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Some examples of noncommutative
projective Calabi–Yau schemes
Yuki Mizuno

Abstract. In this article, we construct some examples of noncommutative projective Calabi–Yau
schemes by using noncommutative Segre products and quantum weighted hypersurfaces. We also
compare our constructions with commutative Calabi–Yau varieties and examples constructed in
Kanazawa (2015, Journal of Pure and Applied Algebra 219, 2771–2780). In particular, we show that
some of our constructions are essentially new examples of noncommutative projective Calabi–Yau
schemes.

1 Introduction

Calabi–Yau varieties are rich objects and play an important role in mathematics and
physics. In noncommutative algebraic geometry, (skew) Calabi–Yau algebras are often
treated as noncommutative analogs of Calabi–Yau varieties. Calabi–Yau algebras have
a deep relationship with quiver algebras (see [8, 31]). For example, many known
Calabi–Yau algebras are constructed by using quiver algebras. They are also used to
characterize Artin–Schelter regular algebras (see [24, 25]). In particular, a connected
graded algebra A over a field k is Artin–Schelter regular if and only if A is skew
Calabi–Yau.

On the other hand, a triangulated subcategory of the derived category of a cubic
fourfold in P

5, which is obtained by some semiorthogonal decompositions, has
the 2-shift functor [2] as the Serre functor. Moreover, the structure of Hochschild
(co)homology is the same as that of a projective K3 surface (see [13]). However, some
such categories are not obtained as the derived categories of coherent sheaves of
projective K3 surfaces and called noncommutative K3 surfaces.

Artin and Zhang constructed a framework of noncommutative projective schemes
in [1], which are defined from noncommutative graded algebras. In this framework,
we can think of Artin–Schelter regular algebras as noncommutative analogs of projec-
tive spaces, which are called quantum projective spaces. Our objective is to produce
examples of noncommutative projective Calabi–Yau schemes that are not obtained
from commutative Calabi–Yau varieties. In the future, it would be an interesting
question to compare the derived category of a noncommutative projective Calabi–
Yau scheme created in the framework of Artin–Zhang’s noncommutative projective
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schemes with a noncommutative K3 surface obtained as a triangulated subcategory
of the derived category of a cubic fourfold.

As the definition of noncommutative projective Calabi–Yau schemes, we adopt
the definition introduced by Kanazawa [12]. His definition is a direct generalization
of the definition of commutative Calabi–Yau varieties to noncommutative projec-
tive schemes. He also constructed the first examples of noncommutative projective
Calabi–Yau schemes that are not isomorphic to commutative Calabi–Yau varieties
as hypersurfaces of quantum projective spaces. Recently, some examples constructed
by Kanazawa play an important role in noncommutative Donaldson–Thomas theory
(see [14, 15]).

In this paper, we construct new examples of noncommutative projective Calabi–
Yau schemes by using noncommutative Segre products and weighted hypersurfaces.
There are many known examples of Calabi–Yau varieties in algebraic geometry. Some
of them are complete intersections in products of projective spaces. Moreover, Reid
gave a list of Calabi–Yau surfaces, which are hypersurfaces in weighted projective
spaces (see [11, Table 1 in Section 13.3], [23, Theorem 4.5]). Motivated by these two
facts, we construct noncommutative analogs of the two types of examples of Calabi–
Yau varieties (Theorems 3.3 and 3.15) in Section 3.

In order to prove that a noncommutative projective scheme is Calabi–Yau, we
use the methods of Kanazawa. However, they are not sufficient because the alge-
bras we treat are more complicated than the ones he considered. In order to con-
struct noncommutative projective Calabi–Yau schemes as noncommutative analogs
of complete intersections in Segre products, we perform a more detailed analysis
of noncommutative projective schemes defined by Z

2-graded algebras, which were
studied by Van Rompay [32]. A different approach to noncommutative Segre products
is also studied in [9]. In order to construct noncommutative projective Calabi–Yau
schemes as noncommutative analogs of weighted hypersurfaces, we consider quo-
tients of weighted quantum polynomial rings. In commutative algebraic geometry, the
category Coh(Proj(k[x0 , . . . , xn])) of coherent sheaves on the projective spectrum
Proj(k[x0 , . . . , xn]) of a weighted polynomial ring is not necessarily equivalent to
qgr(k[x0 , . . . , xn]), where qgr(k[x0 , . . . , xn]) is the quotient category associated
with k[x0 , . . . , xn] constructed in [1]. In fact, qgr(k[x0 , . . . , xn]) is equivalent to
the category of coherent sheaves on a weighted projective space constructed as a
Deligne–Mumford stack. Moreover, qgr(k[x0 , . . . , xn]) is thought of as a nonsingular
model of Proj(k[x0 , . . . , xn]) (see [28, Example 4.9]). We use this idea to construct
new noncommutative projective Calabi–Yau schemes. In addition, it should be noted
that local structures of noncommutative projective schemes of quotients of weighted
quantum polynomial rings are somewhat complicated. An analysis of the local
structures was performed by Smith [28]. We show that the local structure obtained in
[28] is described by the notion of quasi-Veronese algebras introduced by Mori [18].

In Section 4, we compare our constructions from weighted hypersurfaces in
Section 3 with commutative Calabi–Yau varieties and the first examples constructed
in [12], focusing on noncommutative projective Calabi–Yau schemes of dimensions 2.
We show that some of our constructions in Section 3 are not isomorphic to any of the
commutative Calabi–Yau varieties and the first examples constructed in [12] (Propo-
sition 4.9). When we consider moduli spaces of point modules of noncommutative
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projective schemes obtained from weighted hypersurfaces in Section 3, there is
a problem, which is that in general weighted quantum polynomial rings are not
generated in degree 1. So, the notion of point modules is not necessarily useful in
this case. In this paper, we use theories of closed points studied in [19, 26, 27], etc. A
different approach to closed points of weighted quantum polynomial rings is studied
in [29]. The notion of point modules defined in [29] corresponds to those of ordinary
and thin points in [19]. To show that some of our constructions are not isomorphic
to the examples obtained in [12], we use Morita theory of noncommutative schemes,
which is established in [5] (see also [1, Section 6]). In the theory, we need to calculate
the centers of noncommutative rings. By using these calculations, we can do a detailed
analysis and some classifications of noncommutative projective Calabi–Yau surfaces.

2 Preliminaries

Notation and Terminology 2.1 In this article, k denotes an algebraically closed
field of characteristic 0. We suppose N contains 0. Let A be a k-algebra, let M be
an A-bimodule, and let ψ, ϕ be algebra automorphisms of A. Then, we denote the
associated A-bimodule by ψ Mϕ , i.e., ψ Mϕ = M as k-modules and the new bimodule
structure is given by a ∗ m ∗ b ∶= ψ(a)mϕ(b) for all a, b ∈ A and all m ∈ M. Let C be
a k-linear abelian category. We denote the global dimension of C by gl.dim(C). An
N-graded k-algebra A is connected if A0 = k.

For any N-graded k-algebra A = ⊕∞i=0 A i , we denote the category of graded
right A-modules (resp. finitely generated graded right A-modules) by Gr(A)
(resp. gr(A)). Let M ∈ Gr(A) and A○ be the opposite algebra of A. We define
the Matlis dual M∗ ∈ Gr(A○) by M∗i ∶= Homk(M−i , k) and the shift M(n) ∈
Gr(A) by M(n)i ∶= M i+n (i , n ∈ Z). For M , N ∈ Gr(A), we write HomA(M , N) ∶=
⊕n∈Z HomGr(A)(M , N(n)) ∈ Gr(A). For M ∈ Gr(A) and a homogeneous element
m ∈ M, we denote the degree of m by deg(m). We define the truncation M≥n ∶=
⊕i≥n M i ∈ Gr(A) (n ∈ Z). An element m ∈ M is called torsion if mA≥n = 0 for
n ≫ 0. We say M is a torsion module if any element of M is torsion. We denote
the subcategory of torsion modules in Gr(A) (resp. gr(A)) by Tor(A) (resp. tor(A)).

Definition 2.2 [1, Section 2] Let A be a right Noetherian N-graded k-algebra.
We define the quotient categories QGr(A) ∶= Gr(A)/Tor(A) and qgr(A) ∶=
gr(A)/tor(A). We denote the projection functor by π and its right adjoint functor
by ω. The general (resp. Noetherian) projective scheme of A is defined as Proj(A) ∶=
(QGr(A), π(A)) (resp. proj(A) ∶= (qgr(A), π(A))).

Definition 2.3 [1, Section 2], [26, Chapter 3] A quasi-scheme over k is a pair (C,O),
where C is a k-linear abelian category and O is an object in C. A morphism from a
quasi-scheme (C,O) to another quasi-scheme (C′ ,O′) is a pair (F , φ) consisting of
a k-linear right exact functor F ∶ C→ C′ and an isomorphism φ ∶ F(O) ≃→ O′. We call
(F , φ) is an isomorphism if F is an equivalence.

When A is as in Definition 2.2, we think of proj(A) = (qgr(A), π(A)) as a quasi-
scheme. For any (commutative) Noetherian scheme X, (Coh(X),OX) is also a quasi-
scheme. From this observation, we regard X as a quasi-scheme.
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Definition 2.4 [30, Section 4], [35, Section 4] Let A, B be N-graded k-algebras and
let mA be A≥1. We define the torsion functor �mA ∶ Gr(A⊗k B○) → Gr(A⊗k B○) by
�mA(M) ∶= {m ∈ M ∣ mA≥n = 0 for some n ∈ N}. We write H i

mA
∶= Ri�mA .

Definition 2.5 [30, Definitions 6.1 and 6.2], [35, Definitions 3.3 and 4.1] Let A
be a right and left Noetherian connected N-graded k-algebra and let Ae be the
enveloping algebra of A. Let R be an object of Db(Gr(Ae)). Then, R is called a
dualizing complex of A if (1) R has finite injective dimension over A and A○, (2)
the cohomologies of R are finitely generated as both A and A○-modules, (3) the
natural morphisms A → RHomA(R, R) and A → RHomA○(R, R) are isomorphisms
in Db(Gr(Ae)). Moreover, R is called balanced if R�mA(R) ≃ A∗ and R�mA○ (R) ≃ A∗
in Db(Gr(Ae)).

3 Calabi–Yau conditions

Definition 3.1 [12, Section 2.2] Let A be a connected right Noetherian N-graded
k-algebra. Then, proj(A) is a noncommutative projective Calabi–Yau scheme of
dimension n if the global dimension of qgr(A) is n and the Serre functor of the derived
category Db(qgr(A)) is the n-shift functor [n].

Remark 3.2 Actually, we do not need the condition that the global dimension of
qgr(A) is n. If the Serre functor of the derived category Db(qgr(A)) is the n-shift
functor [n], then we can easily show that this condition holds. However, when we
prove the existence of the Serre functor of Db(qgr(A)), we essentially need the
condition that the global dimension of qgr(A) is n (cf. [6, Theorem A.4 and Corollary
A.5], Lemma 3.10).

3.1 Z
2-graded algebras and Segre products

In commutative algebraic geometry, a smooth complete intersection X ⊂ P
n × P

m of
bidegrees (n + 1, 0) and (0, m + 1) provides a Calabi–Yau variety. We also have a little
more complicated example that gives a Calabi–Yau variety. That is a smooth complete
intersection of bidegrees (n, 0) (resp. (n + 1, 0)) and (1, n + 1) inP

n × P
n (resp.Pn+1 ×

P
n). We construct noncommutative analogs of these examples.

Let C be an N
2-graded k-algebra. We denote the category of Z

2-graded right
C-modules (resp. finitely generated Z

2-graded right C-modules) by BiGr(C)
(resp. bigr(C)). Let M ∈ BiGr(C). We denote by C○ (resp. C e ) the opposite
(resp. enveloping) algebra of C. We define the Matlis dual M∗ ∈ BiGr(C○) by
M∗i , j ∶= Homk(M−i ,− j , k) and the shift M(n, m) ∈ BiGr(C) by M(m, n)i , j ∶=
M i+m , j+n (m, n, i , j ∈ Z). For M , N ∈ BiGr(C), we write HomC(M , N) ∶= ⊕m ,n∈Z
HomBiGr(C)(M , N(m, n)). For a bihomogeneous element m ∈ M, we denote the
bidegree of m by bideg(m).

Let M ∈ BiGr(C). We define the truncation M≥n ,≥n ∶= ⊕i≥n , j≥n M i , j ∈ BiGr(C)
(n ∈ Z). We say m ∈ M is torsion if mC≥n ,≥n = 0 for n ≫ 0. If all m ∈ M are torsion,
then M is called a torsion C-module. We denote the category of Z2-graded torsion
C-modules by Tor(C). We also define tor(C) to be the intersection of bigr(C) and
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Tor(C). When we assume that C is right Noetherian, we have the quotient categories
QBiGr(C) ∶= BiGr(C)/Tor(C) and qbigr(C) ∶= bigr(C)/tor(C) (cf. [32, Section 2]).
We denote the projection functor by π and its right adjoint functor by ω. We can define
the general (resp. Noetherian) projective scheme Proj(C) (resp. proj(C)) associated
with C and the notion of noncommutative projective Calabi–Yau schemes as in the
case of N-graded algebras.

Let D be an N
2-graded algebra. We take the tensor product C ⊗k D○ of

C and D○ over k. We think of C ⊗k D○ as an N
2-graded algebra by (C ⊗k

D○)i , j ∶= ⊕i1+i2=i , j1+ j2= j C i1 , j1 ⊗k D○i2 , j2
. We define mC++ ∶= C≥1,≥1 and the torsion

functor �mC++
∶ BiGr(C ⊗k D○) → BiGr(C ⊗k D○) by �mC++

(M) ∶= {m ∈ M ∣
mC≥n ,≥n = 0 for some n ∈ N}. We write mC ∶= ⊕i+ j≥1 C i , j and define another torsion
functor �mC ∶ BiGr(C ⊗k D○) → BiGr(C ⊗k D○) by �mC (M) ∶= {m ∈ M ∣ mC≥n =
0 for some n ∈ N}, where C≥n ∶= ⊕i+ j≥n C i , j ∈ BiGr(C). See [25, Section 3] for details
of �mC . We write H i

mC++
∶= Ri�mC++

and H i
mC

∶= Ri�mC . The reason we define the
functor �mC++

is that we can describe the Serre duality in Db(qbigr(C)) by using
R�mC++

(cf. Lemma 3.10). However, it is not easy to calculate the functor R�mC++
directly. The reason we define the functor �mC is that we can use the theory of Z-
graded modules to calculate R�mC and we can reduce the calculation of R�mC++

to
that of R�mC (cf. Lemma 3.6, the proof of Theorem 3.3).

Theorem 3.3 Let A ∶= k⟨x0 , . . . , xn⟩/(x jx i − q ji x i x j)i , j , B ∶= k⟨y0 , . . . , ym⟩/
(y j y i − q′ji y i y j)i , j and C ∶= A⊗k B, where q ji , q′ji ∈ k× for all i, j. We regard C as
an N

2-graded algebra with bideg(x i) = (1, 0) and bideg(y i) = (0, 1) for all i.
(1) Let f ∶= ∑n

i=0 xn+1
i and g ∶= ∑m

i=0 ym+1
i . We assume that (i) q i i = q i jq ji = qn+1

i j = 1
for all i, j, (ii) q′i i = q′i jq′ji = q′m+1

i j = 1 for all i, j.
Then, proj(C/( f , g)) is a noncommutative projective Calabi–Yau scheme of

dimension (n + m − 2) if and only if ∏n
i=0 q i j and ∏m

i=0 q′i j are independent of j,
respectively.

(2) Suppose that m = n + 1 (resp. m = n) and q′i j = 1 for all i, j. Let f ∶= ∑n
i=0 xn+1

i y i

and g ∶= ∑n+1
i=0 yn+1

i (resp. ∑n
i=0 yn

i ). We assume that q i i = q i jq ji = qn+1
i j = 1 for all

i , j.
Then, proj(C/( f , g)) is a noncommutative projective Calabi–Yau scheme of

dimension (2n − 1)(resp. (2n − 2)) if and only if ∏n
i=0 q i j is independent of j.

Notation 3.4 For simplicity, we denote the bidegrees of f , g in the theorem by
(d0 , d1), (e0 , e1), respectively.

Remark 3.5 • f , g are central elements in C because of the choices of {q i j}, {q′i j}.
• We have n + m − 2 = d0 + d1 + e0 + e1 − 4 in (1). We have 2n − 1(resp. 2n − 2) =

d0 + d1 + e0 + e1 − 4 also in (2).
• In (2) of the theorem, even if we do not assume q′i j = 1, the condition for f , g to be

central in C implies q′i j = 1 for all i , j after all.
• In the theorem, all equations appearing except for g of (2) are Fermat-type equa-

tions.
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To prove the theorem, we need to show some lemmas. Perhaps some experts may
know the following lemmas. However, to the best of the author’s knowledge, there are
no references written on those lemmas, so the proofs are given below. In addition, the
following proofs do not depend on whether (1) or (2) in the theorem is considered
(except for Lemma 3.8).

Lemma 3.6 Let R ∶= π(R�mC/( f , g)++
(C/( f , g))∗) and R′ ∶= π(R�mC/( f , g)(C/

( f , g))∗). Then, the functors −⊗L R and −⊗L R′[−1] between D(QBiGr(C/( f , g)))
and itself are naturally isomorphic.

Proof Let I1 , I2 be the ideals generated by {x0 , . . . , xn}, {y0⋯, ym}, respectively.
Then, we have mC/( f , g)++ = I1 ∩ I2, mC/( f , g) = I1 + I2 and have the following long
exact sequence in BiGr(C/( f , g)e)

⋯ → H i
mC/( f , g)

(C/( f , g)) → H i
I1
(C/( f , g)) ⊕ H i

I2
(C/( f , g)) → H i

mC/( f , g)++
(C/( f , g)) → ⋯

by using the Mayer–Vietoris sequence in the sense of [4, Chapter 3], where �I j( j =
1, 2) is defined not by using the degrees of I j but by using powers of I j (i.e., �I j(M) ∶=
{m ∈ M ∣ mIn

j = 0 for some n}). Note that we can use the Mayer–Vietoris sequence
in our case because I1 , I2 are generated by normal elements and this implies that I1 , I2
satisfy Artin–Rees property. We also have the exact triangle in D(BiGr(C/( f , g)e))

R�mC/( f , g)(C/( f , g))→R�I1(C/( f , g)) ⊕ R�I2(C/( f , g))→R�mC/( f , g)++
(C/( f , g)).

Moreover, H i
I1
(C/( f , g))∗ and H i

I2
(C/( f , g))∗ are torsion modules for mC/( f , g)++

from Sub-Lemma 3.7. So, the cohomologies of R�I1(C/( f , g))∗ ⊕ R�I2(C/( f , g))∗
are torsion. From this result, the above triangle gives an isomorphism between R and
R′[−1] after taking the dual and applying π. Hence, we get the claim. ∎

Sub-Lemma 3.7 Let I1 , I2 be as in the proof of Lemma 3.6. H i
I1
(C/( f , g))∗ and

H i
I2
(C/( f , g))∗ are torsion modules for mC/( f , g)++ for any i.

Proof We only show that H i
I1
(C/( f , g))∗ are torsion modules for mC/( f , g)++ . We

can show that H i
I2
(C/( f , g))∗ are torsion in the same way.

First, we prove that H i
I1
(C)∗ is torsion. We have �I1 = �In+1

1
. Moreover, if J1 is the

ideal generated by xn+1
0 , . . . , xn+1

n , then we have �In+1
1

= �J1 . Note that xn+1
0 , . . . , xn+1

n
are central elements in C from the choice of {q i j}.

Let M ∈ Gr(C) be injective. Then, we have a surjective localization map
M → M[x−(n+1)

i ] for any i and �J1(M) is injective in Gr(C) because J1 satisfies
Artin–Rees property (cf. [34, Example 3.13], [7, Lemma A1.4]). When M′ is injective
in Gr(C e), then M′ is injective in Gr(C), where ResC ∶ Gr(C e) → Gr(C) is the
restriction functor (see [35, Lemma 2.1]). Thus, we can calculate ResC(H i

J1
(C)) by

using a Čech complex C (xn+1
0 , . . . , xn+1

n ; C) (cf. [17, Chapter 2, 3], [7, Theorem A1.3]).
Then, we have C (xn+1

0 , . . . , xn+1
n ; C) = C (xn+1

0 , . . . , xn+1
n ; A) ⊗k B. This induces that

ResC(H i
J1
(C)) ≃ H i

mA
(A) ⊗k B. Because H i

mA
(A)>0 = 0 (see [12, Proposition 2.4]),

H i
J1
(C)∗ ≃ H i

I1
(C)∗ is torsion.
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Finally, we consider the exact sequences of C-bimodules

0 → C(−d0 ,−d1)
× f→ C → C/( f ) → 0,(3.1.1)

0 → C/( f )(−e0 ,−e1)
×g→ C/( f ) → C/( f , g) → 0.(3.1.2)

Then, we take the long exact sequence for �I1 and we get the claim since H i
I1
(C)∗ is

torsion. ∎

Lemma 3.8 gl.dim(qbigr(C/( f , g))) = d0 + d1 + e0 + e1 − 4.

Proof We show the proposition only in (1) of the theorem. In (2) of the theorem,
the proposition can be shown in the same way (cf. Remark 3.9). We consider
a bigraded (commutative) algebra D ∶= k[s0 , . . . , sn , t0 , . . . , tm]/(∑n

i=0 s i ,∑m
i=0 t i)

with s i = xn+1
i , t i = ym+1

i and the projective spectrum biProj(D) in the sense of
[10, Section 1]. Then, C/( f , g) is a finite D-module. So, qbigr(C/( f , g)) can
be thought of as the category of modules over a sheaf A of ObiProj(D)-algebras,
where A is the sheaf on biProj(D) which is locally defined by the algebra
(k[x0 , . . . , xn , y0 , . . . , ym]/( f , g)x i y j)(0,0) on each open affine scheme D+(s i t j) ≃
Spec((Ds i t j)(0,0)). Hence, it is enough to prove that

gl.dim((k[x0 , . . . , xn , y0 , . . . , ym]/( f , g)x i y j)(0,0)) = d0 + d1 + e0 + e1 − 4
= n + m − 2.

We can complete the rest of the proof in the same way as in [12, Section 2.3]. We give
its sketch. For simplicity, we prove the claim when i = j = 0. We define a k-algebra
E by

E ∶= k[S1 , . . . , Sn , T1 , . . . , Tm]/(1 +
n
∑
i=1

S i , 1 +
m
∑
i=0

Ti)

with S i = s i/s0 , Ti = t i/t0. We also define an E-algebra F by

F ∶= k⟨X1 , . . . , Xn , Y1 , . . . , Ym⟩/
⎛
⎝

X i X j − (q0i q i jq j0)X j X i ,
Yi Yj − (q′0i q′i jq′j0)YjYi ,

1 +
n
∑
l=1

Xn+1
l , 1 +

m
∑
l=1

Y m+1
l
⎞
⎠

i , j

with X i = x i/x0 , Yi = y i/y0. The module structure of F is given by the identifications
S i = Xn+1

i , Ti = Y m+1
i . Let Fm̃ be the localization of F at a maximal ideal

m̃ ∶= (S1 − a1 , . . . , Sn − an , T1 − b1 , . . . , Tm − bm)

of E with 1 +∑n
i=1 a i = 1 +∑m

i=1 b i = 0 (a i , b i ∈ k). Then, it is enough to prove that the
global dimension of Fm̃ is n + m − 2 (see [12, Lemma 2.6, 2.7]).

If all a i , b i are not 0, then F/m̃F is a twisted group ring and hence semisimple.
Moreover, S1 − a1 , . . . , Sn − an , T1 − b1 , . . . , Tm − bm is a regular sequence in Fm̃ . This
induces the claim (see [16, Theorem 7.3.7]).

On the other hand, assume that one of {a1 , . . . , an , b1 , . . . , bm} is 0. For example,
assume a1 = 0. We consider F/(X1). Then, we can show that the global dimension of
(F/(X1))m̃ = n + m − 3 because pdF(S) = pdF/(X1)

(S) + 1 for any simple F-module
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S with Ann(S) = m̃ (see [16, Theorem 7.3.5]). If some other a i , b j are 0, we repeat
taking quotients and can reduce to considering the global dimension of the algebra
k[X , Y]/(Xn+1 + 1, Y m+1 + 1), which is 0. ∎

Remark 3.9 To prove Lemma 3.8 in (2) of the theorem, consider the projec-
tive spectrum X ∶= biProj(k[s0 , . . . , sn , t0 , . . . , tn+1]/(∑n

i=0 s i t i ,∑n+1
i=0 tn+1

i )) (resp.
biProj(k[s0 , . . . , sn , t0 , . . . , tn]/(∑n

i=0 s i t i ,∑n
i=0 tn

i ))) and the sheaf A of algebras on
X associated with C/( f , g).

Proof of Theorem 3.3 First, we calculate R�mC/( f , g)(C/( f , g))∗. From [12, Propo-
sition 2.4] (or [25, Example 5.5]) and the proof of [25, Lemma 6.1], we have

R�mC (C)∗ ≃ R�mA(A)∗ ⊗ R�mB(B)∗

≃ ϕ A1(−d0 − e0) ⊗k
ψ B1(−d1 − e1)[d0 + d1 + e0 + e1],(3.1.3)

where ϕ (resp. ψ) is the graded automorphism of A (resp. B) which maps x j ↦
∏n

i=0 q ji x j (resp. y j ↦∏m
i=0 q′ji y j). Then, we consider the distinguished triangles

R�mC (C(−d0 ,−d1))
× f�→ R�mC (C) �→ R�mC/( f )(C/( f )),(3.1.4)

R�mC/( f )((C/( f ))(−e0 ,−e1))
×g�→ R�mC/( f )(C/( f )) �→ R�mC/( f , g)(C/( f , g))

(3.1.5)

obtained from the exact sequences (3.1.1) and (3.1.2) of C-bimodules. Combining the
formula (3.1.3) and the triangle (3.1.4), we have

R�mC/( f )(C/( f ))∗ ≃ ϕ⊗ψ(A⊗k B/( f ))1(−e0 ,−e1)[d0 + d1 + e0 + e1 − 1].(3.1.6)

In addition, combining the triangle (3.1.5) and the formula (3.1.6), we have

R�mC/( f , g)(C/( f , g))∗ ≃ ϕ⊗ψ(A⊗k B/( f , g))1[d0 + d1 + e0 + e1 − 2].(3.1.7)

On the other hand, we have the Serre duality in Db(qbigr(C/( f , g))) from
Lemma 3.10. Thus, −⊗L π(R�mC/( f , g)++

(C/( f , g))∗)[−1] is the Serre functor of
Db(qbigr(C/( f , g))) because this functor induces an equivalence from Lemma 3.6
and the formula (3.1.7). Finally, the Serre functor −⊗L π(R�mC/( f , g)++

(C/( f , g))∗)
[−1] induces the [d0 + d1 + e0 + e1 − 4]-shift functor if and only if ∏n

i=0 q i j and
∏m

i=0 q′i j are independent of j (cf. [12, Remark 2.5]). This completes the proof. ∎

The following lemma is well-known in the case of N-graded algebras (for example,
see [6, 37]).

Lemma 3.10 (Local Duality and Serre Duality for N
2-graded algebras) Let D be

a connected right Noetherian N
2-graded k-algebra (connected means D0,0 = k). Let E

be a connected N
2-graded k-algebra. We assume that �mD++

has finite cohomological
dimension.
(1) Let Q ∶= ω ○ π ∶ BiGr(D) → BiGr(D). Let M ∈ D(BiGr(D ⊗k E○)). Then,

R�mD++
(M)∗ ≃ RHomD(M , R�mD++

(D)∗),(a)
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RQ(M)∗ ≃ RHomD(M , RQ(D)∗)(b)

in D(BiGr(D○ ⊗k E)), where we denote the natural extension of Q to a functor
between BiGr(D ⊗k E○) and itself by the same notation.

(2) We assume that qbigr(D) has finite global dimension. Let M ∶= π(M), N ∶=
π(N)(M , N ∈ Db(bigr(D))). Let RD ∶= π(R�mD++

(D)∗) ∈ Db(qbigr(De)).
Then, N⊗L RD ∈ Db(qbigr(D)) and

HomDb(qbigr(D))(N,M) ≃ HomDb(qbigr(D))(M, (N ⊗L RD)[−1])′,

which is functorial in M and N. Here, (−)′ denotes the k-dual.

Proof Since Ri�mD++
(−) ≃ limn→∞ Exti(D/D≥n ,≥n ,−) and D is right Noetherian,

one can check that Ri�mD++
(−) commutes with direct limits as in [36, Proposition

16.3.19]. In addition, if K is a complex of graded-free right D-modules and L is a
complex of graded right De -modules, then �mD++

(K ⊗D L) ≃ K ⊗D �mD++
(L) (cf.

[20, Lemma 6.10]). So, we can apply the argument of [30, Theorem 5.1] (or [22,
Theorem 2.1]) to prove (a) of (1).

In order to prove (b) of (1), note that we have the canonical exact sequence and the
isomorphism (see also [3, Lemmas 4.1.4 and 4.1.5])

0 → �mD++
(M) → M → Q(M) → lim

n→∞
Ext1(D/D≥n ,≥n , M) → 0,

Ri Q(M) ≃ Ri+1�mD++
(M), (1 ≤ i , M ∈ BiGr(D)).

So, from the previous paragraph, Q has finite cohomological dimension, Ri Q com-
mutes with direct limits. We also have Q(K ⊗D L) ≃ K ⊗D Q(L), where K , L are as
above (cf. [21, Lemma 3.28]). Hence, we can also apply the argument of [30, Theorem
5.1] (or [21, Theorem 3.29]) to prove (b) of (1).

We can prove (2) in the same way as in [6, Lemma A.1 and Theorem A.4] by using
(b) of (1). Note that we have a natural equivalence Db(qbigr(D)) ≃ Db

f (QBiGr(D)),
where Db

f (QBiGr(D)) is the full subcategory of Db(QBiGr(D)) consisting of com-
plexes with cohomology in qbigr(D) (see [6, Lemma 2.2]). ∎

As a corollary of Theorem 3.3, we construct examples of noncommutative pro-
jective Calabi–Yau schemes by using Segre products. Let A, B, f and g be as in
Theorem 3.3.

Definition 3.11 (1) The Segre product A ○ B of A and B is the N-graded k-algebra
with (A ○ B)i = A i ⊗k B i .

(2) Let M ∈ bigr(C). We define a right graded A ○ B-module MΔ as the graded A ○
B-module with (MΔ)i = M i , i .

Lemma 3.12 [32, Theorem 2.4] We have the following natural isomorphism:

qbigr(C) �� qgr(A ○ B), π(M) � �� π(MΔ).

In addition, the functor defined by −⊗A○B C is the inverse of this equivalence.
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Remark 3.13 Let J ∶= ( f , g) ∈ bigr(C). We similarly obtain an equivalence

qbigr(C/J) ≃ qgr(A ○ B/JΔ).

Combining Theorem 3.3 with Remark 3.13, we get the following.

Corollary 3.14 Let J ∶= ( f , g) ∈ bigr(C). Then, proj(A ○ B/JΔ) is a noncommutative
projective Calabi–Yau scheme.

3.2 Weighted hypersurfaces

Reid produced the list of all commutative weighted Calabi–Yau hypersurfaces of
dimensions 2 (for example, see [11, 23]). In this section, we construct noncom-
mutative projective Calabi–Yau schemes from noncommutative weighted projec-
tive hypersurfaces. Let A be a right Noetherian N-graded k-algebra. Then, the rth
Veronese algebra A(r) is the N-graded k-algebra with A(r)i = Ar i . We consider the
(commutative) weighted polynomial ring A = k[x0 , . . . , xn]with deg(x i) = d i . Then,
Coh(Proj(A)) is in general not equivalent to qgr(A), but to qgr(A(n+1)lcm(d0 , . . . ,dn)).
However, we can think of qgr(A) as a resolution of singularities of Coh(Proj(A))
(cf. [28, Example 4.9]). Moreover, we have qgr(A) ≃ Coh([(Spec(A)/{0})/Gm]) and
[(Spec(A)/{0})/Gm] is a smooth Deligne–Mumford stack whose coarse moduli
space is Proj(A).

Theorem 3.15 Let (d0 , . . . , dn) ∈ Zn+1
>0 and d ∶= ∑n

i=0 d i such that d is divisible by d i
for all i. Let C ∶= k⟨x0 , . . . , xn⟩/(x jx i − q ji x i x j)i , j , where q ji ∈ k× , deg(x i) = d i for all
i , j. Let f ∶= ∑n

i=0 xh i
i , where h i ∶= d/d i .

We assume that q i i = q i jq ji = qh i
i j = qh j

i j = 1 for all i, j. Then, proj(C/( f )) is a
noncommutative projective Calabi–Yau scheme of dimension (n − 1) if and only if there
exists c ∈ k such that cd j = ∏n

i=0 q i j for all j.

Remark 3.16 • f is a central element in C from the choice of {q i j}.
• Theorem 3.15 is a generalization of [12, Theorem 1.1].

Lemma 3.17 The balanced dualizing complex of C/( f ) is isomorphic to ϕ(C/( f ))1

[n], where ϕ is a graded automorphism of C which maps x j ↦∏n
i=0 q ji x j .

Proof Since C is Artin–Schelter regular, C is skew Calabi–Yau (see [25, Lemma
1.2]). This implies that the balanced dualizing complex of C is isomorphic to
ϕC1(−d)[n + 1], where ϕ is the Nakayama automorphism of C. From [25, Example
5.5], the automorphism ϕ is the map which maps x j ↦∏n

i=0 q ji x j .
By using this result, we can obtain the claim in the same way as in the proof of

Theorem 3.3 after Remark 3.9. ∎

In general, C/( f ) is not generated in degree 0 and 1. This fact prevents us from
using the idea of the proof of Lemma 3.8 to calculate the global dimension of
qgr(C/( f )). So, we need to find a right Noetherian N-graded k-algebra R which
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is generated in degree 0 and 1 and satisfies qgr(R) ≃ qgr(C/( f )). Quasi-Veronese
algebras are effective in achieving this objective. We recall the notion of quasi-
Veronese algebras below. In detail, see [18, Section 3].

Definition 3.18 [18, Section 3] Let A be an N-graded k-algebra. The lth quasi-
Veronese algebra A[l] of A is a graded k-algebra defined by

A[l] ∶= ⊕
i∈N

A[l]i ∶= ⊕
i∈N

⎛
⎜⎜⎜
⎝

A l i A l i+1 ⋯ A l i+l−1
A l i−1 A l i ⋯ A l i+l−2
⋮ ⋮ ⋱ ⋮

A l i−l+1 A l i−l+2 ⋯ A l i .

⎞
⎟⎟⎟
⎠

.

Remark 3.19 (1) We have Gr(A) ≃ Gr(A[l]) (see [18, Lemma 3.9]). The equiv-
alence is obtained by the functor Ψ ∶ Gr(A) → Gr(A[l]), which is defined by
Ψ(M) ∶= ⊕i∈Z (⊕l−1

j=0 M l i− j) .
(2) When A is right Noetherian, A[l] ≃ ⊕0≤i , j≤n−1 A( j − i)(l) ∈ gr(A(l)), where

A(l) is the lth Veronese algebra of A and the A(l)-module structure of A[l] is
given by the natural inclusion A(l) ⊂ A[l] (cf. the proof of [19, Proposition 4.11]).
Then, A[l] is also right Noetherian since A(l) is right Noetherian. In this case,
Ψ induces an equivalence between qgr(A) and qgr(A[l]).

Lemma 3.20 Let A be an N-graded k-algebra which is generated by homogeneous
elements y0 , . . . , yh with deg(y i) > 0 as an A0-algebra. Let l ≥ max{deg(y0), . . . ,
deg(yh)}. Then, A[l] is generated in degree 0 and 1.

Proof For any i ∈ N and any a, b ∈ {0, 1, . . . , l − 1}, it is enough to show that every
homogeneous element m of the form

m =

⎛
⎜⎜⎜⎜⎜⎜
⎝

m0,0 . . . m0,β . . . m0, l−1
⋮ ⋮ ⋮

mα ,0 . . . mα ,β . . . mα , l−1
⋮ ⋮ ⋮

m l−1,0 . . . m l−1,β . . . m l−1, l−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈ A[l]i ,

⎛
⎜⎜⎜⎜
⎝

mα ,β ∈ (A[l]i )α ,β
∶= A l i+β−α ,

mα ,β = 0 when (α, β) ≠ (a, b)
0 ≤ α, β ≤ l − 1

⎞
⎟⎟⎟⎟
⎠

is generated in degree 0 and 1. Moreover, we can assume that ma ,b = ∏n1
j=0 y i j

(i j ∈ {0, . . . , h}, n1 ∈ N).
If ma ,b is decomposed into ∏n1

j=0 y i j = ∏n2
j=0 y i j ∏n1

j=n2+1 y i j (n2 ∈ N) such that
l − a ≤ deg(∏n2

j=1 y i j) ≤ 2l − a − 1, then we have ∏n2
j=0 y i j ∈ (A[l]1 )a ,c = A l+c−a and

∏n1
j=n2+1 y i j ∈ (A[l]i−1)c ,b = A l(i−1)+b−c(0 ≤ ∃c ≤ l − 1). In this case, we can show the

claim by using induction on the degree of m. So, it is sufficient to show that we have
such a decomposition for all m. Indeed, we can find at least one such decomposition
from (2l − a − 1) − (l − a) + 1 = l and the choice of l. In detail, we have l − a ≤
deg(y i0) ≤ 2l − a − 1 or there exists n3 ∈ N such that deg(y i0 y i1 . . . y in3

) < l − a and
l − a ≤ deg(y i0 y i1 . . . y in3

y in3+1) ≤ 2l − a − 1 since 0 < deg(y i) ≤ l . ∎

Lemma 3.21 gl.dim(qgr(C/( f ))) = n − 1.
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Proof We use the idea of the proof of Lemma 3.8. We consider an N-graded k-
algebra B ∶= k[s0 , . . . , sn]/(∑n

i=0 s i) with s i = xh i
i . Then, A[d] is right Noetherian and

qgr(C/( f )) ≃ qgr((C/( f ))[d]) from Remark 3.19. So, it is enough to prove that
gl.dim(qgr((C/( f ))[d])) = n − 1. Because C/( f ) is finite over B, a B-submodule
Z(C/( f ))(d) of C/( f ) is finite over B. From [19, Propositions 4.10 and 4.11],
(C/( f ))[d] is finite over Z(C/( f ))(d). So, (C/( f ))[d] is finite over B. In addition,
(C/( f ))[d] is generated in degrees 0 and 1 from Lemma 3.20. So, qgr((C/( f ))[d])
is equivalent to the category of coherent modules over a sheaf A of OProj(B)-algebra,
where A is the sheaf on the projective spectrum Proj(B) which is locally defined by
a tiled matrix algebra

N i =
⎛
⎜⎜⎜
⎝

E i ,0 E i ,1 ⋯ E i ,d−1
E i ,−1 E i ,0 ⋯ E i ,d−2
⋮ ⋮ ⋯ ⋮

E i ,−d+1 E i ,−d+2 ⋯ E i ,0

⎞
⎟⎟⎟
⎠

on each D+(s i). Here, E i ∶= (C/( f ))[x−1
i ] and E i , j is the degree j part of E i . As in the

proof of Lemma 3.8, it is enough to show that the global dimension of N i is n − 1 for
all i.

On the other hand, two graded algebras

R1 ∶= E i ⊕ E i(1) ⊕⋯⊕ E i(d − 2) ⊕ E i(d − 1),
R2 ∶= E i ⊕ E i(1) ⊕⋯⊕ E i(d i − 2) ⊕ E i(d i − 1)

are progenerators in Gr(E i). So, the category of right Endgr(R1)-modules and the
category of right Endgr(R2)-modules are equivalent because they are equivalent to
the category of graded right E i -modules (cf. [26, Lemma 4.8], [28, Remarks after
Proposition 4.5]). We also have Endgr(R1) ≃ N i and

Endgr(R2) ≃ M i ∶=
⎛
⎜⎜⎜
⎝

E i ,0 E i ,1 ⋯ E i ,d i−1
E i ,−1 E i ,0 ⋯ E i ,d i−2
⋮ ⋮ ⋯ ⋮

E i ,−d i+1 E i ,−d i+2 ⋯ E i ,0

⎞
⎟⎟⎟
⎠

.

So, it is sufficient to prove the global dimension of M i is n − 1 for each i.
For simplicity, we assume i = 0. When i ≠ 0, we can show the claim in the same

way. Let D = k[S1 , . . . , Sn]/(1 +∑n
j=0 S j) with S j = s j/s0. We show that the global

dimension of the D-algebra M0 is n − 1. The module structure of M0 is given by the
identification S j = (xh j

j /xh0
0 )Id0 ∈ M0, where Id0 is the (d0 × d0)-identity matrix. Let

m̃ = (S1 − a1 , . . . , Sn − an) (a j ∈ k)
be a maximal ideal of D with 1 +∑n

j=1 a j = 0. It is sufficient to show that
gl.dim((M0)m̃) = n − 1, where (M0)m̃ is the localization of M0 at m̃ (cf. the second
paragraph of the proof of Lemma 3.8). We divide the proof of this claim into two
cases.

Case (a): all a j are not 0. Because S1 − a1 , . . . , Sn − an is a regular sequence in
(M0)m̃ , we show that the global dimension of (M0)m̃/m̃(M0)m̃ ≃ M0/m̃M0 is 0 (cf.
the third paragraph of the proof of Lemma 3.8).
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First, the category of M0/m̃M0-modules is equivalent to the category of graded
E′0-modules, where

E′0 ∶= E0/(xh1
1 /xh0

0 − a1 , . . . , xhn
n /xh0

0 − an)E0 .

This is a Morita equivalence obtained from the isomorphism Endgr(E′0) ≃ M0/m̃M0
(cf. the three previous paragraph).

Next, we see that E′0 is strongly graded. Since

E0 ≃ (C[x−1
0 ])/(1 + (xh1

1 /xh0
0 ) +⋯ + (xhn

n /xh0
0 )),

we have

E′0 ≃ (C[x−1
0 ])/(xh1

1 /xh0
0 − a1 , . . . , xhn

n /xh0
0 − an).

For any l ∈ Z, if x̃ ∶= x l0
0 x l1

1 . . . x ln
n ∈ (E′0)l (l0 ∈ Z, l1 , . . . ln ∈ N), then there exist

k1 , . . . , kn ∈ N such that x̃′ ∶= x(−∑ k i)h0−l0
0 xk1 h1−l1

1 . . . xkn hn−ln
n ∈ (E′0)−l . Because

x̃ x̃′ ∈ k∗, we get 1 ∈ (E′0)l(E′0)−l and E′0 is strongly graded.
Since E′0 is strongly graded, we have Gr(E′0) ≃ Mod((E′0)0). Then, (E′0)0 is a

twisted group algebra, where a k-basis of (E′0)0 is

{x e0
0 x e1

1 x e2
2 . . . x en

n ∈ (E′0)0 ∣
n
∑
j=0

e jd j = 0 and 0 ≤ e j < h j (∀ j = 1, 2, . . . , n)}.

In particular, (E′0)0 is semisimple. Hence, the graded global dimension of E′0 is 0 and
gl.dim(M0/m̃M0) = 0.

Case (b): some of a j are 0. For example, we assume a1 = 0. Then, (xh1
1 /xh0

0 )Id0 is an
annihilator of any simple M0-module N. On the other hand, we have a unique integer
r1 such that 0 ≤ deg(x1/x r1

0 ) ≤ d0 − 1. If deg(x1/x r1
0 ) = 0, then J = x1/x r1

0 Id0 annihilates
N. Otherwise, the matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

O
x1/x r1

0
⋱

x1/x r1
0

x1/x r1+1
0

⋱
x1/x r1+1

0

O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ M0

annihilates N because ∃nJ ∈ N such that Jn J = (xh1
1 /xh0

0 )Id0 (the reduction of N i to M i
is used here). Thus, it is enough to prove that the global dimension of (M0/JM0)m̃ =
n − 2 (cf. the fourth paragraph of the proof of Lemma 3.8). Note that we have

M0/JM0 ≃
⎛
⎜⎜⎜
⎝

F0,0 F0,1 ⋯ F0,d0−1
F0,−1 F0,0 ⋯ F0,d0−2
⋮ ⋮ ⋯ ⋮

F0,−d0+1 F0,−d0+2 ⋯ F0,0

⎞
⎟⎟⎟
⎠

,(3.2.1)

where

F0 ∶= E0/x1E0 ≃ k⟨x0 , x2 , . . . , xn⟩/(x jx i − q ji x i x j , xh0
0 + xh2

2 +⋯+ xhn
n )i , j[x−1

0 ]
and F0, j is the degree j part of F0.
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If any of a2 , . . . , an is not 0, we can reduce to the case (a) from (3.2.1). If some of
a2 , . . . , an are 0, repeat the above process until we can reduce to the case (a). ∎

Proof of Theorem 3.15 gl.dim(qgr(C/( f ))) is finite. So, the balanced dualizing
complex ϕ(C/( f ))1[n] of C/( f ) induces the Serre functor of qgr(C/( f )) from [6,
Theorem A.4]. We complete the proof as in the proof of Theorem 3.3. ∎

4 Comparison and closed points

In this section, we calculate closed points of noncommutative projective Calabi–
Yau schemes of dimensions 2 obtained in Section 3.2 and compare our examples
with commutative Calabi–Yau varieties and the first examples constructed in [12].
In particular, we show that a noncommutative projective Calabi–Yau scheme in
Section 3.2 gives essentially a new example of noncommutative projective Calabi–Yau
schemes.

Example 4.1 Any weight (d0 , d1 , d2 , d3) of noncommutative projective Calabi–Yau
schemes of dimensions 2 in Theorem 3.15 such that gcd(d0 , d1 , d2 , d3) = 1 is one of
the following (obtained by using a computer):

(d0 , d1 , d2 , d3) =(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 4, 6),
(1, 2, 2, 5), (1, 2, 3, 6), (1, 2, 6, 9), (1, 3, 4, 4), (1, 3, 8, 12),
(1, 4, 5, 10), (1, 6, 14, 21), (2, 3, 3, 4), (2, 3, 10, 15).

From now, we focus on the closed points of noncommutative projective Calabi–
Yau schemes of dimensions 2 in Theorem 3.15 whose weights are of type (1, 1, a, b).
We recall the notion of closed points of noncommutative projective schemes.

For simplicity, we often call anN-graded k-algebra of the form k⟨z0 , . . . , zm⟩/(z jz i −
p ji z i z j)i , j (p ji ∈ k× , m ∈ N) with deg(z i) > 0 and p ji p i j = 1 a weighted quantum
polynomial ring. (p ji) is called the quantum parameter.

Definition 4.2 [19, Section 3.1] Let A be a finitely generated right Noetherian
connected N-graded k-algebra. A closed point of proj(A) is an object of qgr(A)
represented by a 1-critical module of A. We denote by ∣proj(A)∣ the set of closed points
of proj(A). For the definition of 1-critical modules, see [19, Definition 3.1].

Remark 4.3 [19, Section 3.1] If A is a quotient of a weighted quantum polynomial
ring, then every closed point of proj(A) is one of the following:
(1) An ordinary point, which is represented by a finitely generated 1-critical module

of multiplicity 1.
(2) A fat point, which is represented by a finitely generated 1-critical module of

multiplicity > 1.
(3) A thin point, which is represented by a finitely generated 1-critical module of

multiplicity < 1.
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For the definition of multiplicities, see [19, Definition 3.10]. In addition, if A is
generated in degree 1, the notion of ordinary points and that of point modules are
the same, and there are no thin points.

Let C ∶= k⟨x0 , x1 , x2 , x3⟩/(x jx i − q ji x i x j)i , j whose weight is of type (d0 , d1 , d2 ,
d3) = (1, 1, a, b) (0 < a ≤ b). We assume that q i jq ji = q i i = 1 for all i , j. Since d0 = 1,
C[x−1

0 ] is strongly graded. So, from [19, Theorem 4.20], we have

∣proj(C)∣ = ∣spec(C[x−1
0 ]0)∣⊔ ∣proj(C/(x0))∣,

where we denote by ∣spec(C[x−1
0 ]0)∣ the set of simple modules of C[x−1

0 ]0. In this
equality, the 1 (resp. n > 1)-dimensional simple modules of spec(C[x−1

0 ]0) correspond
to ordinary (resp. fat) points in proj(C). Similarly, we have

∣proj(C)∣ = ∣spec(C[x−1
0 ]0)∣⊔ ∣spec(C/(x0)[x−1

1 ]0)∣⊔ ∣proj(C/(x0 , x1))∣.

We have an isomorphism C[x−1
0 ]0

≃�→ k⟨X1 , X2 , X3⟩/(X j X i − q′ji X i X j)i , j which
sends x1x−1

0 , x2x−a
0 and x3x−b

0 to X1 , X2, and X3, respectively. Here, q′ji ∶=
qd i

0 jq ji q
d j
i0 (i , j ≠ 0). In the same way, C/(x0)[x−1

1 ]0 is also isomorphic to k⟨Y2 , Y3⟩/
(Y3Y2 − p32Y2Y3), where p32 ∶= qa

13q32qb
21.

Let C1 ∶= k⟨x′0 , x′1 , x′2 , x′3⟩/(x′jx′i − q′ji x′i x′j)i , j , where deg(x′i) = 1, q′0i = q′j0 = 1 for
all i , j. Let C2 ∶= k⟨y1 , y2 , y3⟩/(y j y i − p ji y i y j)i , j , where deg(y′i) = 1, p1i = p j1 = 1 for
all i , j. Then, we can consider the point scheme of proj(C1) (resp. proj(C2)), which
is isomorphic to the set of ordinary points ∣proj(C1)∣ord (resp. ∣proj(C2)∣ord) as sets.
Thus, we regard ∣proj(C1)∣ord (resp. ∣proj(C2)∣ord) as the point scheme of proj(C1)
(resp. proj(C2)).

Let ∣spec(C[x−1
0 ]0)∣1 (resp. ∣spec(C/(x0)[x−1

1 ]0)∣1) be the set of one-dimensional
simple modules of C[x−1

0 ]0 (resp. C/(x0)[x−1
1 ]0). Because C1[x′0

−1]0 ≃ C[x−1
0 ]0 and

C2[y1
−1]0 ≃ C/(x0)[x−1

1 ]0, we can think of ∣spec(C[x−1
0 ]0)∣1 (resp. ∣spec(C/(x0)

[x−1
1 ]0)∣1) as a locally closed subscheme of ∣proj(C1)∣ord (resp. ∣proj(C2)∣ord) from [19,

Theorem 4.20].

Lemma 4.4 (1) If q′ji ≠ 1 for all i, j ≠ 0, ∣spec(C[x−1
0 ]0)∣1 is a union of three affine

lines.
(2) If p32 ≠ 1, ∣spec(C/(x0)[x−1

1 ]0)∣1 is a union of two affine lines. Otherwise,
∣spec(C/(x0)[x−1

1 ]0)∣1 ≃ A
2.

Proof (2) is well-known (for example, see [26, Section 4.3]). Regarding (1), under
the assumption of the lemma, proj(C1) belongs to case (3) or case (4) in [33,
Corollary 5.1]. This shows that ∣spec(C1[x′0

−1]0)∣1 is isomorphic to ⋃i≠ j Z(X′i , X′j) ⊂
A

3 = Spec(k[X′1 , X′2 , X′3]) (cf. [33, Proposition 4.2] or [2, Theorem 1]). ∎

Remark 4.5 We consider the weights (1, 1, a, b) and the quantum parameters which
give noncommutative projective Calabi–Yau schemes of dimensions 2 in Theorem
3.15. Then, we can check that if p32 ≠ 1, then q′ji ≠ 1 for all i , j ≠ 0 by using a computer.
Moreover, if p32 = 1, then q′ji = 1 for all i , j ≠ 0. In this case, ∣spec(C[x−1

0 ]0)∣1 ≃ A
3.
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We consider C/(x0 , x1) = k⟨x2 , x3⟩/(x3x2 − q32x2x3). Then, it is known that a
weighted quantum polynomial ring of two variables is a twisted algebra of a com-
mutative weighted polynomial ring k[x , y] with deg(x) = a > 0, deg(y) = b > 0 (for
example, see [29, Example 4.1] or [38, Example 3.6]). So, it is enough to consider the
closed points of proj(k[x , y]). We want to study the closed points of proj(k[x , y])
in the case of (a, b) = (2, 2), (2, 4) or (4, 6). Note that when (a, b) = (1, 1) or (1, 3),
they are classified in [19, Theorem 3.16]. We treat a more general setting below.

Lemma 4.6 Let R = k[x , y] be a commutative weighted polynomial ring with
deg(x) = a > 0, deg(y) = b > 0. Let g ∶= gcd(a, b), a′ ∶= a/g and b′ ∶= b/g. Then,
every closed point of proj(R) is one of the following:
(1) πR/(x)(−i), i = 0, . . . , b − 1.
(2) πR/(y)(− j), j = 0, . . . , a − 1.
(3) πR/(βxb′ − αya′)(−k), where (α, β) ∈ P1/{(0, 1), (1, 0)} and k = 0, . . . , g − 1.
Moreover, all of them are not isomorphic in proj(R).

Proof The proof is almost the same as the proof of [19, Lemma 3.15 and Theorem
3.16]. We give the sketch of the proof.

Firstly, every closed point of proj(R) is represented by a cyclic critical Cohen–
Macaulay module of depth 1. Then, M ∈ gr(R) satisfies these conditions and is gener-
ated in degree 0 if and only if M is isomorphic to one of R/(x), R/(y) or R/(βxb′ −
αya′) (α, β ∈ k×). Since being cyclic critical Cohen–Macaulay of depth 1 is invariant
under shifting, any closed point is represented by some shifts of one of the above
modules (that is, R/(x)(−l), R/(y)(−l), R/(βxb′ − αya′)(−l), l ∈ Z).

Finally, we classify the isomorphic classes of these modules in proj(R). We have no
isomorphisms between the three types of closed points by considering their Hilbert
polynomials and multiplicities. Then, we have πR/(βxb′ − αya′) ≃ πR/(βxb′ −
αya′)(−gl), (∀ l ∈ Z, ∀(α, β) ∈ P1/{(1, 0), (0, 1)}). We also have πR/(βxb′ −
αya′) ≃ πR/(β′xb′ − α′ya′) if and only if (α, β) = (α′ , β′) in P

1/{(1, 0), (0, 1)}. In
addition, we can show that πR/(x) ≃ πR/(x)(−i) (resp. πR/(y) ≃ πR/(y)(− j)) if
and only if i ≡ 0 (mod b) (resp. j ≡ 0 (mod a)). From these discussions, we get the
claim. ∎

We can study ordinary and thin points of noncommutative projective Calabi–Yau
schemes of dimensions 2 in Theorem 3.15 by using the above investigations. We give
examples of noncommutative projective Calabi–Yau schemes whose moduli of ordi-
nary closed points are different from those in [12, Proposition 3.4] and commutative
Calabi–Yau varieties.

Example 4.7 We consider the weight (1, 1, 2, 2) and the quantum parameter

q = (q i j) =
⎛
⎜⎜⎜
⎝

1 1 1 ω2

1 1 ω2 1
1 ω 1 1
ω 1 1 1

⎞
⎟⎟⎟
⎠

, ω ∶= −1 + i
√

3
2

.
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Then, we have

q′ = (q′i j) =
⎛
⎜
⎝

1 ω2 ω
ω 1 ω2

ω2 ω 1

⎞
⎟
⎠

, q2
13q32q2

21 = ω2 .

From Lemmas 4.4 and 4.6, the set of ordinary and thin points

∣proj(C/( f ))∣ord & thin = ∣spec(C/( f )[x−1
0 ]0)∣1 ⊔∣spec(C/( f , x0)[x−1

1 ]0)∣1
⊔∣proj(C/( f , x0 , x1))∣

is 24 points. To be more precise, we have ∣spec(C/( f )[x−1
0 ]0)∣1 = ⊔i≠ j Z(X i , X j , 1 +

X6
1 + X3

2 + X3
3) ⊂ A

3, ∣spec(C/( f , x0)[x−1
1 ]0)∣1 = ⊔i=1,2 Z(Yi , 1 + Y 3

2 + Y 3
3 ) and

∣proj(C/( f , x0 , x1))∣ = {3pts} ⊔ {3pts}.
This calculation shows that for a fixed weight, if the set of ordinary and thin

points of proj(C/( f )) is finite, then the cardinality is independent of the quantum
parameters.

From the method in Example 4.7, Remark 4.5, and a direct computation, we have
the following.

Proposition 4.8 For a weight (1, 1, a, b) in Example 4.1 and a quantum parameter q
which gives a noncommutative projective Calabi–Yau scheme, if the set of ordinary and
thin points of proj(C/( f )) is finite, then the cardinality is always 24.

The following proposition shows that some of noncommutative projective Calabi–
Yau schemes of dimensions 2 in Theorem 3.15 are essentially new examples.

Proposition 4.9 There exists a noncommutative projective Calabi–Yau scheme of
dimension 2 which is obtained in Theorem 3.15 and not isomorphic to either com-
mutative Calabi–Yau surfaces or noncommutative projective Calabi–Yau schemes of
dimensions 2 obtained in [12].

Proof We divide the proof into four steps.
Step 1. We choose the weight (1, 1, a, b) and the quantum parameter q as in Example

4.7. Then, the number of ordinary and thin points of proj(C/( f )) is finite. So,
proj(C/ f ) is not isomorphic to any commutative Calabi–Yau surfaces.

Step 2. We prove that proj(C/( f )) is not isomorphic to any noncommutative
projective Calabi–Yau schemes of dimensions 2 in [12]. To prove this, we use the
theory established in [5]. First, note that we can think of qgr(C/( f )) as the cat-
egory of coherent modules of a sheaf A of algebras on the projective spectrum
Proj(k[s0 , s1 , s2 , s3]/(s0 + s1 + s2 + s3)) (cf. the proof of Lemma 3.21). We define a
sheaf ZA to be the sheaf whose sections are

�(U ,ZA) = {s ∈ �(U ,A) ∣ s∣V ∈ Z(�(V ,A)), ∀V ⊂ U ∶ open}
for all open subsets U (cf. [5, Proposition 2.11]). In particular, if U is affine,
�(U ,ZA) = Z(�(U ,A)). Then, we show that Spec(Z(�(D+(s i),A))) has four
singular points when i = 0, 1 and a one-dimensional singular locus when i = 2, 3.
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In the following, we verify this claim for i = 0, 2. Similarly, the claim is proved for
i = 1, 3. In the following, we write Z i as Z(�(D+(s i),A)) for any i. We also use the
notations in the proof of Lemma 3.21.

When i = 0, any m ∈ Z0 is of the form m = ( μ1 e 0
0 μ2 e ) ∈ N0 , (e ∈ E0,0 , μ1 , μ2 ∈

k×)from the definition of A. We have

E0,0 ≃ k⟨X1 , X2 , X3⟩(X j X i − q′ji X i X j , 1 + X6
1 + X3

2 + X3
3)i , j ,

which is obtained from the identifications X1 = x1x−1
0 , X2 = x2x−2

0 and X3 = x3x−2
0 .

Here, the q′ji are as in Example 4.7. So, we have

Z(E0,0) ≃ k[Y , Z , W , U]/(1 + Y 2 + Z +W , Y ZW − λ1U 3) (λ1 ∈ k×),

which is obtained from the identifications Y = (x1x−1
0 )3 , Z = (x2x−2

0 )3 , W = (x3x−2
0 )3

and U = (x1x−1
0 )(x2x−2

0 )(x3x−2
0 ). On the other hand, we define the inclusion ϕ ∶

Z(E0,0) → N0 in which Y , Z , W are mapped naturally and U to ( U 0
0 ωU ). It is easy to

see that ϕ(Z(E0,0)) ⊂ Z0. Because the choice of μ1 determines μ2 in the above form
of m, the map ϕ induces Z0 ≃ Z(E0,0). Thus, one can show that Spec(Z0) has four
singular points by using the Jacobi criterion.

When i = 2, any m ∈ Z2 is of the form m = ( μ1 e 0
0 μ2 e ) ∈ N2 , (e ∈ E2,0 , μ1 , μ2 ∈

k×)from the definition of A. We also have

E2,0 ≃ k⟨X0 , X1 , X2 , X3⟩/(X j X i − q′′ji X i X j , 1 + X6
0 + X6

1 + X3
3 , X0 X1 − λ2 X2

2)i , j (λ2 ∈ k×),

which is obtained from the identifications X0 = x2
0 x−1

2 , X1 = x2
1 x−1

2 , X2 = x0x1x−1
2 and

X3 = x3x−1
2 . Here, the q′′i j are defined by the matrix

(q′′i j) =
⎛
⎜⎜⎜
⎝

1 ω ω2 ω
ω2 1 ω ω2

ω ω2 1 1
ω2 ω 1 1

⎞
⎟⎟⎟
⎠

.

So, we have

Z(E2,0) ≃ k[X , Y , W , U , V]/(X + Y + 1 +W , XY − λ3U 2 , XYW − λ4V 2) (λ3 , λ4 ∈ k×),

which is obtained from the identifications X = (x2
0 x−1

2 )3 , Y = (x2
1 x−1

2 )3 , W =
(x3x−1

2 )3 , U = (x0x1x−1
2 )3, and V = (x0x1x−1

2 )(x3x−1
2 ). On the other hand, we define

the inclusion ϕ ∶ Z(E2,0) → N2 in which X , Y , W , U are mapped naturally and V to
( V 0

0 ωV ). It is easy to see that ϕ(Z(E2,0)) ⊂ Z2. Because the choice of μ1 determines
μ2 in the above form of m, the map ϕ induces Z2 ≃ Z(E2,0). Thus, one can show that
Spec(Z2) has a one-dimensional singular locus by using the Jacobi criterion.

Step 3. We consider the weight (1, 1, 1, 1) and take a quantum parameter which gives
a noncommutative projective Calabi–Yau scheme proj(C′/( f ′))whose point scheme
is finite. qgr(C′/( f ′)) is thought of as the category of coherent modules of a sheaf B
of algebras on the projective spectrum Proj(k[t0 , t1 , t2 , t3]/(t0 + t1 + t2 + t3)).

The number of the choices of quantum parameters (q i j) which satisfy the con-
ditions of Theorem 3.15 and give a noncommutative projective Calabi–Yau scheme
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whose moduli space of point modules is finite is 20 up to permutating variables (we
get the list below by using a computer and hand calculations):

1. (
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

) , 2. (
1 1 1 1
1 1 −i i
1 i 1 −i
1 −i i 1

) , 3. (
1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

) , 4. (
1 1 1 −1
1 1 −i −i
1 i 1 i
−1 i −i 1

) ,

5.(
1 1 1 i
1 1 −1 −i
1 −1 1 −i
−i i i 1

) , 6.(
1 1 1 i
1 1 −i −1
1 i 1 1
−i −1 1 1

) , 7.(
1 1 1 −i
1 1 −1 i
1 −1 1 i
i −i −i 1

) , 8.(
1 1 1 −i
1 1 −i 1
1 i 1 −1
i 1 −1 1

) ,

9. (
1 1 −1 −1
1 1 −i i
−1 i 1 i
−1 −i −i 1

) , 10.(
1 1 −1 i
1 1 i −1
−1 −i 1 −1
−i −1 −1 1

) , 11.(
1 1 −1 −i
1 1 −i −1
−1 i 1 −1
i −1 −1 1

) , 12.(
1 1 i i
1 1 −i −i
−i i 1 −1
−i i −1 1

) ,

13.(
1 1 i −i
1 1 −i i
−i i 1 1
i −i 1 1

) , 14. (
1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

) , 15. (
1 −1 −1 −1
−1 1 −i i
−1 i 1 −i
−1 −i i 1

) , 16.(
1 −1 −1 i
−1 1 −1 i
−1 −1 1 i
−i −i −i 1

) ,

17.(
1 −1 −1 −i
−1 1 −1 −i
−1 −1 1 −i
i i i 1

) , 18.(
1 −1 i i
−1 1 i i
−i −i 1 −1
−i −i −1 1

) , 19.(
1 i i i
−i 1 −i i
−i i 1 −i
−i −i i 1

) , 20.(
1 i i −i
−i 1 −i −i
−i i 1 i
i i −i 1

) .

When we choose one (q i j) of the above 20 quantum parameters, then for any l, we
have

�(D+(t l),B) ≃ k⟨Y1 , Y2 , Y3⟩/(Yi Yj − q′i jYjYi , Y 4
1 + Y 4

2 + Y 4
3 + 1)1≤i , j≤3 ,

where (q′i j) is represented by one of the following matrices (we can verify this with
direct calculations):

(a).
⎛
⎜
⎝

1 −1 −1
−1 1 −1
−1 −1 1

⎞
⎟
⎠

, (b).
⎛
⎜
⎝

1 −i i
i 1 −i
−i i 1

⎞
⎟
⎠

.

We write Z′l ∶= Z(�(D+(t l),B)). When (q′i j) is type (a), Spec(Z′l) has six singular
points because Z′l is generated by Y 2

1 , Y 2
2 , Y 2

3 and Y1Y2Y3 as a k-algebra. When (q′i j)
is type (b), Spec(Z′l) has three singular points because Z′l is generated by Y 4

1 , Y 4
2 , Y 4

3
and Y1Y2Y3 as a k-algebra. Moreover, for any (q i j) in the above table, if B is type (a)
(resp. (b)) on D+(t l) for some l, it is also type (a) (resp. (b)) on D+(t l) for any other l.

Step 4. If qgr(C/( f )) is equivalent to qgr(C′/( f ′)) then, we must have an iso-
morphism of schemes between Spec(ZA) and Spec(ZB) by [5, Theorem 4.4] (cf. [1,
Section 6]). Since Spec(ZA) has infinitely many singular points, but, Spec(ZB) has
finitely many singular points, such a situation does not happen. Hence, we complete
the proof. ∎
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