CARATHÉODORY'S THEOREM

BY W. D. COOK AND R. J. WEBSTER

Despite the abundance of generalizations of Carathéodory's theorem occurring in the literature (see [1]), the following simple generalization involving infinite convex combinations seems to have passed unnoticed. Boldface letters denote points of R^n and Greek letters denote scalars.

THEOREM. If a point of \mathbb{R}^n is an infinite convex combination of a sequence of points of \mathbb{R}^n , then it can be represented as a convex combination of at most n+1 points of the sequence.

Proof. Let $z \in R^n$ be such that

$$\mathbf{z} = \sum_{i=1}^{\infty} \lambda_i \mathbf{x}_i$$

where $\lambda_i \ge 0$ and $\sum_{i=1}^{\infty} \lambda_i = 1$, and let X denote the convex hull of the set $\{\mathbf{x}_1, \ldots, \mathbf{x}_m, \ldots\}$. We may, without loss of generality, assume $\lambda_i > 0$ for all *i* and that the sequence $\mathbf{x}_1, \ldots, \mathbf{x}_m, \ldots$ does not lie in any hyperplane of \mathbb{R}^n . We prove $\mathbf{z} \in X$. The proof is then completed by a standard application of Carathéodory's theorem. For each *m* write

$$\mathbf{y}_m = \left(\sum_{i=1}^m \lambda_i \mathbf{x}_i\right) / \left(\sum_{i=1}^m \lambda_i\right).$$

Then $\mathbf{y}_m \in X$ for all m and $\mathbf{y}_m \to \mathbf{z}(m \to \infty)$. This shows that $\mathbf{z} \in \overline{X}$. If $\mathbf{z} \notin X$, then \mathbf{z} is a boundary point of the convex set X and so there exists a nonzero \mathbf{a} and a scalar α such that

$$\mathbf{a} \cdot \mathbf{z} = \alpha \quad \text{and} \ \mathbf{a} \cdot \mathbf{x} \ge \alpha (\mathbf{x} \in X).$$

However,

$$\mathbf{a} \cdot \mathbf{z} = \sum_{i=1}^{\infty} \lambda_i(\mathbf{a} \cdot \mathbf{x}_i) > \alpha,$$

since there is some *m* for which $\mathbf{a} \cdot \mathbf{x}_m > \alpha$ and $\lambda_m > 0$. This contradiction proves that $\mathbf{z} \in X$ and so completes the proof.

Reference

1. J. R. Reay, Generalizations of a theorem of Carathéodory, Memoirs Amer. Math. Soc. 54, 1965.

Dalhousie University, Halifax, Nova Scotia