material.

Spot Welding of Light Alloys. (Junkers Journal, Vol. 12, No. 5-6, May-June, 1941, pp. 59-69.) (96/50 Germany.)

Spot welding of light alloy sheets has been successful, provided proper attention is paid to the preliminary treatment of the sheet and that the welding current and elecrode pressures are suitable. Pure Al, Al-Mg, and Al-Si-Mg Alloys are relatively easy to spot weld, although in the latter case, the heat treated material will lose some of its strength in the weld zone. Al-Cu-Mg alloy sheet require the greatest care in the control of the current characteristics. Loss of strength due to softening can be made good by a closer spacing of the spots.

A thorough cleaning of the sheets prior to welding is essential. This can be carried out either by immersion in a caustic soda bath or by mechanical brushing.

As already mentioned, control of the welding current is of the utmost importance Experiments were carried out with different types of current pulses and rest periods. An alteration of the wave form during the welding process was found to be beneficial.

Thus for example, a successful current control adopted consisted of 5 periods at maximum amplitude alternating with 5 periods at 50 per cent. amplitude with rest periods (zero current) of 5 periods between the changes (τ period = $\tau/50$ sec.). In this case there are 2 pulses per spot weld. Alternatively, single pulse control can be adopted, the current rising to a maximum during 5 periods and diminishing to zero over the next 5 periods. No details of the electronic controls are given. By proper timing of the pulses, it is apparently possible to work four or more machines from a single 350 K V A transformer, leading to a considerable saving in the cost of the plant. Types of electrodes employed are described in some detail. Electrolytic copper appears to be the most suitable material. Means for rapid cleaning of the electrodes are essential. Interposition of a thin foil of brass between electrode and weld has been found very beneficial in this connection. The foil (in ribbon form) is moved automatically and carries away most of the impurities which would otherwise accumulate on the electrode.

X-Ray Examination of Mg. Alloy Castings. (H. T. Rupprecht, Luftwissen, Vol. 8, No. 9, Sept., 1941, pp. 283-286.) (96/51 Germany.)

X-Ray examination of Mg Alloys is rendered difficult by the small absorption coefficient of the material coupled with a considerable amount of scattering of the radiation. The latter becomes the more marked, the shorter the wave length of the incident radiation, i.e. the higher the tube voltage. For work of this kind, therefore, it becomes necessary to generate X-Ray at relatively low voltage and ensure sufficient penetration by increasing the tube current. Unfortunately commercial X-Ray apparatus are generally designed for voltages of the order of 250 K V (20 m. Amp.) and cease to generate if the voltage is reduced below 50 K V. At the same time the tubes normally employed will not pass an increased current to make up for the voltage reduction. According to the author, special apparatus has now become available which will generate X-Rays at 24 KV (4 m. Amp.) and pass 30 m. at 100 K V. With this equipment, examination of Mg alloys can be carried out with the same degree of accuracy as for Al. alloys. The new apparatus is, however, necessarily expensive and can only justify itself if exclusively and continuously employed on Mg alloys. As an alternative, quite good results can be obtained with standard equipment if a special photographic film of ultra fine grain and steep gradation is employed. The new film is relatively insensitive to scattered radiation and its superiority in detecting faults is illustrated by a number of sample photographs.

Evidence on the State of Fatigue of Metals Obtained by Determination of Surface Stresses by Means of X-Rays. (R. Glocker and others, Z.V.D.I., Vol. 85, No. 39-40, 4/10/41, pp. 793-800.) (96/53 Germany.)

The measurement of surface stresses by X-Ray methods depends on the fact that the dimensions of the Debye diffraction rings are directly related to the elastic deformation of the crystal structure of the materials. Up to now, such investigations have been mainly confined to the investigation of static stress. The authors describe a most ingenious camera in which the photographic film rotates in step with a tortion fatigue testing machine and which makes possible the measurement of the variation of surface stress during a complete load cycle. It appears that the proportion of the total stress taken up elastically by the surface layer of the metal diminishes progressively with total number of load cycles and by using X-Rays of different hardness the authors show that in the case of carbon steel, this plastic deformation is gradually penetrating into the material core. The authors were thus able to predict the state of fatigue of the material from X-Ray examination of samples subjected to static load. Of great importance is the fact that the appearance of the first cracks in the specimen is revealed by X-Ray examination at a relatively early state (60 per cent. of the ultimate life). Such small cracks cannot be detected by any other method. The magnetic powder method only reveals much larger cracks occurring when already 85 to 90 per cent of the load cycles required for ultimate failure have been reached.

The Calculation of the Load Capacity of Ball and Roller Bearings. (R. Mundt, Z.V.D.I., Vol. 85, No. 39-40, 4/10/41, pp. 801-806.) (96/54 Germany.)

The load capacity and life of ball and roller bearings are matters of great importance. The author reviews the data given by a number of leading German manufacturers for their products over the period 1903 to date. (D.W.F., F. & S., F.A.G. and S.K.F.) The theoretical basis of calculations on load capacity and life are next reviewed and the importance of standardisation in this field is stressed.

In modern engineering, indefinite life is scarcely an economic proposition. In most cases, the machine incorporating ball or roller bearings is scrapped for various reasons after a relatively short life. The load capacities of bearings as given by the different manufacturers for their products generally imply that most of the bearings will have a much longer life than the limits stated. A standard method of calculation would enable the user to select more readily the bearing satisfying his minimum demands.

Aircraft Materials—German Specification Numbers. (R. Liebig, Werkstoffkunde, pp. 94-98.) (96/55 Germany.)

All German specification numbers for aircraft materials consist of 4 figures followed by a decimal point and a fifth figure, e.g. 3,166.5.

In this code, the first figure denotes the principal group to which the material belongs, e.g. 1 = steel, 2 = non-ferrous heavy alloy, 3 = light alloy, etc.

The second figure in the code shows a sub-group in the principal group, whilst the last two figures before the decimal point are called the material numbers and designate the material more closely. The figure behind the decimal point so-called condition number, finally shows the treatment to which the semi-finished product has been subjected prior to delivery to the consumer.

Principal Group.	Sub-Group.	Significance.
I = Steels	ο	Carbon steels, not improved by heat treatment.
	I	Carbon steels, improved by heat treatment.
	2	Simple Alloy Steels.
	3	Multiple Alloy Steels.
	4)	
	5 6	Special Steels.
	7	
	8	Cast Steel.
	9	Cast Iron.
2 = Heavy Alloy		Copper.
	I	Brass.
	2	Special Brass.
	3	Al/Pb Bronze.
	4	Special Bronze.
	5	White Metal.

https://doi.org/10.1017/S0368393100140210 Published online by Cambridge University Press

Principal Group. 3=Light Alloys	Sub-Group. O I 2 3 4 5	Significance. Pure Al. Dural. Al-Si (Silumin). Al-Mg (Hydronalium). Al-Mg-Si (Legal) Other Al Alloy. Mg Alloy.
Sub-Group.	M.N.	Significance.
0	00	Al 99.5 per cent.
I	15	Dural (Normal).
I	16	Cladded Dural.
I	30	Alloy RR 53 (sand cast).
I	31	,, die cast.
I	35	Y alloy, sand cast.
I	36	,, die cast.
I	37	,, extruded or forged.
2	00	Silumin, sand cast.
2	01	Copper Silumin, die cast.
2	05	Silumin—Beta, sand cast.
2	10	E.C. 124 die cast.
2	II	E.C. 124 pressed.
2	15	Alusil, KS 280 die cast.
. 3	05	Hydronalium Hy 5
3	10	,, Hy 7.
3	15	,, Hy 9.
2 3 3 3 5 5	55	Legal.
5	01	Electron A.M. 503.
5	10	Electron A.2.M.

Note: An increase in M.N. in any sub-group signifies improved mechanical properties.

Condition Numbers (after decimal point).

Principal Group.	C.N.	Significance.
I Steels	0	No subsequent treatment.
	I	Annealed.
	2	"
	3	,,
	4	
	5 6	Hardened or heat treated.
	6	,,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	7	Cold worked.
	8	o "
	9	Specially treated.
2 Heavy Alloys	0	No subsequent treatment.
	I	Annealed.
	2	
	3	and the second
		Heat treated.
	4 5 6	,, and cold worked.
	6	,, ,, ,,
	7	Cold worked.
	8	>>
	9	Specially treated.

Principal Group.	C.N.	Significance.
3 = Light Alloys	0	No subsequent treatment.
	I	Annealed.
	2	Annealed and straightened.
	3	
	4	Age hardened.
	5	Age hardened and straightened.
	6	Age hardened and cold worked.
	7	Cold worked.
	8)
	9	Specially treated.

The code number 3116.5 given above thus refers to Cladded Dural (Al-Cu-Mg alloy with Al covering sheet) age hardened and straightened.

LIST OF SELECTED TRANSLATIONS.

No. 39.

Note.—Applications for the loan of copies of translations mentioned below should be addressed to the Secretary (R.T.P.3), Ministry of Aircraft production, and not to the Royal Aeronautical Society. Copies will be loaned as far as availability of stocks permits. Suggestions concerning new translations will be considered in relation to general interest and facilities available.

Lists of selected translations have appeared in this publication since September, 1938.

ARMAMENT AND WARFARE.

т	RANSLATION NUMBER'	
	AND AUTHOR.	TITLE AND JOURNAL.
1289	Tsaig, M	Barrage Balloons. (Aeroplane, U.S.S.R., Vol. 17, No. 23-24, Dec., 1940, p. 22.)
1 293)		Calculation of Ballistic Elements for Firing in the Air. (Air Fleet News, U.S.S.R., Vol. 23, No. 2, Feb., 1941, pp. 129-138.)
1307	Beseler, J	British Aircraft Armament Through German Eyes. (Luftwissen, Vol. 8, No. 8, Aug., 1941, pp. 237-243.)

AERODYNAMICS AND FLIGHT DYNAMICS.

1 280	Stiiper, J	••	The Measuring Technique of Flight Tests. (Luft- wissen, Vol. 8, No. 4, April, 1941, pp. 109-113.)
1 304	Schmidt, R	•	Systematic Flight Tests on Dynamic Longitudinal Stability with Free Elevator. (L.F.F., Vol. 18, No. 5, 28/5/41, pp. 169-173.)
1311	Eugen, J	•	Some Remarks on Statical and Dynamical Longi- tudinal Stability. (Luftwissen, Vol. 8, No. 4, April, 1941, pp. 119-125.)
1313	Mathias, G Schaaf, R	••	Landing Process (Length of Run, Braking Effort and Possibility of Tipping. (L.F.F., Vol. 18, No. 2-3, 29/3/41, pp. 70-76.)

AIRCRAFT AND ACCESSORIES.

T	RANSLATION NUMBER	
	AND AUTHOR.	TITLE AND JOURNAL.
1281	Yegorov	Oxygen Equipment of German Aircraft. (Air Fleet News, U.S.S.R., Vol. 23, No. 5, May, 1941, pp. 448-455.)
1 282	Podlubinaya, E. T.	Cheap Solutions for Washing Aircraft. (Civil Aviation, U.S.S.R., Vol. 11, No. 5, May, 1941, p. 15.)
1288	Shavrov, V	The U.S.S.R. Amphibian' "Sh. 7." (Aeroplane, U.S.S.R., Vol. 17, No. 23-24, Dec., 1940, p. 22.)
1290	Bleich, H. S	On the Calculation of Variable Aperture Shock Absorbers. (Aeron. Eng., U.S.S.R., Vol. 15, No. 4, April, 1941, p. 57.)
1291	Pelix, N. A	Tolerances in Undercarriage Links. (Aviation Industry, U.S.S.R., Vol. 1, No. 17, May, 1941, pp. 8-10.)
1292	Kostyuk, D. I	Kinematics of the Retractable Undercarriage. (Aeron. Eng., U.S.S.R., Vol. 15, No. 3, March, 1941, pp. 53-55.)
	E	ngines and Accessories.
1 285	Stepukhin, Z. A	Methods for Counteracting Corrosion of Pipes in Water-Cooled Aero Engines. (Aviation Ind., U.S.S.R., Vol. 1, No. 6, Feb., 1941, pp. 7-11.)
. ¹ 295	Ananiev and others	Calculation of Resonance Vibrations of Elastically Supported Engine Mountings. (Aeron. Eng., U.S.S.R., Vol. 15, No. 4, April, 1941, pp. 21-40.)
1306	Preitz	The Warming up of Aircraft Engines. (Der Flieger, Vol. 20, No. 5-6, May-June, 1941, pp. 188-190.)
	M	ATERIALS AND ELASTICITY.
1294	Erlinger, E	Fatigue Testing Machines for Large Specimens. (Luftwissen, Vol. 18, No. 6, June, 1941, pp. 177-181.)
1 305	<u> </u>	Weldability and Crack Sensitivity of Steel. (Digest of Articles from Z. fur Mechanik, Vol. 10, No. 3, pp. 115-117.)
1312	Cornelius, R	On the Stability of Heat Resisting Materials for Internal Combustion Engines. (L.F.F., Vol. 18, No. 8, 20/8/41, pp. 289-304.)
		MISCELLANEOUS.
1 283	Rozhdestvin, N. P	Aerial Photography in Colour. (Air Fleet News, U.S.S.R., Vol. 23, No. 4, April, 1941, pp. 333-335.)
1296	Guglielmetti, A	Lines of Development of Italian Aircraft. (Luft- wissen, Vol. 8, No. 7, July, 1941, pp. 209-215.)

TITLES AND REFERENCES OF ARTICLES AND PAPERS SELECTED FROM PUBLICATIONS RECEIVED IN R.T.P.3 DURING OCTOBER, 1941.

Notices and abstracts from the Scientific and Technical Press are prepared primarily for the information of Scientific and Technical Staffs. Particular attention is paid to the work carried out in foreign countries, on the assumption that the more accessible British work (for example, that published by the Aeronautical Research Committee) is already known to these Staffs.

Index.						Items.
Theory and Practice of	Warfa	re		•••	•••	1-103
Aerodynamics and Hydr	odynar	nics	•••	•••	•••	104-120
Aircraft and Airscrews	•••	•••	•••	•••	•••	121-240
Engines and Accessories	•••	•••	•••	•••	•••	241-291
Instruments	•••	•••	•••	•••	•••	292-302
Fuels and Lubricants		•••	•••	•••	•••	303-315
Materials	•••	•••	•••	•••	•••	316-412
Meteorology and Physio	logy	•••	•••	•••	•••	413-414
Miscellaneous	•••	•••	•••	•••	•••	415-443
Production	•••	•••	•••	•••	•••	444-454
Sound, Light and Heat	•••	•••	•••	•••	•••	455-460
Wireless and Electricity	•••		•••	•••	•••	461 -48 7
,						

THEORY AND PRACTICE OF WARFARE.

ITEM	R.T.P.		
NO.	ÌF	LEF.	TITLE AND JOURNAL.
I	29222	U.S.A	Barrage Balloon Organisation of the Coast Artillery Battalion, U.S.A. (R. Arthur, Coast Artillery
2	29233	U.S.A.	J., Vol. 84, No. 4, July-Aug., 1941, pp. 306-314.) Definition of Terms Relating to Power Tracking in Coast Artillery Fire Control. (Coast Artillery J.,
3	29224.	U.S.A	Aircraft Batteries. (Coast Artillery J., Vol. 84,
4	29225	U.S.A	No. 4, July-Aug., 1941, p. 373.) 40 mm. Anti-Aircraft Automatic Cannon. (Coast Artillery J., Vol. 84, No. 4, July-Aug., 1941,
5	29226	U.S.A. ,	p. 376.) Anti-Aircraft Searchlight Material. (Coast Artil- lery J., Vol. 84, No. 4, July-Aug., 1941, pp.
6	29227	U.S.S.R	378-380.) Russian Air Force. (Flight, Vol. 40, No. 1,713, 23/10/41, pp. 274-276.)
7	29228	Great Britain	Stirling Squadron. (Flight, Vol. 40, No. 1,713, 23/10/41, pp. c-278.)
8	29229	Great Britain	

ITEM		.T.P.	
NO.	F	REF.	TITLE AND JOURNAL.
9	29230	Great Britain	Paratroop Training in the R.A.F. (Flight, Vol. 40,
10	2928 9	U.S.A	No. 1,714, 30/10/41, pp. 297-300.) Military Possibilities of Light Aircraft Engines. (C. Caldwell, Aero Digest, Vol. 39, No. 2, Aug.,
II	2 9254	U.S.A	1941, pp. 50-52.) Curtiss P40D "Kittyhawk" (Photagraph). (Aero Digest, Vol. 39, No. 2, Aug., 1941, p. 126.)
12	29255	U.S.A	Douglas A24 Dive-Bomber. (Aero Digest, Vol. 39, No. 2, Aug., 1941, p. 126.)
13	29261	U.S.A	Invisible Light for Protection Against Sabotage. (P. M. Farmer, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 171-172.)
14	2 9 2 7 I	U.S.A	Curtiss XSB2C-1 Dive-Bomber (Photograph). (Aero Digest, Vol. 38, No. 4, April, 1941, p. 86.)
15	29272	U.S.A	North American B-25 Twin-Engined Bomber (Photograph). (Aero Digest, Vol. 38, No. 4, April, 1941, p. 86.)
16	29282	Germany	He. 111K Mark V Torpedo Bomber' (Photograph). (Aeroplane, Vol. 61, No. 1,588, 31/10/41, p. 473.)
17	29283	U.S.A	The Development of the Airacobra (with Sectional Diagram). (Aeroplane, Vol. 61, No. 1,588, 31/10/41, pp. 476-479.)
18	29284	Great Britain	Parachute Troops in the R.A.F. (Aeroplane, Vol. 61, No. 1,588, 31/10/41, pp.480-481.)
19	29285	Germany	He. 115 K2 Bomber (Twin-Float Torpedo Carrier and Mine Layer). (Aeroplane, Vol. 61, No. 1,588,
20	29286	Germany	3/10/41, p. 482.) German Aeroplanes in Service (Focke-Wulf and Gothe Series). (Aeroplane, Vol. 61, No. 1,588,
21	2 9304	Germany	31/10/41, p. 483.) Engineering Officer Career in the Luftwaffe. (Flugsport, Vol. 32, No. 13, 19/6/41, pp. 191-192.)
• 22	29305	Germany	Ju. 52 Troop Transport (Photographs). (Flugsport, Vol. 32, No. 13, 19/6/41, p. 191.)
23	29306	Germany	Lysander II (Army Co-operation). (Flugsport, Vol. 32, No. 18, 28/8/40, pp. 272-274.)
24	2 9307	Germany	Morane 406 Fighter. (Flugsport, Vol. 32, No. 18, 28/8/40, pp. 274-275.)
25	29321	U.S.A	The Bell Airacobra. (Aeroplane, Vol. 61, No. 1,587, 24/10/41, pp. 448-449.)
2 6	29322	Germany	German Aeroplanes in Service (IX) (Focke-Wulf Series). (Aeroplane, Vol. 61, No. 1,587, 24/10/41, p. 451.)
27	29323	Great Britain	The Stirling as a Fighting Bomber. (Aeroplane, Vol. 61, No. 1,587, 24/10/41, pp. 452-453.)
. 28	29325	U.S.A	U.S. Military Aircraft Deliveries. (Aeroplane, Vol. 61, No. 1,587, 24/10/41, p. 457.)
2 9	29330	Germany	
30	29331	Germany	Breda 88 Twin-Engined Bomber (Photograph). (Flugsport, Vol. 32, No. 16, 31/7/40, p. 250.)
31	29336	Great Britain	Use of Paint in Camouflage. (J. G. Kert, Nature, Vol. 148, No. 3,757, 1/11/41, p. 527.)

ITEM NO.		T.P. EF.	TITLE AND JOURNAL.
32	² 9347.		The Military Pilot's Need for Instrument Flying Instruction. (F. Smith, Aero Digest, Vol. 38,
33.	29349	U.S.A	No. 3, March, 1941, pp. 62-66.) High Altitude Speed Test of Lockheed P38. (Aero Digest, Vol. 38, No. 3, March, 1941, pp. 88-92.)
34	29350	U.S.A	Flight Training in the R.A.F. (Aero Digest, Vol. 38, No. 3, March, 1941, pp. 108-113 and 274.)
35	29355 .	U.S.A	Military Aircraft of the U.S.A. (Alphabetical Digest). (Aero Digest, Vol. 38, No. 3, March, 1941, pp. 162-164.)
36	29361	U.S.A	Northrop N ₃ PB Patrol Bomber. (Aero Digest, Vol. 38, No. 3, March, 1941, pp. 250-252.)
37	29372	U.S.A	Martin Maryland (167), Baltimore (187) and Marau- der (B26). (Flight, Vol. 40, No. 1,713, 23/10/41, p. 287.)
38	29373	Germany	Heinkel Fighter He. 113 (Photograph). (Flugsport, Vol. 32, No. 10, 8/5/40, pp. 137-139.)
39	29374	U.S.A	Curtiss Hawk 75 Single-Seater Fighter (Photo- graph). (Flugsport, Vol. 32, No. 10, 8/5/40, p. 139.)
40	2 9375	U.S.A	U.S.A. Bell Two-Engined "Airacuda." (Flugs- port, Vol. 32, No. 10, 8/5/40, pp. 140-141.)
41	29376	U.S.A	Vultee Two-Engined Single-Seater Fighter. (Flugs- port, Vol. 32, No. 10, 8/5/40, p. 141.)
42	29377	Germany	The Lockheed EB-14 "Hudson" Bomber. (Flugsport, Vol. 32, No. 10, 8/5/40, pp. 141-142.)
43	29382	Great Britain	Space Heating by Means of Electrically Warmed Floors as Applied to Surface Type Air Raid Shelters (Digest). (R. Grierson, J. Inst. Elect. Eng., Vol. 88, No. 10, Pt. 1, Oct., 1941, pp.
44	29390	U.S.A	387-391.) The Chemical Warfare Service in National (U.S.A.) Defence. (W. N. Porter, Ind. and Eng. Chem. (News Ed.), Vol. 19, No. 18, 25/9/41, pp. 1,025-1,027.)
45	29393	U.S.A	B.17 Flying Fortress. (Trade Winds, Sept., 1941, pp. 2-5 and 18.)
46	29405	Great Britain	The Russian Air Force. (The Engineer, Vol. 172, No. 4,478, 7/11/41, p. 314.)
47	29411	Germany	U.S.S.R. Single-Seat Fighter 1-16 (with Photo- graph). (Flugsport, Vol. 32, No. 26, 18/12/40, pp. 448-449.)
48	29412	Germany	Suggested Designs for Twin-Engined Fighters. (Flugsport, Vol. 32, No. 26, Dec. 18th, 1940,
49	29413	Germany	pp. 450-451.) • Some British Patents on Remotely Controlled Air- craft Guns. (Flugsport, Vol. 32, No. 26,
50	29421	Germany	18/12/40, pp. 454-455.) Cartridge Box for Wing Guns (Patent No. 699,414). (Patent Collection, No. 39, Arado, Flugsport, Vol. 32, No. 26, 18/12/40, p. 60.)
51	2 94 2 4	Germany	Retractable Undercarriage Details of Heinkel He. 111, F.W. 200 and Ar. 79. (Wissen und Fortachritt, Vol. 15, No. 8, Aug., 1941, pp. 418-419.)

TITLES AND REFERENCES OF ARTICLES AND PAPERS.

ITEM	R	.T.P.	
NO.		EF.	TITLE AND JOURNAL.
52	2 9431	U.S.A	Japanese Air Power: (L. Zacheroff, Aviation, Vol.
53	29438	U.S.A	40, No. 9, Sept., 1941, pp. 48-49 and 146-150.) Messerschmitt Me. 110C (Sectional Drawings). (Aviation, Vol. 40, No. 9, Sept., 1941, p. 79.)
54	29439	U.S.A	Landing Gear Mechanism of Boeing Flying Fortress. (Aviation, Vol. 40, No. 9, Sept., 1941, p. 81.)
55	2 944 I	U.S.A	D.G.A160 Advance Trainer (Howard). (Aviation, Vol. 40, No. 9, Sept., 1941, p. 91.)
56	2 9464	Great Britain	Handley Page "Halifax" in Service. (Flight, Vol. 40, No. 1,715, 6/11/41, pp. 322-324.)
57	29466	Great Britain	Equivalent Ranks in Allied Air Forces. (Flight, Vol. 40, No. 1,715, 6/11/41, p. 330.)
58 [·]	2 9467 [°]	U.S.A	Douglas Boston III (Photograph). (Aeroplane, Vol. 61, No. 1,589, 7/11/41, p. 499.)
59	2 9469	Great Britain	Northrop Experimental Tail-less Fighter (Photo- graph). (Aeroplane, Vol. 61, No. 1,589, 7/11/41, p. 501.)
60	2 9470	Great Britain	Handley Page "Halifax." (Aeroplane, Vol. 61, No. 1,589, 7/11/41, pp. 506-507.)
61	29471	Germany	German Aeroplanes in Service (XI) (Gotha and Heinkel Series). (Aeroplane, Vol. 61, No. 1,589,
62	2 94 8 4	Germany	7/11/41, p. 509.) Soviet Aircraft Types (J.15, J.153, J.16, S.B.2, S.B.3 and D.B.3). (Flugsport, Vol. 33, No. 15, 23/7/41, pp. 293-298.)
63	29485	Italy	Cant. Z. 1007 bis Bomber. (Flugsport, Vol. 33, No. 16, 6/8/41, pp. 317-319.)
64	2 9493	Germany	Aircraft Machine Gun Mounting (Patent No. 708,025). (M.W.N. (Patent Collection, No. 10.) Flugsport, Vol. 33, No. 16, 6/8/41, pp. 38-39.)
. ⁶⁵	29508	Japan	Mitsubishi 92 Bomber (Photograph). (Aeroplane, Vol. 61, No. 1,590, 14/11/41, p. 531.)
66	29509	Great Britain	Avro "Manchester." (Aeroplane, Vol. 61, No. 1,590, 14/11/41, p. 541.)
67	29511	Germany	German Aeroplanes in Service (XII) (Heinkel Series). (Aeroplane, Vol. 61, No. 1,590, 14/11/41,
68	29513	Germany	p. 549.) Me. 109 Camouflaged for Desert Warfare (Photo- graph). (Flight, Vol. 40, No. 1,716, 13/11/41,
69	29517	Great Britain	p. 333.) Avro "Manchester" Heavy Bomber. (Flight, Vol. 40, No. 1,716, 13/11/41, pp. 339-341.)
70	29527	Germany	Photographic Reconnaissance (Illustrated). (Luft- welt, Vol. 8, No. 19, 1/10/41, pp. 364-375.)
71	2 9550	Germany	Arado AR96B (Trainer). (Flugsport, Vol. 32, No. 12, 5/6/40, pp. 165-167.)
72	29551	U.S.A	U.S.A. Stearman X100 (XA-21) Bomber. (Flugsport, Vol. 32, No. 12, 5/6/40, p. 167.)
73	2 9552	U.S.A	U.S.A. Grumman F3F-3. (Flugsport, Vol. 32, No. 12, 5/6/40, p. 168.)
74	2 9554	Germany	Ju. 52 Ambulance Plane. (Flugsport, Vol. 32, No. 12, 5/6/40, p. 169.)
75	2 9559	Germany	Container for Flares Carried on Aircraft (689,843). (Henschel (Pat. Coll. No. 27), Flugsport, Vol. 32, No. 12, 5/6/40, p. 106.)

ITEM NO.		.T.P. REF.	TITLE AND JOURNAL.
		Germany	
77	29562	Germany	5/6/40, p. 108.) Improvement in Smoke Signals (689,791). (Ferstel (Pat. Coll. No. 27), Flugsport, Vol. 32, No. 12, 5/6/40, p. 108.)
78	29564	Italy	Italian F.S. Single-Seat Fighter with Fiat A.74, R.C. 38. (Flugsport, Vol. 32, No. 14, 3/7/40, pp. 201-202.)
79	29565	Germany	Arado AR.196 Coastal Reconnaissance (Photo- graph). (Flugsport, Vol. 32, No. 14, 3/7/40, p. 203.)
80	29574	Great Britain	British Two-Seater Hawker "Hotspur" Fighter (Photograph). (Flugsport, Vol. 32, No. 15, 17/7/40, pp. 222-223.)
81	2 9579	Germany	Incendiary Leuf (Photograph). (Flugsport, Vol. 32, No. 20, 25/9/40, p. 317.)
82	29586	Germany	Some Notes on Repair and Maintenance at an Advance German Air Base in Sicily. (Junkers Journal, Vol. 12, No. 5-6, May-June, 1941, pp. 70-72.) (Abstract available.)
83	29596	Great Britain	American Views on Air Force Control by the Army. (Flight, Vol. 40, No. 1,717, 20/11/41, pp.
84	29 598	Great Britain	356-357.) Asbestos Suits for Fire Rescues. (Flight, Vol. 40, No. 1,717, 20/11/41, p. h.)
85	295 99	Great Britain	"Manchester" Squadron. (Flight, Vol. 40, No. 1,717, 20/11/41, pp. 352, 359-361.)
86	29600	Great Britain	
88	2 9614	Great Britain	Spitfire V (Two Cannons and Four Machine Guns) (Photograph). (Airc. Eng., Vol. 13, No. 153, Nov., 1941, pp. 306 and 318.)
89	29615	Great Britain	Hurricane IIb and IIc (Four Cannon or Twelve Machine Guns) (Photograph). (Airc. Eng., Vol. 13, No. 153, Nov., 1941, pp. 307 and 318.)
90	2 9616	Great Britain	American Notes on the Me. 110. (J. C. Thompson, Airc. Eng., Vol. 13, No. 153, Nov., 1941, pp. 308-310.)
91	29623	Germany	
9 2	29624	Germany	Personal Equipment of Air Crew Carrying Out Enemy Raids. (Flugsport, Vol. 33, No. 22, 29/10/41, pp. 434-435.)
93	29627	Germany	Anti-Dazzle Device for Glass Cockpits (711,793). (Heinkel (Pat. Coll. No. 15), Flugsport, Vol. 33, No. 22, 29/10/41, p. 57.)
94	29643	Great Britain	Vulnerability of Aircraft Carriers. (Aeroplane, Vol. 61, No. 1,591, 21/11/41, pp. 554-555.)
95	29644	Great Britain	Cable Fenders for Aeroplanes. (Aeroplane, Vol. 61, No. 1,591, 21/11/41, pp. 556.)

TITLES AND REFERENCES OF ARTICLES AND PAPERS.

ITEM		.T.P.	
NO.		EF.	TITLE AND JOURNAL.
96		Great Britain	Bristol Turrets. (Aeroplane, Vol. 61, No. 1,591, 21/11/41, pp. 562-563.)
97	2 9646	Great Britain	Avro "Manchester" I. (Aeroplane, Vol. 61, No. 1,591, 21/11/41, pp. 564-565.)
98	2 9647	Germany	German Aeroplanes in Service (XIII) (Heinkel Series). (Aeroplane, Vol. 61, No. 1,591, 21/11/41, p. 573.)
99	29651	Great Britain	Development of Bristol Aircraft Gun Turrets. (Engineer, Vol. 172, No. 4,480, 21/11/41, pp. 357-358.)
100	29661	U.S.A	Gun Installation in Hurricane II (Photograph). (Autom. Ind., Vol. 85, No. 8, 15/10/41, p. 44.)
102	29674	U.S.A	Bullet-Sealing Hose Pipe for Combat Planes. (Sci. Amer., Vol. 165, No. 5, Nov., 1941, pp. 249-250.)
103	29676	U.S.A	Value of Black-Out as a Means of A.A. Defence Questioned. (Sci. Amer., Vol. 165, No. 5, Nov., 1941, p. 250.)
		Aeroi	DYNAMICS AND HYDRODYNAMICS.
104	29280	U.S.A	Wright Field New 20 ft. Wind Tunnel. (Aero Digest, Vol. 38, No. 4, April, 1941, p. 140.)
105	29386	Great Britain	Characteristics of Fire Jets (Discussion and Errata). (J. S. Blair, J. Inst. Civ. Engs., Vol. 16, No. 8, Oct., 1941, pp. 597-599.)
108	29392	Great Britain	A Method for Making Streamlines Momentarily Visible by Means of Phosphorescent Zinc Sul- phides. (A. M. Binnie and E. J. Bowen, Procs. Camb. Phil. Soc., Vol. 37, Pt. 4, 1941, pp. 436-437.)
109	29488	Germany	Some Modern Views on Atmospheric Turbulence and Sailing Flight. (H. Trick, Flugsport, Vol. 33, No. 16, 6/8/41, pp. 332-334.)
110	29503	Great Britain	 Distribution of Velocity Within a Nest of Tubes. (R. P. Wallis, Engineering, Vol. 152, No. 3,956, 7/11/41, pp. 361-363.)
111	295 19	Japan	The Characteristics of the Aerofoil with Discon- tinuities Along the Span, with Special Reference to the Effects of Cut-Out. (T. Okamoto, Aero. Res. Inst., Tokyo, No. 208, May, 1941, pp. 207-263.) (Abstract available.)
112	2 9542	Great Britain	The Friction and Heat Transmission Coefficients of Rough Pipes. (W. F. Cope, Procs. Inst. Mech. Engs., Vol. 145, No. 3, June, 1941, pp. 99-105.) (Abstract available.)
113	29592	Germany	The Aerodynamics of Animal Flight. (D. Kuche- mann and E. Holst, Luftwissen, Vol. 8, No. 9, Sept., 1941, pp. 277-282.)
114	29609	Great Britain	The Shape of a Liquid Jet as a Graphical Solution of Bernoulli's Equation. (J. M. A. Leniham, Phil. Mag., Vol. 32, No. 214, Nov., 1941, pp.
			393-400.)

ITEM		Т.Р.	
NO.		EF.	TITLE AND JOURNAL.
115	29625	Germany	Contribution to the Problem of Oscillating Wing Flight. (Flugsport, Vol. 33, No. 22, 29/10/41,
117	2 9665	U.S.A	pp. 435-438.) On the Statistical Theory of Turbulence. (C. L. Pekeris, J. Aeron. Sci., Vol. 8, No. 12, Oct., 1041, pp. 475-476.) (Abstract evailable.)
118	2 9667	Germany	1941, pp. 475-476.) (Abstract available.) The Development of the Cowled Propeller for Ship Propulsion. (Z.V.D.I., Vol. 85, No. 39-40,
119	29689	Germany	4/10/41, p. 812.) A Method for Calculating the Theoretical Charac- teristics of Turbo Machines (Rotating Blade Systems). (G. Klingemann, Ing. Arch., Vol. 11, No. 3, June, 1940, pp. 151-178.)
120	29 691	Germany	The Hydrodynamic Theory of Bearing Friction. (R. Nature, Ing. Arch., Vol. 11, No. 3, June, 1940, pp. 191-209.)
		A	AIRCRAFT AND AIRSCREWS.
121	29231	Great Britain	Wing Weight Estimations. (C. R. Engleberry, Flight, Vol. 40, No. 1,714, 30/10/41, pp. 301-304.)
122	292 37	Great Britain	A Note on the Limitation of Aircraft and Aerofoils Used for High Flying Aircraft. (J. A. C. Williams, J. Roy. Aeron. Soc., Vol. 45, No. 370,
123	292 40	U.S.A	Oct., 1941, pp. 323-325.) Salvage Operation on Aeroplanes Embedded in Ice. (Aero Digest, Vol. 39, No. 2, Aug., 1941, pp.
124	2 924 I	U.S.A	53, 223.) Simple Cockpit Arrangement Needed. (F. Smith, Aero Digest, Vol. 39, No. 2, Aug., 1941, p. 54.)
125	29242	U.S. A	Standard Runway Marking. (Aero Digest, Vol. 39, No. 2, Aug., 1941, p. 58.)
126	2 9243	U.S. A	Low Cost Bases for Seaplanes. (Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 59 and 61.)
127	292 44	U.S.A	Master Plan for Airport Development. (Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 60-61.)
128	2924 6	U.S.A	Modern Hangar Door Design (Canopy Type). (J. I. Byrne, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 80-82.)
129	2 9247	U.S.A	Flotation Fueling System for Airport. (A. C. Kaestner, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 80-86.)
130	2 9248.	U.S.A	Speed in Concrete Airport Paving. (A. A. Anderson, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 88-90, 230-231.)
131	29249	U.S.A	A Design for the Airport of To-morrow. (A. Andrews, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 92-94.)
132	29250	U.S.A	The Airport Programme of the C.A.A. (D. H. Connolly, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 571-594.)
133	29251	U.S.A	The Dual Role of the Airport (Civil and Military). (J. W. Wood, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 97-98, 224.)

ITEM	R	. T .P.	
NO.]	REF.	TITLE AND JOURNAL.
134	29252	U.S.A	General Design and Materials Used in Hangar Construction. (E. K. Harvey, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 101-104.)
135	29253	U.S.A	
137	29258	U.S.A	Aircraft Cost Control. (G. M. Giannini, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 187-189 and 192.)
138	29263	U.S.A	Advantages of the New Explosive Rivets. (D. L. Lewis, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 183 and 228.)
139	29264	U.S.A	Flat, Extended Tread Aircraft Tyres for Soft Ground Operation. (Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 195-196.)
140	29273	U.S.A	Balancing Aircraft Propellers (III). (M. C. Beebe, Aero Digest, Vol. 38, No. 4, April, 1941, pp. 102-109, 193-194.)
141	29279	U.S.A	Socket Head Cap Screw (Design Applications). (W. C. Stauble, Aero Digest, Vol. 38, No. 4, April, 1941, pp. 136-139.)
142	29300	Germany	Savoia-Marchetti S.M.87 Transport Plane. (Flugs- port, Vol. 32, No. 13, 19/6/40, pp. 182-183.)
143		Germany	Block 161 Four-Engined Transport Plane (French). (Flugsport, Vol. 32, No. 13, 19/6/40, pp. 183.)
144	29302	Germany	Effect of Surface Roughness on Profile Charac- teristics (Mainly Based on N.A.C.A. Results). (Profit Notes, No. 21, Flugsport, Vol. 32, No.
145	29309	Germany	13, 19/6/41, pp. 81-84.) Arrangement for Jettisoning Rear Portion of Fuselage for Quick Egress of Aircraft Crew (Patent 694,019). (Patent Collection, No. 32, Messerschmitt, Flugsport, Vol. 32, No. 18,
		÷	28/8/40, p. 125.)
146	29310	Germany	Boundary Layer Control by Suction (Patent 693,398). (Patent Collection, No. 32, Junkers, Flugsport, Vol. 32, No. 18, 28/8/40, p. 125.)
147	29311	Germany	Elastic Wing Root Fairings (Patent No. 694,021). (Patent Collection, No. 32, Messerschmitt, Flugsport, Vol. 32, No. 18, 28/8/40, p. 126.)
148	29312	Germany	Mass Balance of Control Surface (Patent No. 693,900). (Patent Collection, No. 32, Heinkel, Flugsport, Vol. 32, No. 18, 28/8/40, p. 126.)
149	29313	Germany	Pipe Joints with Conical Screw Threads (Patent No. 692,061). (Patent Collection, No. 32, Junkers, Flugsport, Vol. 32, No. 18, 28/8/40, p. 127.)
150	29315	Germany	Slotted Flaps (Patent No. 693,899). (Patent Collec- tion, No. 32, Focke-Wulf, Flugsport, Vol. 32, No. 18, 28/8/40, p. 125.)
151	29320	U.S.A	Cold Proof Neoprene Tyre F.R. (Autom. Ind., Vol. 85, No. 6, 15/9/41, p. 39.)
152	293 2 4	Great Britain	Electric Power in Aircraft, III. (J. B. Holliday, Aeroplane, Vol. 61, No. 1,587, 24/10/41, pp.
		1. J.	454-455.)

ITEM		R.T.P.		
NO.		EF.		TITLE AND JOURNAL.
153		Germany		High Speed Profiles (Profile Note No. 22). (Flugsport, Vol. 32, No. 16, 31/7/40, pp. 85-88.)
154	29328	Germany	•••	Universal Joints of Ball and Socket Type (Eckelt). (Flugsport, Vol. 32, No. 16, 31/7/40, p. 238.)
155	29332	Germany		Transparent Plastic Shells for Aircraft (Self- Supporting) (Patent No. 693,159). (Patent Col- lection, No. 30, Junkers, Flugsport, Vol. 32,
156	29333	Germany		No. 16, 31/7/41, p. 117.) Reduction of Resistance at Supersonic Speeds by Boundary Layer Suction (Patent No. 693,574). (Patent Collection, No. 30, Arado, Flugsport,
157	29351	U.S.A.	<i></i>	Vol. 32, No. 16, 31/7/40, p. 118.) Proposed Changes in the C.A.A. Regulations for Wheel Brakes. (Aero Digest, Vol. 38, No. 3, March, 1941, p. 114.)
158	29354	U.S.A.		Private and Commercial Aircraft of the U.S.A. (Technical Digest). (Aero Digest, Vol. 38, No. 3, March, 1941, pp. 139-162, 198-200.)
159	29362	U.S.A.	•••	Balancing Aircraft Propellers, II. (M. C. Beebe, Aero Digest, Vol. 38, No. 3, March, 1941, pp. 256-260 and 272.)
160	29363	U.S.A.		Automatic Cable Tension Regulator for Aircraft Installations. (Aero Digest, Vol. 38, March,
161	29 36 4	U.S.A.		1941, p. 264.) Electrically-Controlled Landing Gear Tester. (Aero Digest, Vol. 38, No. 3, March, 1941, p. 268.)
162	29383	U.S.A.		Loose Objects in Cabin a Source of Danger during Violent Manœuvres. (Civil Aeronautics J., Vol.
164	29410	Germany	,	2, No. 18, 15/9/41, p. 236.) Italian Sailplane Trainer Cat-15 (with Photograph). (Flugsport, Vol. 32, No. 26, 18/12/40, p. 448.)
165	29414 a	Germany	•••	Multi-Engined Land Plane with Seaworthy Cabin which can be Jettisoned (Patent 699,351).
166	29415	Germany		 (Patent Collection, No. 39, Henschel, Flugsport, Vol. 32, No. 26, 18/12/40, p. 157.) Cockpit Covering-Constructional Features (Patent No. 699,065). (Patent Collection, No. 39, Henschel, Flugsport, Vol. 32, No. 26, 18/12/40, p. 154.)
167	29416	Germany	•••	Folding Seats for Aircraft (Patent No. 699,106). (Patent Collection, No. 39, Henschel, Vol. 32, No. 26, 18/12/40, pp. 157-158.)
168	29418	Germany	•	Zigzag Wing with Engine Installed Inside Wing at the Vertices (Patent No. 699,412). (Patent Collection, No. 39, Messerschmitt, Flugsport,
169 •	29419	Germany		Vol. 32, No. 26, 18/12/40, p. 158.) Reduction of Surface Friction of a Wing Surface by the Ejection of Air (Patent No. 699,066). Patent Collection, No. 39, D.V.L., Flugsport, Vol. 32, No. 26, 18/12/40, p. 158.)
170	29420	Germany		Safety Device in Aircraft Structural Parts to Pre- vent Aerodynamic Overload (Air Leaks or Ripping Panel) (Patent No. 699,067). (Patent Collection, No. 39, Focke-Wulf, Flugsport, Vol. 32, No. 26, 18/12/40, p. 159.)

ITEM NO.		.T.P. REF.	
		U.S.A	TITLE AND JOURNAL. Standard and Modified Aeroplane Specifications Prepared by Special Engineering Staff at Lock- heed. (P. A. Peck and R. H. Robb, Aviation, Vol. 40, No. 9, Sept., 1941, pp. 56-57 and 182-184.)
172	29435	U.S.A	
173	2 9459	U.S.A	Martin 170 Flying Boat (XPB2M-1) (Photograph). (Flight, Vol. 40, No. 1,715, 6/11/41, p. 310.)
174	29463	Great Britain	Future of Civil Aviation. (Flight, Vol. 40, No.
175	2946 8	U.S.A	1,715, 6/11/41, pp. 318-321.) Fuselage Erection of the Fairey "Albacore" (Photograph). (Aeroplane, Vol. 61, No. 1,589, 7/11/41, p. 500.)
176	2 9474	Germany	Pressure Cabins for High Altitude Aircraft (Patent No. 707,313). (Henschel (Patent Collection, No. 9), Flugsport, Vol. 33, No. 15; 23/7/41, p. 33.)
177	2 9475	Germany	Tailless Aircraft Design (Patent No. 707,463). (Messerschmitt (Patent Collection, No. 9), Flugs-
178	29476	Germany	port, Vol. 33, No. 15, 23/7/41, p. 33.) Slotted Flap Mechanism (Patent No. 706,959). (Dornier (Patent Collection, No. 9), Flugsport, Vol. 33, No. 15, 23/7/41, p. 33.)
179	2 9477	Germany	
180	2947 8	Germany	
181	29 479	Germany	
182	29480	Germany	
183	29481	Germany	
184	29483	Germany	
_		Germany	Aircraft Design Features—Some Simple Examples of Saving Weight (Dornier). (Flugsport, Vol. 33, No. 16, 6/8/41, pp. 321-324.)
186	29489	Germany	Collapsible Seat for Aircraft (Prone Position) (Patent No. 708,248). (Heinkel (Patent Collec- tion, No. 10), Flugsport, Vol. 33, No. 16, 6/8/41, p. 37.)

ITEM NO.		.T.P. REF.	TITLE AND JOURNAL.
		Germany	Increasing Effect of Spoiler for Lateral Control by Ejecting Air into Spoiler Wake (Patent No. 707,868). (Goettingen Aerodynamic Laboratory (Patent Collection, No. 10), Flugsport, Vol. 33, No. 16, 6/8/41, pp. 37-38.)
188	2 9491	Germany	Vibration Damper for Control Surface and Flaps (Patent No. 707,678). (Henschel (Patent Collec- tion, No. 10), Flugsport, Vol. 33, No. 16, 6/8/41, . p. 38.)
189	29492 *	Germany	Damping Control Surfaces (Patent No. 708,228). (Messerschmitt (Patent Collection, No. 10), Flugsport, Vol. 33, No. 16, 6/8/41, p. 38.)
190	2 9494	Germany	Method of Connecting Badly Fitting Plates on Aircraft by Means of Special Bolt Plates (Patent No. 708,105). (Messerschmitt (Patent Collection, No. 10), Flugsport, Vol. 33, No. 16, 6/8/41, p. 39.)
191	2 9495	Germany	Helicopter Blade Incidence Control (Patent No. 707,982). (German Govt. (Patent Collection, No. 10), Flugsport, Vol. 33, No. 16, 6/8/41, p. 39.)
19 2	2 9496	Germany	Spring Control for Castoring Aircraft Tail Wheel (Patent No. 706,961). (Fieseler (Patent Collec- tion, No. 10), Flugsport, Vol. 33, No. 16, 6/8/41, p. 39.)
193	2 9497	Germany	Leaf Springs for Undercarriage Legs (Patent No. 708,026). (Mahle (Patent Collection, No. 10), Flugsport, Vol. 33, No. 16, 6/8/41, p. 39.)
194	2 9507	U.S.A	
195	29510	Great Britain	<i>Tailless Aircraft.</i> (Aeroplane, Vol. 61, No. 1,590, 14/11/41, pp. 542-545.)
196	2 9514	Great Britain	Northrop Tailless Aircraft. (Flight, Vol. 40, No. 1,716, 13/11/41, pp. 337-338.)
197	29525	Germany	The Historical Development of the Junkers Single and Multi-Engined Transport Plane. (Junkers Journal, Vol. 12, No. 1 and 2, JanFeb., 1941, pp. 11-20.)
198	29548	Germany	Boundary Layer Control by Suction. (Messer- schmitt (Pat. Coll., No. 26), Flugsport, Vol. 32, No. 11, 22/5/40, p. 102.)
199	2 9549	Germany	Aileron Spoiler Combination for Lateral Control. (Messerschmitt (Pat. Coll., No. 26), Flugsport, Vol. 32, No. 11, 22/5/40, p. 104.)
200	29553	Germany	Project for 100-t Transatlantic Douglas (Six Engines). (Flugsport, Vol. 32, No. 12, 5/6/40, pp. 168-169.)
201	2 9556	Germany	Retractable Cooler Installed in Nose Wing Slot (689,840). (Siebel (Pat. Coll., No. 27), Flugs- port, Vol. 32, No. 12, 5/6/40, p. 105.)
202	29557	Germany	Fuel Drain for Sub-Divided Fuel Tanks, Operating Under all Conditions of Bank (689,841). (Heinkel (Pat. Coll., No. 27), Flugsport, Vol. 32, No. 12, 5/6/40, p. 105.)

ITEM NO.		.T.P. REF.	TITLE AND JOURNAL.
203		Germany	Immersed Fuel Pump Installations (689,842). (Heinkel (Pat. Coll., No. 27), Flugsport, Vol. 32, No. 12, 5/6/40, pp. 105-106.)
204	29563	Germany	Cable Arrester Gear for Aircraft (687,927). (Arado (Pat. Coll., No. 27), Flugsport, Vol. 32, No. 12, 5/6/40, p. 108.)
205	29567	Germany	Anti-Dazzle Devices for Cockpits (691,758). (Heinkel (Pat. Coll., No. 28), Flugsport, Vol. 32, No. 14, 3/7/40, p. 109.)
206	29568	Germany	Device for Jettisoning Cockpit Roof (691,836). (Henschel (Pat. Coll., No. 28), Flugsport, Vol. 32, No. 14, 3/7/40, pp. 109-110.)
207	2 9569	Germany	Rotatable Jig for the Construction of Flat Aircraft Parts (691,513). (Dornier (Pat. Coll., No. 28), Flugsport, Vol. 32, No. 14, 3/7/40, p. 111.)
208	29579	Germany	Mass Balance of Ailerons and Flaps (691,395). (Heinkel (Pat. Coll., No. 28), Flugsport, Vol. 32, No. 14, 3/7/40, p. 112.)
209	29571	Germany	ITS-8M Motor Sailplane. (Flugsport, Vol. 32, No. 15, 17/7/40, pp. 219-221.)
210	29572	Germany	Amphibian Flying Boat HA22. (Flugsport, Vol. 32, No. 15, 17/7/40, p. 221.)
211	29573	Germany	Amphibian Flying Yacht Ha 23. (Flugsport, Vol. 32, No. 15, 17/7/40, p. 222.)
212	29575	Germany	Method of Changing Gear Ratio Between Main Rudder and Tab (691,115). (Heinkel (Pat. Coll., No. 29), Flugsport, Vol. 32, No. 15, 17/7/40, p. 225.)
213	29576	Germany	Steerable Tail Wheel (690,656). (Arado (Pat. Coll., No. 29), Flugsport, Vol. 32, No. 15, 17/7/40, pp. 114-115.)
214	29577	Germany	Wing Tip Floats (690,819). (Dornier (Pat. Coll., No. 29), Flugsport, Vol. 32, No. 15, 17/7/40, p. 116.)
215	29580	Germany	Variable Pitch Control Mechanism. (Escher-Wyss (Pat. Coll., No. 34), Vol. 32, No. 20, 25/9/40, pp. 134-135.)
216	29583	Germany	Pressure Surges in High Pressure Hydraulic Pipe Lines. (G. Reid, Z.V.D.I., Vol. 85, No. 29, 19/7/41, pp. 639-643.)
217	29594	Germany	Performance of Aircraft Wheels and Brakes. (H. Burkhardt, Luftwissen, Vol. 8, No. 9, Sept., 1941, pp. 289-291.) (Abstract available.)
218	29601	'Great Britain	Reinforced Wood as an Airscrew Blade Material. (W. R. Chown, Flight, Vol. 40, No. 1,717, 20/11/41, pp. 365-367.)
219	29603	Great Britain	Calculation of the Stresses in Annular Frames. (R.T.P. Translation No. 1,218.) (H. Fahlbusch and W. Weyner, J. Roy. Aeron. Soc., Vol. 45, No. 371, Nov., 1941, pp. 349-360.)
220	29613	Great Britain	Pressure Cabins and Temperatures. (H. M. T. Kittelsen, Airc. Eng., Vol. 13, No. 153, Nov., 1941, pp. 303-305.)

.

ITEM NO.		. T.P. R E F.		TITLE AND JOURNAL.
		U.S.A.	••••	Vibration Tests and Flutter (from the U.S.A.). (C. B. Lyman, Airc. Eng., Vol. 13, No. 153, Nov., 1941, pp. 311-317.)
222	29621	Germany	•	Glass-Iron Concrete Combination for Skylight and Windows of Airport Structures. (O. Volckers, Flughafen, Vol. 9, No. 8, Aug., 1941, pp. 9/13.)
223	29628	Germany	•••	 High Speed Wing Profile (Pointed Nose and Suction Control Trailing Edge (710,780). (D.V.L. (Pat. Coll., No. 15), Flugsport, Vol. 33, No. 22, 29/10/41, p. 57.)
		Germany		Adjustable Incidence for Wing Elevator Combina- tion (Maintaining Altitude at Low Speeds) (711,216). (Rohrbach (Pat. Coll., No. 15), Flugs- port, Vol. 33, No. 22, 29/10/41, p. 58.)
225	29630	Germany	••••	Method for Increasing Longitudinal Stability of Aircraft with Free Controls (711,264). (Dornier (Pat. Coll., No. 15), Flugsport, Vol. 33, No. 22, 29/10/41, pp. 59-60.)
226	29631	Germany	•••	Aircraft Wheels (711,859). (V.D.M. (Pat. Coll., No. 15), Flugsport, Vol. 33, No. 22, 29/10/41, p. 61.)
227	29632	Germany	••••	Hot Air Control for Wing De-Icing (709,354). (Focke-Wulf (Pat. Coll., No. 15), Flugsport, Vol. 33, No. 22, 29/10/41, p. 63.)
228	29633	Germany	•••	Device for Protecting the Aircraft Wing Structure Against Damage from Air Escaping at High Pressure in Case Wheel Tyre is Punctured whilst in the Retracted Position (Automatic Deflation and Re-inflation) (710,738). (Blackmann (Pat. Coll., No. 15), Flugsport, Vol. 33, No. 22, 29/10/41, pp. 61-62.)
229	29634	Germany		Air Brake Control (708,964). (Dornier (Patt. Coll., No. 15), Flugsport, Vol. 33, No. 22, 29/10/41, p. 63.)
230	29635	Germany		Brake Shoes for Aircraft Wheels (712,010). (V.D.M. (Pat. Coll., No. 15), Flugsport, Vol. 33, No. 22, 29/10/41, p. 62.)
231	2963 6	Germany	•••	Balanced Air Brakes of the Flap Type (708,447). (D.F.S. (Pat. Coll., No. 15), Flugsport, Vol. 33. No. 22, 29/10/41, pp. 62-63.)
232	29637	Germany	•••	Hot Air Control for Wing De-Icing (711,287). (Junkers (Pat. Coll., No. 15), Flugsport, Vol. 33, No. 22, 29/10/41, pp. 63-64.)
233	29638	Germany		Variable Pitch Propeller Mechanism (710,739). (Argus (Pat. Coll., No. 15), Flugsport, Vol. 33. No. 22, 29/10/41, p. 64.)
235	29653	Germany		Fifteen Years' Operation by the Lufthansa-A Review of Some Outstanding Achievements Over this Period. (T. Matthias, Flughafen, Vol. 9, No. 7, July, 1941, pp. 14-17.)
239	29684	Germany	····	Bending Vibration of Airscrew Blades. (E. Maier, Ing. Arch., Vol. 11, No. 2, April, 1940, pp. 73-98.)

 NO. REF. TITLE AND JOURNAL. 240 29685 Germany The Calculation of the Accelerated Longita Motion of an Aircraft. (W. Muller, Ing. A Vol. 11, No. 2, April, 1940, pp. 99-117.) ENGINES AND ACCESSORIES. 241 29218 U.S.A A History of Engine Supercharging. (R. R. D J. Aer. Sci. (Rev. Sec.), Vol. 8, No. 11, 1941, pp. 41-43.) 243 29256 U.S.A Problems of Engines Enclosed in Wings. (C Tweeney, Aero Digest, Vol. 39, No. 2, 1941, pp. 142-144 and 224.) 244 29268 U.S.A New Marvel Carburettor with Accelerating F (Aero Digest, Vol. 39, No. 2, Aug., 194 199.) 245 29287 Great Britain Turbo-Superchargers for Aeroplanes (I). (Mass, Aeroplane, Vol. 61, No. 1,588, 31/ pp. 492-494.) 246 29298 Germany The Machining of Aero Engine Fins with the 	
Vol. 11, No. 2, April, 1940, pp. 99-117.) ENGINES AND ACCESSORIES. 241 29218 U.S.A A History of Engine Supercharging. (R. R. D J. Aer. Sci. (Rev. Sec.), Vol. 8, No. 11, 1941, pp. 41-43.) 243 29256 U.S.A Problems of Engines Enclosed in Wings. (C Tweeney, Aero Digest, Vol. 39, No. 2, 1941, pp. 142-144 and 224.) 244 29268 U.S.A New Marvel Carburettor with Accelerating F (Aero Digest, Vol. 39, No. 2, Aug., 194 199.) 245 29287 Great Britain Turbo-Superchargers for Aeroplanes (I). (Mass, Aeroplane, Vol. 61, No. 1,588, 31/ pp. 492-494.)	ıdinol
 241 29218 U.S.A A History of Engine Supercharging. (R. R. D. J. Aer. Sci. (Rev. Sec.), Vol. 8, No. 11, 1941, pp. 41-43.) 243 29256 U.S.A Problems of Engines Enclosed in Wings. (C. Tweeney, Aero Digest, Vol. 39, No. 2, 1941, pp. 142-144 and 224.) 244 29268 U.S.A New Marvel Carburettor with Accelerating F (Aero Digest, Vol. 39, No. 2, Aug., 1941, 199.) 245 29287 Great Britain Turbo-Superchargers for Aeroplanes (I). (Mass, Aeroplane, Vol. 61, No. 1,588, 31/ pp. 492-494.) 	11cu.,
J. Aer. Sci. (Rev. Sec.), Vol. 8, No. 11, 1941, pp. 41-43.) 243 29256 U.S.A. Problems of Engines Enclosed in Wings. (O Tweeney, Aero Digest, Vol. 39, No. 2, 1941, pp. 142-144 and 224.) 244 29268 U.S.A. New Marvel Carburettor with Accelerating F (Aero Digest, Vol. 39, No. 2, Aug., 194 199.) 245 29287 Great Britain Turbo-Superchargers for Aeroplanes (I). Mass, Aeroplane, Vol. 61, No. 1,588, 31/ pp. 492-494.)	
 243 29256 U.S.A Problems of Engines Enclosed in Wings. (C Tweeney, Aero Digest, Vol. 39, No. 2, 1941, pp. 142-144 and 224.) 244 29268 U.S.A New Marvel Carburettor with Accelerating F (Aero Digest, Vol. 39, No. 2, Aug., 194- 199.) 245 29287 Great Britain Turbo-Superchargers for Aeroplanes (I). (Mass, Aeroplane, Vol. 61, No. 1,588, 31/ pp. 492-494.) 	exter, Sept.,
 244 29268 U.S.A New Marvel Carburettor with Accelerating F (Aero Digest, Vol. 39, No. 2, Aug., 194- 199.) 245 29287 Great Britain Turbo-Superchargers for Aeroplanes (I). (Mass, Aeroplane, Vol. 61, No. 1,588, 31/ pp. 492-494.) 	i. W. Aug.,
245 29287 Great Britain Turbo-Superchargers for Aeroplanes (I). (1 Mass, Aeroplane, Vol. 61, No. 1,588, 31/ pp. 492-494.)	'ump. 1, p.
	5. A. 10/41,
246 20208 Germany The Machining of Aero Engine Fine with the	
Automatic. (E. Grund, Progressus, Vol. 6 6, June, 1941, pp. 298-299.)	
247 29299 Germany M.A.N. Transport Diesel with Specially Low Consumption (160 g./b.h.p. hour). (Progr	
Vol. 6, No. 6, June, 1941, pp. 299-300.)	
248 29308 Germany Guiberson Four-Stroke Diesel Aero Engine h.p.). (Flugsport, Vol. 32, No. 18, 28/8/40 275-277.)	
249 29314 Germany Jet Propulsion (Patent No. 692,163). (Paten lection, Collection, No. 32, Stipa, Flug Vol. 32, No. 18, 28/8/40, p. 128.)	t Col- sport,
250 29317 U.S.A Fuel Injection for Aircraft Engines. (P. M. H Autom. Ind., Vol. 85, No. 6, 15/9/41, pp. 1	Ielolt, 8-21.)
251 29318 U.S.A Pokormey Compression Ignition Engine Fuel/Air Mixture Injection. (Autom. Ind. 85, No. 6, 15/9/41, p. 21.)	
252 29326 Germany Isotta Fraschini Delta R.C. 35 and Gamma R (Air-cooled V). (Flugsport, Vol. 32, No 31/7/40, pp. 236-237.)	.C. 35 . 16,
253 29339 U.S.A Wear and Scuffing of Cylinder Bore Irons. (Progress, Vol. 40, No. 3, Sept., 1941	Metal , pp.
322-323.) 254 29356 U.S.A American Aircraft Engines (Alphabetical D (Aero Digest, Vol. 38, No. 3, March, 194	gest). 1, pp.
202-224.) . 255 29360 U.S.A Allison V1710 E4 Engine with Extension (Aero Digest, Vol. 38, No. 3, March,	Shaft. 1941,
p. 248.) 256 29384 U.S.A Aircraft Power Plants Cooling Test. (Civil Al Regulations, U.S.A.)	rcraft
257 29426 U.S.A New U Type Four-Cylinder Light Plane E (Kettering) (Photograph). (Autom. Ind., Vo	ngine 51. 85,
No. 7, $1/10/41$, p. 150.) 258 29430 U.S.A Liquid v. Air-Cooled Engines (the Need for Types). G. H. Brett, Aviation, Vol. 40, N Sept., 1941, pp. 46-47.)	Both No. 9,

ITEM NO.		.T.P. REF.	TITLE AND JOURNAL.
259 259		Great Britain	
260	294 53	U.S.A	Electric Slip Couplings for Use with Diesel Engines for Ship Propulsion (with Discussion). (A. D. Andriold, Trans. A.S.M.E., Vol. 63, No. 7, Oct., 1941, pp. 567-576.)
263	29465	Great Britain	Discussion on Torque Reaction and Contra Props. (Flight, Vol. 40, No. 1,715, 6/11/41, pp. 327-328.)
264	29472	Great Britain	Turbo Superchargers for Aeroplanes-II. (Aero- plane, Vol. 61, No. 1,589, 7/11/41, pp. 520-522.)
265	2 9473	Germany	The Permissible Stressing of Gears and its Calcula- tion in Machine Tool Construction. (H. Hofer, Friedrichshafen Gear Wheel Company, Werk- slattstechnik, Vol. 25, No. 5, 1/3/41, pp. 128-131.)
266	2 94 8 6	Italy	Fiat A82 R.C. 428 Radial Engines. (Flugsport, Vol. 33, No. 16, 6/8/41, pp. 319-320.)
267	29516	Great Britain	1,500 h.p. Ford V-12 Aero Engine. (H. W. Perry, Flight, Vol. 40, No. 1,716, 13/11/41, pp. g-h.)
269	2 9526	Germany	The Early History of the Junkers Opposed Piston Engine. (Junkers Journal, Vol. 12, No. 1-2, JanFeb., 1941, pp. 21-30.)
270	29528	U.S.A	Mercedes Benz D.B. 601A Aircraft Engine. (R. W. Young, S.A.E.J., Vol. 49, No. 4, Oct., 1941, pp. 409-431.)
2 7 1	29546	Great Britain	Fuel Injection in Oil Engines in Relation to Com- bustion (Discussion of Original Paper published in Proceedings, Vol. 144, p. 2). (G. W. A. Green, Procs. Inst. Mech. Eng., Vol. 145, No. 3, June, 1941, pp. 137-141.)
272	2 9547	Italy	Italian Four-Cylinder Light Plane Engine CNAD. (Flugsport, Vol. 32, No. 11, 22/5/40, pp. 153-154.)
273	29555	Germany	Measurement of Engine Power in Flight by Torque Reaction (689, 305). (Blohn and Voss (Pat. Coll., No. 27), Flugsport, Vol. 32, No. 12, 5/6/40, p. 105.)
274	2956 3	Germany	Engine Throttle Control Utilising a Compressed Gas/Liquid Mixture (690,426). (Junkers (Pat. Coll., No. 27), Flugsport, Vol. 32, No. 12, 5/6/40, p. 106.)
275	29566	Germany	Series Production of B.M.W. 132 (Photograph). (Flugsport, Vol. 32, No. 14, 3/7/40, p. 204.)
276	29578	Germany	Two-Stroke Light Aircraft Engine 24 h.p., 300 cc.). (Flugsport, Vol. 32, No. 20, 25/9/40, pp. 314-315.)
277	29582	Germany	Cast Iron as Material for Journal Bearings. (W. Meboldt, Z.V.D.I., Vol. 85, No. 29, 19/7/41, pp. 637-638.)
278	2 95 8 4	Germany	Review of Recent Researches on Two-Stroke Trans- port Engines. (Z.V.D.I., Vol. 85, No. 29, 19/7/41, pp. 643-645.)
2 79	2 95 88	Germany	Materials for Cylinder Liners. (C. Englisch, A.T.Z., Vol. 44, No. 12, 25/6/41, pp. 305-312.)
280	29612	Germany	Mercedes Benz D.B. 601A Engine (an American Examination). (R. W. Young, Airc. Eng., Vol. 13, No. 153, Nov., 1941, pp. 300-302 and 305.)

ITEM NO.		.T.P. EF.		TITLE AND JOURNAL.
281		Germany		Possibilities of Jet Propulsion. (Flugsport, Vol. 33,
-01			••••	29/10/41, p. 439.)
282	29658	U.S.A.	•••	Aircraft Engine Superchargers. (H. L. Brownback, Autom. Ind., Vol. 85, No. 8, 15/10/41 pp. 22-25
283	2 9659	U.S.A.	• 	and 31.) Bending Moment in the Master Rods of Radial Aircraft Engines. (L. M. Porter, Autom. Ind., Vol. 85, No. 8, 15/10/41, pp. 26-31.)
284	29660	U.S.A.	•••	Manufacture of Borg and Beck Fluid Coupling. (Autom. Ind., Vol. 85, No. 8, 15/10/41, pp. 37-39.)
285	29668	Germany	•••	Effect of Type of Dust on Experimental Results with Engine Dust Filters. (Z.V.D.I., Vol. 85,
28 6	29679	U.S.A.		No. 39-40, 4/10/41, p. 800.) Induction Hardening of Crankshafts Yields Better Products. (Sci. Amer., Vol. 165, No. 5, Nov., 1941, pp. 255-256.)
287	29688	Germany		The Effective Torsional Rigidity in the Torsional Vibrations of Crankshafts (Dynamic Flexibility). (R. Grammel, Ing. Arch., Vol. 11, No. 2, April, 1940, pp. 149-150.)
288	2 9690	Germany		The Graphical Determination of the Natural Fre- quencies of Various Systems (Crankshaft Tor- sionals and Bending Vibration of Beams). (O.
• •				Foppl, Ing. Arch., Vol. 11, No. 3, June, 1940, pp. 178-191.)
289	29695	Germany		Review of British and American Researches on Cylinder Wear. (A.T.Z., Vol. 44, No. 13, 10/7/41, PP. 335-341.)
2 90	2 9696	Germany		Gear Design for Transport Vehicles. B. Eckert, A.T.Z., Vol. 44, No. 13, 10/7/41, pp. 342-345.)
2 91	29697	Germany	<i></i>	Engine Stresses Due to Rapid Rise of Combustion Pressure or Knock. (T. Geiger, A.T.Z., Vol. 44, No. 13, 10/7/41, pp. 327-335.) (Abstract
				available.)
				INSTRUMENTS.
292	29245	U.S.A.	•••	Controlled Approach Lighting (Airport Instrument Landing System). (D. S. Little, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 72-79, 228-230.)
293	2 9265	U.S.A.	••,•	Kollsman Direction Indicator Compass with In- clined Dial. (Aero Digest, Vol. 39, No. 2, Aug., 1941, p. 196.)
2 94	2 9267	U.S.A.	•••	Time and Distance Computor. (Aero Digest, Vol. 39, No. 2, Aug., 1941, p. 198.) (Abstract available.)
295	2 9316	U.S.A.	•••	Improvements in Rizo Electric Indicators (from the German). (Autom. Ind., Vol. 85, No. 6, 15/9/41, p. 17.)
296	29334	Germany	<i>.</i>	Equalisation of Torsion in the Flexible Shaft Con- trol of Distant Reading Compass (Patent No. 692,873). (Patent Collection, No. 39, Siemens, Flugsport, Vol. 32, No. 16, 31/7/40, p. 120.)

ITEM NO.		.T.P. REF.		TITLE AND JOURNAL.
297		U.S.A.	••••	Pre-Computed Altitude in Celestial Navigation. (W. C. Youngclaus, Aero Digest, Vol. 38, No. 3, March, 1941, pp.246 and 252.)
298	29395	Great	Britain	The Compass and Other Aids to Navigation. (F. C. Stewart, The Engineer, Vol. 172, No. 4,477, 31/10/41, pp. 298-300.)
29 9	2943 2	U.S.A.	• •••	Navigation with the Direction Finding Loop. (C. H. Mackintosh, Aviation, Vol. 40, No. 9, Sept., 1941, pp. 52-53 and 158-162.)
300	29434	U.S.A.	••••	Instrument Equipment for Flight Testing of Air- craft Engines. (H. Shebat, Aviation, Vol. 40, No. 9, Sept., 1941, pp. 69 and 176-180.)
301	29440	U.S.A.		New Link Bubble Octant and Collimator. (Aviation, Vol. 40, No. 9, Sept., 1941, pp. 82-84.)
302	29512	U.S.A.	• •••	"Vibrometer" Vibration Indicator (Tuned Reed). (Ind. and Eng. Chem. (News Ed.), Vol. 19, No. 19, 10/10/41, p. 1,102.)
				FUELS AND LUBRICANTS.
303	29235	U.S.A.	÷	Sludge Formation in Distillate Fuel Oils. (R. J. Hawes and F. M. Miller, Ind. and Eng. Chem. (Ind. Ed.), Vol. 33, No. 10, Oct., 1941, pp. 1,318-1,320.)
304	29236	U.S.A.	••••	Mineral Oil Deterioration. (J. C. Balsbaugh and others, Ind. and Eng. Chem. (Ind. Ed.), Vol. 33, No. 10, Oct., 1941, pp. 1,321-1,330.)
305	29319	U.S.A.	••••	Gas Generator Plants on French Transport Vehicles. (Autom. Ind., Vol. 85, No. 6, 15/9/41, pp. 32-33.)
306	2 9404	Great	Britain	Quarterly Bibliography of Lubrication, No. 35, July-Sept., 1941. (Sci. Lib. Bibliog. Series.)
307	29455	U.S.A.	, 	Combustion Explosions in Pressure Vessels Pro- tected with Rupture Disks. (M. D. Creech, Trans. A.S.M.E., Vol. 63, No. 7, Oct., 1941, pp. 583-588.) (Abstract available.)
308	29408	U.S.A.	•••	Flaw Properties of Lubricants Under High Pressure (with Discussion). (A. E. Norton and others, Trans. A.S.M.E., Vol. 63, No. 7, Oct., 1941, pp. 631-643.) (Abstract available.)
309	29529	U.S.A.	•••	Engineering for Better Fuel Economy (Motor Cars). (H. T. Youngren, S.A.E.J., Vol. 49, No. 4, Oct., 1941, pp. 432-441.)
310	29532	U.S.A.	•••	Evaluation of Diesel Fuels in Full-Scale Engines. (W. G. Ainsley, S.A.E.J., Vol. 49, No. 4, Oct., 1941, pp. 448-460.)
311	29533	U.S.A.		Lubrication of Severe-Duty Engines (Diesels). (Discussion on paper published in S.A.E. Journal, Aug., 1941, pp. 309-325.) (J. G. McNab and others, S.A.E.J., Vol. 49, No. 4, Oct., 1941, pp. 461-464.)
312	2 9540	U.S.A.	•••	Liquefied Gas Storage Tanks. (The Welding Engineer, Vol. 26, No. 7, July, 1941, pp. 25-26.)

ITEM NO.		.T.P. Ref.	TITLE AND JOURNAL.
313		Germany	Novel Types of Gas Generators for Transport Vehicles. (A.T.Z., Vol. 44, No. 12, 25/6/41, p. 318.)
314	29642	Germany	Regeneration of Used Lubricating Oil. (H. Foulson, Flughafen, Vol. 9, No. 6, June, 1941, pp. 5-7.)
315	29652	Great Britain	Colloidal Fuel (from the U.S.A.). (J. E. Hedrick, Engineer, Vol. 172, No. 4,480, 21/11/41, pp. 361-362.)
			MATERIALS.
316	29221	Great Britain	Synthetic Adhesives for Plywood Manufacture. (Engineer, Vol. 172, No. 4,476, 24/10/41, p. 282.)
317	2 9 2 34	Great Britain	
318	29238	Great Britain	Buckling of Plates with Lateral Stiffeners. (H. Yushan, J. Roy. Aeron. Soc., Vol. 45, No. 370, Oct., 1941, pp. 326-330.)
319	2 9259	U.S.A	Sheet Metal Drafting, Part I (Surface Geometry). (C. Belsky, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp. 152-160 and 223.)
320	29260	U.S.A	Heat Treating of Aircraft Materials. (N. E. Wold- man and C. H. Fetzer, Aero Digest, Vol. 39,
321	29262	U.S.A	No. 2, Aug., 1941, pp. 163-168, 223-224.) New "Roxalin" Fabric Finish for Aircraft Speed Production. (W. F. Smith and A. B. Marsh, Aero Digest, Vol. 39, No. 2, Aug., 1941, pp.
322	29269	U.S.A	175-176, 224-227.) Flexible Air Hose for Pneumatic Tools. (Aero Digest, Vol. 39, No. 2, Aug., 1941, p. 200.)
323	2 9 2 70	U.S.A	Bessemer Steel Process Re-introduced in the U.S.A. (Sci. Am., Vol. 165, No. 4, Oct, 1941, p. 193.)
324	29275	U.S.A	Designing for Machinability (II). (J. E. Thompson, Aero Digest, Vol. 38, No. 4, April, 1941, pp. 114-118.)
325	29276	U.S.A	High Speed Production Spot Welding of Al. Alloy. (Aero Digest, Vol. 38, No. 4, April, 1941, pp. 121-122.)
326	29277	U.S.A	Superfinish—Its Aircraft Application. (M. W. Petrie, Aero Digest, Vol. 38, No. 4, April, 1941, pp. 125-130.)
327	29288	Great Britain	A New Chromising Process (Diffusion). (D. W. Rudorff, Metal Industry, Vol. 59, No. 13, 26/9/41,
328	2928 9	Great Britain	pp. 194-195.) Deep Drawing and Pressing of Al. and Light Alloy Sheet, II. (J. D. Jevons, Metal Industry, Vol. 59, No. 13, 26/9/41, pp. 197-199.)
32 9	2 92 9 0	Great Britain	Spot Welding of Al. Alloy for Aircraft by Three- Phase Short Wave Process. (Metal Industry, Vol. 59, No. 13, 26/9/41, p. 203.)
330	29 2 91	Great Britain	G.E.C. Heavy Alloy (Tungsten-Nickel-Copper). (Nature, Vol. 148, No. 3,756, 25/10/41, p. 507.)

-

ITEM NO.		. T.P. EF.	TITLE AND JOURNAL.
331	29296	Germany	Machine Tools for Fine Parts. (K. Rabe, Pro- gressus, Vol. 6, No. 6, June, 1941, pp. 265-277.)
332	292 97	Germany	The Employment of Light Alloy in Transport Vehicles (Design and Constructional Features). (W. Bleicher, Progressus, Vol. 6, No. 6, June, 1941, pp. 284-291.)
333	29335	Great Britain	The Mechanical Properties of Solids. (E. N. da C. Andrade, Nature, Vol. 148, No. 3,757, 1/11/41, pp. 520-525.)
334	29338	U.S.A	Molybdenum High Speed Steels. (J. P. Gill and R. S. Rose, Metal Progress, Vol. 40, No. 3, Sept., 1941, pp. 283-288.)
335	29340	U.S .A	Corrosion of Ordnance and Munitions. (A. M. Portevini, Metal Progress, Vol. 40, No. 3, Sept., 1941, pp. 320-321.)
336	29341	U.S.A	Effect of Cold Working on Endurance Limit of S.A.E. 1,035 Steel. (Metal Progress, Vol. 40, No. 3, Sept., 1941, p. 319.)
337	29 342	U.S.A	Controlled Atmosphere Furnaces for M.O. Steels. (O.P.M. Committee, Metal Progress, Vol. 40, No. 3, Sept., 1941, pp. 310-313.)
338	² 9343	U.S.A	Electric Salt Bath for Hardening Molybdenum High Speed Steels. (O. P. M. Committee, Metal Progress, Vol. 40, No. 3, Sept., 1941, pp.
339	2 9344	U.S.A	310-311.) Heat Treatment of M.O. High Speed Steels. (O.P.M. Committee, Metal Progress, Vol. 40, No. 3, Sept., 1941, pp. 307-310.)
340	2 9345	U.S.A	Fabrication Considerations when Selecting a Steel (Forgeability, Cold Working, Welding, Flame Cutting, Machinability, etc.). (G. T. Williams, Metal Progress, Vol. 40, No. 3, Sept., 1941, pp. 289-292 and 378-382.)
341	29357	`U.S.A	Designing for Machinability (I). (J. E. Thompson, Aero Digest, Vol. 38, No. 3, March, 1941, pp. 230-236 and 271.)
342	29358	U.S.A	Plastics in Aircraft Construction. (W. H. Francis, Aero Digest, Vol. 38, No. 3, March, 1941, pp. 238-240 and 272.)
343	29385	Great Britain	Relaxation Methods Applied to Engineering Pro- blems. VII A—Biharmonic Analysis as Applied to the Flexure and Extension of Flat Elastic Plates. (L. Fox and R. V. Southwell, Phil. Trans. Roy. Soc., Vol. 1, No. 2, (C Series), 15/10/41, pp. 15-56.)
345	29391	U.S.A	Machining Metals by Electro-Chemical Methods. (Ind. and Eng. Chem. (News Ed.), Vol. 19, No. 18, 25/9/41, p. 1,070.)
		Great Britain	Flexure of Continuous Beams and Beams with Fixed Ends. (A. L. Egan, Engineering, Vol. 152, No. 3,955, 31/10/41, pp. 341-342.)
347	29398	Great Britain	The Rolling of a Mg. Alloy. (W. R. D. Jones and L. Powell, Engineering, Vol. 152, No. 3,955, 31/10/41, pp. 345-346.)

ITEM		.T.P.	
NO. 348		Great Britain	TITLE AND JOURNAL. General Observation on Vibrations. (J. Calder- wood, Engineering, Vol. 152, No. 3,955,
349	29 401	Great Britain	31/10/41, pp. 344-345.)
350	29407	Great Britain	G.E.C. Heavy Alloy (Tungsten-Nickel-Copper). (The Metallurgist (Supplement to Engineer),
351	29408	Great Britain	31/10/41, pp. 39-40.) New Lead-Base Bearing Alloy. (A. J. Phillips and others, Metal Industry, Vol. 59, No. 17, 24/10/41, pp. 258-260.)
352	2 9409	Great Britain	Deep Drawing and Pressing of Al. and Light Alloy Sheet (VI). (The Use of Rubber for Press Tools.) (J. D. Jevons, Metal Industry, Vol. 59, No. 17, 24/10/41, pp. 265-266.)
353	29417	Germany	Hinged Joints for Plastic Glass Plates (Patent No. 699,155). (Patent Collection, No. 39, Arado, Vol. 32, No. 26, 18/12/40, p. 158.)
35 <u>4</u>	29423	Germany	Vinidur and Oppanol, Weldable Plastics. (W. Krannich, Wissen und Fortschritt, Vol. 15, No. 8, Aug., 1941, pp. 428-432.)
355	29436	U.S.A	"Cerrobend" (Bismuth Alloy Filler for Making Tube Bends). (D. J. G. Rowe, Aviation, Vol. 40, No. 9, Sept., 1941, pp. 74-75 and 174.)
356	2 9443	Great Britain	Aluminium Alloys—Potentialities in Automobile Work. (Autom. Eng., Vol. 31, No. 416, 6/11/41,
357	2 9444	Great Britain	pp. 357-371.) Heat Resisting Steels (with Special Reference to High Temperatures). (Autom. Eng., Vol. 31,
358	2 9445	Great Britain	No. 416, 6/11/41, pp. 371-373.) Production and Characteristics of Steel. (Autom. Eng., Vol. 31, No. 416, 6/11/41, pp. 374-378.)
359	2 9447	Great Britain	Alloy Cast Irons Produced by Midland Motor Cylin- der Co. (Autom. Engineer, Vol. 31, No. 416, 6/11/41, pp. 383-385.)
360	29448	Great Britain	Lead Bearing Steels. (Autom. Eng., Vol. 31, No. 416, 6/11/41, pp. 386-388.)
361	2 9449	Great Britain	Pressure Die-Casting of Mg. Alloys. (Autom. Eng., Vol. 31, No. 416, 6/11/41, pp. 389-390.)
362	29452	U.S.A	A High Temperature Bolting Material. (A. W. Wheeler, Trans. A.S.M.E., Vol. 63, No. 7, Oct., 1941, pp. 655-668.)
363	29460	Great Britain	"Ardux" Cement for Bakelite Materials. (Flight, Vol. 40, No. 1,715, 6/11/41, p. 316.)
364	29461	Great Britain	"Aerolite F67" Foamed Formaldehyde Glue. (Flight, Vol. 40, No. 1,715, 6/11/41, p. 316.)
365	29482	Germany	Synthetic Plastic Covering for Aircraft (Pat. No. 706,960). (Hubner (Patent Collection, No. 9), Flugsport, Vol. 33, No. 15, 23/7/41, p. 35.)
366	2 94 9 9	Great Britain	Ford's Plastic Car. (Plastics, Vol. 5, No. 54, Nov., 1941, pp. 212-214.)
367	29500	Great Britain	Plastic and Powder Metallurgy (Incorporation of Metal Powders). (H. W. Greenwood, Plastics, Vol. 5, No. 54, Nov., 1941, pp. 215-216.)

.

ITEM NO.		.T.P. Ref.	TITLE AND JOURNAL.
368	29501	Great Britain	Foamed Synthetic Glue. (Plastics, Vol. 5, No. 54, Nov., 1941, pp. 216-217.)
369	29502	Great Britain	Weatherproofing Cellulose Acetate. (E. E. Halls, Plastics, Vol. 5, No. 54, Nov., 1941, pp. 218-221.)
370	29504	Great Britain	Nomenclature of Non-Ferrous Alloys. (Engineering, Vol. 152, No. 3,956, 7/11/41, p. 372.)
371	2 9505	Great Britain	National Emergency Steel Specifications in the U.S.A. (Engineering, Vol. 152, No. 3,956,
372	29518	Japan	7/11/41, p. 373.) On the Nature of a Satellite in the X-Ray Pattern of a-Crystals, and the Differentiation of a New Phase a' by the Surface Recrystallisation Method in Cortain Ternary Alloy (I). (S. Kinti, Aero. Res. Inst., Tokyo, No. 207, April, 1941, pp. 167-204.)
382	29541	U.S.A	Fish Eyes on Weld Metal (Hydrogen Embrittle- ment). (A. R. Hutton, The Welding Engineer, Vol. 26, No. 7, July, 1941, pp. 31-33.)
385	29545	Great Britain	Static and Fatigue Torsion Strength of Various Steels with Circular, Square, and Rectangular Sections (Discussion of Original Paper Published in the Procs., Vol. 143, p. 23). (E. G. Holley, Procs. Inst. Mech. Eng., Vol. 145, No. 3, June, 1941, pp. 135-137.)
386	29581	Germany	Behaviour of Sheathed Rubber Springs Under Ten- sile and Alternating Loads. (F. Gobel, Z.V.D.I., Vol. 85, No. 29, 19/7/41, pp. 631-635.)
388	29587	Germany	The Design of Structural Parts in Mg. Alloy. (M. Schouberg, A.T.Z., Vol. 44, No. 12, 25/6/41, pp. 295-305.)
389	29590	Germany	Three-Dimensional Stress Investigations Making Use of the Tyndall Effect. (Z.V.D.I., Vol. 85,
390	29 591	Germany	No. 29, 19/7/41, p. 645.) Resistance Welding of Light Alloy Parts in Aircraft Construction. (R. Schnarz, Luftwissen, Vol. 8, No. 9, Sept., 1941, pp. 270-276.)
391	29602	Great Britain	The Mechanical Impedance of Damped Vibrating Systems. (R. G. Manley, J. Roy. Aeron. Soc., Vol. 45, No. 371, Nov., 1941, pp. 342-348.)
39 2	29606	Great Britain	A Derivation of the Equation of Equilibrium of a Thin Plate. (H. Jeffreys, Phil. Mag., Vol. 32, No. 214, Nov., 1941, pp. 365-468.)
393	29610	Great Britain	The Admittance (Dynamic Flexibility) Method for Obtaining the Natural Frequencies of Systems. (W. J. Duncan, Phil. Mag., Vol. 32, No. 214, Nov., 1941, pp. 401-409.)
394	29618	U.S.A	Designing for Machinability (from the U.S.A.). (J. E. Thompson, Airc. Eng., Vol. 13, No. 153, Nov., 1941, pp. 321-322.)
395		U.S.A	Mg. Alloys in the Aircraft Industry (from the U.S.A.). (J. C. Mathes, Airc. Eng., Vol. 13, No. 153, Nov., 1941, pp. 323-324 and 326.)
396	29620	Great Britain	Some Notes on Alclad. (Airc. Eng., Vol. 13, No. 153, Nov., 1941, pp. 325-326.)

ITEM		.T.P.	
NO. 397		Germany	TITLE AND JOURNAL. Explosive Rivets for Quick Repairs. (Flughafen,
399	-	Great Britain	Vol. 9, No. 8, Aug., 1941, pp. 16-17.) The Structure of Liquid Metals. (A. Laten, Nature,
400	29650	Great Britain	Vol. 148, No. 3,760, 22/11/41, pp. 616-618.) On a Possible Connection Between Tensile and Estimate Limits (A. C. Vivian Engineer Vol.
401	29657	U.S.A	Fatigue Limits. (A. C. Vivian, Engineer, Vol. 172, No. 4,480, 21/11/41, p. 356.). Plastic Bonding in Aeroplane Construction (Bel- lanca Aircraft). (Ind. and Eng. Chem. (New Ed.) V. J. V.
40 2	2 9666	Germany	Ed.), Vol. 19, No. 20, 25/10/41, p. 1,154.) Evidence on the State of Fatigue of Metals Ob- tained by Determination of Surface Stresses by Means of X-Rays. (R. Glocker and others, Z.V.D.I., Vol. 85, No. 39-40, 4/10/41, pp. 793-800.)
403	29669	Germany	Methods for Removing Sulphur in Thomas Iron. (Z.V.D.I., Vol. 85, No. 39-40, 4/10/41, pp. 812-813.)
404	29670	Germany	The Calculation of the Load Capacity of Ball and Roller Bearings. (R. Mundt, Z.V.D.I., Vol. 85, No. 39-40, 4/10/41, pp. 801-806.)
405	29671	Germany	Types of Buna Rubber Suitable for Absorption of Vibrations. (W. Zeller, Z.V.D.I., Vol. 85, No.
406	29672	Germany	39-40, 4/10/41, p. 806.) The Effect of Slots in the Electrolytic Corrosion of Iron. (M. Werner, Z.V.D.I., Vol. 85, No.
407	29677	Ū.S.A	39-40, 4/10/41, pp. 815-816.) New Types of Synthetic Rubber Resist Low Tem- peratures. (Sci. Amer., Vol. 165, No. 5, Nov.,
408	29681	U.S. A	1941, p. 254.) Rise in Price of Casein with Steel Demand as an Interesting Example of Economical Inter- dependence of Widely Different Products. (Sci.
409	29686	Germany	Amer., Vol. 165, No. 5, Nov., 1941, p. 256.) The Buckling Deflection of Thin Circular Plates. (K. Federhofer, Ind. Arch., Vol. 11, No. 2, April, 1940, pp. 118-124.)
410	29687	Germany	The Characteristic Stress Functions of a Square Plate. (J. Fadle, Ing. Archiv., Vol. 11, No. 2, April, 1940, pp. 125-149.)
411	29693	Germany	Buckling of the Circular Plate (with or without Central Hole).' (K. Federhofer, Ing. Arch., Vol. 11, No. 3, June, 1940, pp. 224-238.)
412	29699	Germany	Aircraft Materials—German Specification Numbers. (R. Lilbig, Werkstoffkunde, pp. 94.) (Abstract available:)
			TEOROLOGY AND PHYSIOLOGY.
413	29597	Great Britain	Night Vision. (B. Steadman, Flight, Vol. 40, No. 1,717, 20/11/41, pp. e-g.)
414	29682	U.S. A	Telescopic Technique as an Alternative to X-Ray Diagnosis (Medical). (A. R. Boone, Sci. Amer.,
415	29212	Great Britain	Vol. 165, No. 5, Nov., 1941, p. 258.) Bristol Aero Engine Dept. Technical Abstracts and Information. (Vol. 5, No. 42, 21/10/41.)

MISCELLANEOUS.

ITEM NO.		.T.P. REF.	TITLE AND JOURNAL.
416	29213	Great Britain	Bristol Aero Engine Dept. Technical Abstracts and Information. (Vol. 5, No. 43, 28/10/41.)
417	29214	U.S.A	Aeroplane Patent Digest (Patent Nos. 2,252,693 to 2,254,196). (Vol. 12, No. 16, 30/8/41.)
418	29215	Great Britain	Rotol Digest. (Vol. 2, No. 39, 17/10/41.)
419	29216	Great Britain	Rotol Digest. (Vol. 2, No. 40, 22/10/41.)
420	29219	Great Britain	Probability Graph Paper and its Engineering Applications (Statistical Investigations). (H. Risaik, Engineer, Vol. 172, No. 4,476, 24/10/41, pp. 276-278.)
421	29303	Germany	N.A.C.A. Progress Report for 1939. (Flugsport, Vol. 32, No. 13, 19/6/41, pp. 185-190.)
422	29329	Germany	N.A.C.A. Progress Report for 1939. (Flugsport, Vol. 32, No. 16, 31/7/40, pp. 239-241.)
4 2 3		Great Britain	Bristol Aero Engine Department Technical Abs- tracts and Information. (Vol. 5, No. 44, 4/11/41.)
42 4		U.S.A	Aeroplane Patent Digest (Patent No. 2,254,202- 2,255,725). (Vol. 12, No. 17, 15/9/41.)
425		Great Britain	Rotol Digest. (Vol. 2, No. 41, 21/10/41.)
426		Great Britain	Abstracts and References (compiled by Radio Re- search Board). (Wireless Engineer, Nov., 1941.)
427	201	Great Britain	Rotol Digest. (Vol. 2, No. 42, 5/11/41, pp. 1-5.)
428	2 9394	Great Britain	Probability Graph Paper and its Engineering Applications. (H. Rissik, The Engineer, Vol. 172, No. 4,477, 31/10/41, pp. 296-298.)
4 2 9	2 9400	Great Britain	The Constant of Straight-Line Laws. (C. F. Freeman, Engineering, Vol. 152, No. 3,955, 31/10/41, p. 354.)
430	29422	U.S.A	Technical Book Review Index. (Vol. 7, No. 1, Sept., 1941, pp. 1-20.)
43 ¹		U.S.A. ,	The Breakdown of Britain's Civilian Highway Transport. (M. N. Bourdon, Autom. Ind., Vol. 85, No. 7, 1/10/41, pp. 68-71 and 145.)
432	2 9450	Great Britain	Bristol Aero Engine Dept. Technical Abstracts and Information. (Vol. 5, No. 45, 11/11/41.)
433	29456	U.S.A	Mathematics of Surge Vessels and Automatic Control. (C. E. Mason and G. A. Philbrick, Trans. A.S.M.E., Vol. 63, No. 7, Oct., 1941, pp. 589-601.)
434	29462	Great Britain	Flight in Nature (Birds and Insects). (F. W. Lane, Flight, Vol. 40, No. 1,715, 6/11/41, pp. b-d, 317
435	2 9498	Great Britain	and 325.) Rotol Digest. (Vol. 2, No. 43, 12/11/41.)
436 436	29515	U.S.A	Fairey Aviation Research Laboratory. (Flight,
			Vol. 40, No. 1,716, 13/11/41, pp. b-f.)
438		Great Britain	Bristol Aero Engine Dept. Technical Abstracts and Information. (Vol. 5, No. 46, 18/11/41.)
439 440	29605 29607	Great Britain Great Britain	Rotol Digest. (Vol. 2, No. 44, 19/11/41.) On the Numerical Solution of Linear Simultaneous by an Iterative Method. (R. J. Schmidt, Phil. Mag., Vol. 32, No. 214, Nov., 1941, pp. 369-383.)

ITEM NO.		REF.	TITLE AND JOURNAL.
44 I	29678	U.S.A	War Department Records Protected by Electrically Cleaned Air (Sulphur Removal). (Sci. Amer., Vol. 165, No. 5, Nov., 1941, pp. 274-275.)
44 2	29692	Germany	
443	29694	Germany	Signal Apparatus when Overtaking Lorries on the Roads. (A.T.Z., Vol. 44, No. 13, 10/7/41, p. 326.)
			PRODUCTION.
445	29278	U.S.A	Production of Martin B.26 Medium Bombers. (H. F. Kniesche, Aero Digest, Vol. 38, No. 4, April, 1941, pp. 133-134 and 193.)
446	29281	U.S.A	Factory Expansion (Pratt and Witney, Curtiss- Wright, Republican, Bell, etc.). (Aero Digest, Vol. 38, No. 4, April, 1941, pp. 143-152 and 190.)
447	2935 2	U.S.A	Alphabetical Directory of American Aircraft Manu- facture (Executives, Departmental Heads, Ex- port Representative). (Aero Digest, Vol. 38, No. 3, March, 1941, pp. 118-126.)
448	29353	U.S.A	Alphabetical Directory of American Engine Manu- facturers (Executives, Departmental Heads, Export Representatives). (Aero Digest, Vol. 38, No. 3, March, 1941, p. 126.)
449	2 9414	Germany	Women in Aircraft Industry (Photographs). (Flugs- port, Vol. 32, No. 26, 18/12/40, p. 457.)
450	29437	U.S.A	A New Contact Printing Method Employed by New Republic (Master Lay-out Drawn on Sheets Pounded with Luminescent Coating). (B. M. Smiling and B. Rudnick, Aviation, Vol. 40, No. 9, Sept., 1941, pp. 77 and 172.)
45 <u>1</u>	29506	Great Britain	Generating Flat Surfaces. (E. V. Wait, Engineering, Vol. 152, No. 3,957, 14/11/41, pp. 381-383.)
452	29595	Germany	Mass Production of Aircraft by the Rythm or "Timed Flow" Method. (H. Mullenbach, Luft- wissen, Vol. 8, No. 9, Sept., 1941, pp. 286-289.)
453	29656	U.S.A	Chart for Calculating Approximate Construction Cost of Industrial Buildings. (W. F. Schaphorst, Ind. and Eng. Chem. (News Ed.), Vol. 19, No. 20, 25/10/41, p. 1,151.)
454	29673	Germany	Industrial Development in the U.S.S.R. (J. Eusslen, Z.V.D.I., Vol. 85, No. 39-40, 4/10/41, pp. 807-808.)

Sound, Light and Heat.

455 29232 Great Britain Thermal Stresses in Long Cylindrical Bodies. (B. E. Gatewood, Phil. Mag., Vol. 32, No. 213, Oct., 1941, pp. 282-301.)

ITEM NO.		.T.P. REF.	TITLE AND JOURNAL.		
456		Great Britain			
457	29292	Great Britain	Nature and Measurement of Whiteness (Paper, Cinema Screens, etc.). (Nature, Vol. 148, No. 3,756, 25/10/41, pp. 506-507.)		
458	29451	U.S.A	Teat Transfer to H_2 - N_2 Mixtures Inside Tubes (showing Deviation from Friction Analysis). (A. P. Colburn and C. A. Coghlan, Trans. A.S.M.E., Vol. 63, No. 7, Oct., 1941, pp. 561-566.)		
459	29608	Great Britain	The Conduction of Heat in a Medium Generating Heat. (S. Paterson, Phil. Mag., Vol. 32, No. 214, Nov., 1941, pp. 384-392.)		
460	29649	Great Britain	The Sun and the Ionosphere (32nd Kelvin Lecture). (S. Chapman, J. Inst. Elect. Eng., Vol. 88, Pt. 1, No. 11, Nov., 1941, pp. 400-413.)		
WIRELESS AND ELECTRICITY.					
461	29274	U.S.A	Compass Deflection Due to Unbalanced Electro- Magnetic Fields. (N. J. Clark, Aero Digest, Vol. 38, No. 4, April, 1941, pp. 111-113.)		
46 2	29293	Great Britain	Cinema Acoustics and Television Receivers. (Nature, Vol. 148, No. 3,756, 25/10/41, p. 508.)		
463	29294	Germany	The Production of Ultra-Short Wireless Waves by Means of Magnetrons. (H. Klinger, Funk, No. 2, 15/1/41, pp. 17-21.)		
464	29295	Germany	Short Wave Wireless Equipment in Gliders. (H. Hendel, Funk, No. 2, 15/1/41, pp. 22-23.)		
465	2 9337	Great Britain	Continuous Wave Interference with Television Reception. (C. N. Smyth, Nature, Vol. 148, No. 3,757, 1/11/41, pp. 539-540.)		
466	29346	U.S.A	The Private Flyer's Radio Equipment (Some Pur- chasing Essentials). (D. S. Little, Aero Digest, Vol. 38, No. 3, March, 1941, pp. 54, 66.)		
467	29348	U.S.A	Recent Advance in Aircraft Radio Production. (W. D. van Dyke, Aero Digest, Vol. 38, No. 3, March, 1941, pp. 69-76 and 244.)		
468	29366	Great Britain			
469	29365	Great Britain	Abstracts and References, Oct., 1941 (Compiled by Radio Research Board). (Wireless Engineer, Oct., 1941.		
470		Great Britain	On Characteristics and Applications of the Selenium Rectifier (with Discussion). (E. A. Richards, J. Inst. Elect. Eng., Vol. 88, No. 5, Pt. II, Oct., 1941, pp. 425-442.)		
47 ¹	29379	Great Britain	Factors in the Design on Electric Heating Ele- ments. (J. Inst. Elect. Eng., Vol. 88, No. 5, Pt. II, Oct., 1941, pp. 485-486.)		

ITEM NO.		.T.P. REF.	TITLE AND JOURNAL.
473	29381	Great Britain	The Characteristics and Applications of the Selenium Rectifier (Digest). (E. A. Richards, J. Inst. Elect. Eng., Vol. 88, No. 10, Pt. I, Oct., 1941, pp. 384-387.)
474	29396	Great Britain	The Future of Wireless (Distribution by Wire). (N. Ashbridge, The Engineer, Vol. 172, No. 4,477, 31/10/41, pp. 301-302.)
475	2 94 0 3	Great Britain	Polarographic Analysis (Application of Electrolysis with Dropping Mercury Electrodes). (A. C. Coates and R. Smart, Chem. and Ind. J., Vol. 60, No. 41, 1/11/41, pp. 778-784.)
47 6	29406	Great Britain	X-Ray Analysis in Industry. (The Metallurgist (Supplement to The Engineer), Oct. 31st, 1941, pp. 33-34.)
477	29427	Great Britain	Grid Control of Gaseous Conduction (Rectification, Transformation, Inversion, etc.). (G. Windred, Electronic Engineering, Vol. 14, No. 165, Nov., 1941, pp. 487-489.)
478	2 94 28	Great Britain	Rhodium Contacts in Radio Apparatus. (E. N. Laister, Electronic Engineering, Vol. 14, No. 165, Nov., 1941, pp. 490-491.)
47 9	294 2 9	Great Britain	Application of Electronics in Industry, III (Measurement). (J. H. Jupe, Electronic Engi- neering, Vol. 14, No. 165, Nov., 1941, pp. 492-493.)
480	2 944 2	U.S.A	Speculations on the British Radio Locator. (C. Walsh, Aviation, Vol. 40, No. 9, Sept., 1941, pp. 95 and 140.)
481	29520	Japan	An X-Ray Study on the Mechanism of the Splitting Phenomenon of a-Crystals in the Interiors of Some T3rnary Alloys (I). (S. Kiute, Aero. Res. Inst., Tokyo, No. 209, May, 1941, pp. 271-298.)
484	29654	Germany	Emergency Repairs of High Tension Cables (Elec- trical Power Transmission) (from the Dutch). (H. H. Creemers, Flughafen, Vol. 9, No. 7, July, 1941, pp. 18-19.)
485	29655	U.S.A	Static Electricity and its Effect on Car Radio Performance. (S. M. Cadwell and others, Ind. and Eng. Chem. (News Ed.), Vol. 19, No. 20, 25/10/41, pp. 1,139-1,141.)
486	29675	U.S.A	Powder Injection into Inner Tubes Prevents Static Interferences with Wireless. (Sci. Amer., Vol. 165, No. 5, Nov., 1941, p. 274.)
487	29680	U.S.A	Radio Relay System Extends Range of Portable Radio. (Sci. Amer., Vol. 165, No. 5, Nov., 1941, p. 279.)