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Abstract

Generalizing and strengthening some well-known results of Higman, B. Neumann, Hanna Neumann
and Dark on embeddings into two-generator groups, we introduce a construction of subnormal verbal
embedding of an arbitrary (soluble, fully ordered or torsion free) ordered countable group into a two-
generator ordered group with these properties. Further, we establish subnormal verbal embedding of
defect two of an arbitrary (soluble, fully ordered or torsion free) ordered group G into a group with these
properties and of the same cardinality as G, and show in connection with a problem of Heineken that the
defect of such an embedding cannot be made smaller, that is, such verbal embeddings of ordered groups
cannot in general be normal.

2000 Mathematics subject classification: primary 20E10, 20E15, 20E22, 20F14,06F15.
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1. Introduction

The famous theorem of Higman, B. Neumann and Hanna Neumann on embedding
of an arbitrary countable group into a two-generator group [7] was an initial step for
further research on embeddings in two-generator groups with additional properties.
Let us list some of the main results in this direction, connected to the subject of the
current paper.

Embeddings of soluble groups Since abelian (or nilpotent) groups are not in general
embeddable into two-generator abelian (or nilpotent) groups [21, 22], such embed-
dings of soluble groups are of special interest. B. Neumann and Hanna Neumann have
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proved that every soluble countable group of length / is embeddable into a soluble
two-generator group of length at most 1 + 2 (but not / + 1 in general) [22].

Subnormal embeddings Dark has shown in [1] that every countable group can
be embedded in a two-generator group in such a way that its image is a subnormal
subgroup of the two-generator group. (In this connection see also the paper of Hall [4].)

Embeddings into a word subgroups B. Neumann and Hanna Neumann have con-
structed in [22] not simply an embedding into a two-generator group but also into
the second derived group of the latter (see also [1]). Since two-generator groups
also are countable we can, for arbitrary n, construct embeddings of this type into the
nth member of the derived series of a suitable two-generator group. But one can set
the problem in a much more general form: whether for a given non-trivial word set
V C Foo it is possible to embed a given countable group into the verbal subgroup
(corresponding to V) of some two-generator group.

Embeddings of ordered groups Solving a problem offered by himself, B. Neumann
has proved that it is possible to embed a given countable (soluble) fully ordered group
into a two-generator (soluble) fully ordered group [20] (where of course it is assumed
that the order of the two-generator group 'continues' the order of the isomorphic copy
of the initial group).

For other results in this direction we refer to the papers of Ol'shanskii [25, 26],
B. Neumann [21], Levin and Rosenberger [13], Hall [4], Wilson and Zalesskii [28]
and to literature cited there.

The main result of this paper (Theorem 1 in Section 2) generalizes or strengthens
the theorems listed above, for it establishes an embedding combining all the properties
we have mentioned. For an arbitrary non-trivial word set V, an arbitrary countable
group G is subnormally embeddable into a two-generator group G2, its image lying
in V(Gi), and if G is soluble, fully ordered or torsion free, the group G2 'inherits'
these properties. The proof of this result occupies Section 2 and presents the main
construction of the paper.

In Section 3 we deal with soluble embeddings of ordered groups and normal
embeddings of ordered groups. First we see that the value / + 2 for the soluble length
of the two-generator group obtained in [22] cannot be combined with 'verbality' of
the embedding of Theorem 1. On the other hand we can construct an embedding
preserving the rest of the properties listed above: every ordered soluble countable
group G of soluble length I can be subnormally embedded into an ordered two-
generator soluble group of length 1 + 2, but not I + 1 in general (Theorem 2). This
theorem strengthens Theorem 3.3 and Corollary 3.4 of [20] as well as Theorem 5.1
and Corollary 5.2 of [22] by subnormality, and Theorem 2 of [1] by full order and by
solubility.
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A simplified version of our construction gives a subnormal embedding of defect 2
of an arbitrary {ordered, soluble or torsion free) group G into an {ordered, soluble or
torsion free) group G\ of the same cardinality as G, such that the image of G lies in
V{Gi)foragiven non-trivial word set V (Theorem 3). This strengthens the statement
A of our main theorem in [15] and is connected with the problem of Heineken on
normal verbal embeddability [5]: whether for a given non-trivial word set V and for
a given group G there exists a group H with a normal subgroup G such that G lies in
V{H) and is isomorphic to G. (See the criterion of verbal normal embeddings in our
recent paper [6]). We will see here that the defect 2 obtained above cannot be made
smaller: there exists a fully ordered (nilpotent, torsion free) group G that, for a certain
word set V, cannot be normally embedded into a group H so that the image of G lies
in V{H) (even without the requirement on H to be ordered, soluble, torsion free, or
of the same cardinality as G).

And finally, we would like to announce here that the method we use in the current
paper can be modified for the case of generalized soluble groups. Kovacs and B. Neu-
mann have extended in [10] the result of [22] and have constructed embeddings of
countable S/*-groups (of countable SN*-groups) into two-generator 5/*-groups (into
two-generator SW-groups, respectively). It is very natural to ask whether one can
'add full order' to this embedding as well. Recently we have constructed such sub-
normal embeddings for fully ordered and generalized soluble groups {SN-, SI-, SN*-
or 5/*-groups) into appropriate fully ordered and generalized soluble two-generator
groups [17].

Notations For information on varieties of groups we refer to the book of Hanna
Neumann [23]. Absolutely free groups of infinite rank (or of finite rank n) will be
denoted by F^ (or by Fn). For the given group G, we denote, as usual, by var (G)
the variety generated by G. We have var (G) = var {F^/ V{F0O)), where V is the set
of all identities satisfied in G. We reserve the German letters 21, 9TC and O for the
varieties of all abelian groups, all nilpotent groups of class at most c, and all groups
respectively.

For information on wreath products we refer to the paper of P. Neumann [24] or to
the book of Kargapolov and Merzljakov [9]. Since we use wreath products repeatedly,
let us reserve Greek letters to denote elements of the base group, and Roman letters
for elements of the 'active group'. The support of the element <p of the base group of
the (complete) wreath product A Wr B is denoted by o{cp).

For information on ordered groups we refer to the papers of B. Neumann [19],
Levi [11, 12], or to the book of Fuchs [2]. The group G is fully ordered if there is a
transitive binary relation < defined on G such that for each a,b e G one and only one
of the three alternatives a < b,a = b and b < a holds, and if a < b then ac < be and
ca < cb hold for all c € G. These groups are often called O-groups, but we adopt
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the term used by B. Neumann in [20]. The groups A and B are order isomorphic if
there exists an order-preserving isomorphism/ : A -> B. For an ordered group G
we denote by G+ and G~ the sets of 'positive' and 'negative' elements: an element x
is positive if 1 < x, and x is negative if x < 1.

Let us make the following two conventions. Firstly, if we have an isomorphic
embedding fi : G -*• H, we avoid the details immaterial to our purposes and use in
proofs the same notation for the group G and its image in H. Secondly, if in this
situation the group G is an ordered one and if we have defined an order relation on H
such that its reduction on /J(G) makes the latter order isomorphic to G, we will use
the same sign ' < ' for the orders on G and on H.

2. Construction of the main embedding

THEOREM 1. Let G be an arbitrary countable group and V C F^ be an arbitrary
non-trivial word set. Then there exists a two-generator group G2 with a subgroup G
such that:

(1) G is isomorphic to G.

(2) G is subnormal in G2, and lies in the verbal subgroup V(G).

Moreover if the group G satisfies some of the following conditions

(a) G is soluble,
(b) G is a fully ordered group,
(c) G is torsion free,

then the two-generator group G2 can be chosen to satisfy the same conditions.

As we will see from the proof, the group G2 can be chosen to belong to variety
var (G) 9U212, where as c we can take the nilpotency class of an arbitrary group not
from the variety corresponding to the word set V.

Here we will pay most attention to subnormal, verbal embeddings of fully ordered
groups; the condition (a) will be obtained as a property of the structure of the proof. In
the case when G2 is fully ordered the condition (c) is guaranteed automatically [19].
The case when G is not necessarily an ordered group is covered by statements B and
C of our Theorem 1 in [15] (announced at the ICM 1998, Berlin [14]). In this case
the fact that the two-generator group is torsion free follows from the proof in [15,
Section 2].

Let us note that we cannot replace the property (c) by the property that G2 is a
periodic group because such a property cannot be combined with (b) if the group G
is fully ordered, and cannot be combined with (a) in the general case.

We begin with a useful criterion for fully ordered groups adopted from the paper
ofLevi[ll].
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LEMMA 1 (Levi). The group G is fully ordered if and only if it can be presented as
a union G = G"U{1)UG+ such that G~ and G+ are semigroups, and g~l G+g c G+

for all g e G.

If the given group is represented in the form G = G~U{l}UG+ and the conditions
of Lemma 1 hold, one can set for a, b € G

a < b if and only if a~lb e G+.

Next we construct a nilpotent group 5 essential for our proof. We have to note that
the proof of the following lemma could be somewhat shorter if we simply use [19,
Theorem 2.3] to show that 5 is fully ordered. But we define the order on this group
explicitly in order to have an explicit order on G2.

LEMMA 2. For arbitrary non-trivial word set V there exists a fully ordered nilpotent
torsion free group S with a non-trivial element a such that a e V(S) and 1 < a' for
all positive integers i.

PROOF. The set of all finite nilpotent groups generates the variety of all groups
D [23]. Since V is non-trivial there exists a nilpotent group not from the variety
var (Foo/ VCFoo)) corresponding to V. Thus there is a free nilpotent group S = Fn (9tc)
of some rank n and of some class c which does not belong to var (Foo/ V(F,»)). Then
V(5) ^ {1} and V(S) contains an element a of infinite order. Let further 5, = y,(5)
be the ith member of the lower central series of 5:

5 = S, > S 2 > • • • > Sc+l = {l}.

First we define (full) orders on factors 5,/51+i. Each of these factors is a free abelian
(torsion free) group of finite rank. A direct product of finitely many infinite cycles
can be fully ordered in the following way [12]: order each cycle Z = (z) as follows:

z' < z' if and only if i < j

and continue these orders on the direct product lexicographically: compare elements
zi, Z2 e Sj/Si+i and set zi < z2 if the first coordinate of z, is less than that of z2; if
their first coordinates are equal we consider the second ones, etc . . .

Now we continue orders already defined on the factors on the whole group 5.
Denote by 5+ and S~ the semigroups of positive and negative elements of 5C and
continue by induction:

5+_, = {x e Sc-,: | 1 < x (mod 5C_,+1)},

S;_i = [x 6 Sc-i \x < 1 (mod 5C_,+I)}.
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Consider the sets S+ = (J'=o Sc-i a n d s~ = U'=o s7-i- ^^^ satisfy the conditions of
Lemma 1; the verification is easy and can by found in [19] for more general situations.
Therefore the full order we are looking for can be defined as:

for x, y € S, x < y if and only if x~ly e S+.

Now return to the element a. Since a / 1 we have 1 < a or a < 1. We can
assume 1 < a because we can always replace our order '< ' by the inverse order
relation '<" ' ' . And finally since a is positive its powers a2, a3,..., also are positive
according to definition of full order. •

For the given (not necessarily ordered or countable) group G let us consider the
(complete) wreath product G Wr 5 with the base group G5. Choose a subset Q of
elements Xg of Gs m the following way

ig, if s = a\ i = 0 ,1 ,2 , . . . ;
Xs S ~ \ 1, if s 6 5\{a' | i = 0, 1, 2 , . . . } .

(Here a is the element defined in Lemma 2.)
Define a subgroup of G Wr S:

LEMMA 3. If G, V and G\ are defined as above, the group G\ is of the same
cardinality as G; G can be subnormally embedded into G\ such that its image lies in
V(G\); and if G is a fully ordered group, G\ can be fully ordered in such a way that
G is order isomorphic to its image in G\ {relative to the reduction of the order of G\).

PROOF. V{G\) is non-trivial since V{S) is non-trivial: V{G\) contains the element
a (and all its powers). Define Go to be the first copy of G in the base group Gs:

<p. € Gn if and only if ) r s x " '
l ^ ( 5 ) = l , i f5 6S\{l}.

Since a verbal subgroup is normal we have

But as straightforward computations show,

g, if 5 = 1 = a0;

1, if s = a, a2, a3 , . . . ;

1, if s € S\{a' | i = 0, 1, 2 , . . . } .
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Thus {Xgl)aXt = <Pg e Go, and the first copy of G lies in V(Gi) for <pg = a~xax' e
V{G\). The rule g t-+ <pg defines an embedding of G into G Wr S which we denote
by v.

Since G\ is generated by £2 and S, card (Gi) = card (£2) because S is countable.
(The case of finite G, when the cardinality of a group need not necessarily coincide
with the cardinality of its generating system is impossible here since the orered group
G is torsion free.) On the other hand, clearly card (Q) — card (G).

Further we note that for each element sx e G\ the support a(x) is well-ordered
(according to the order defined on 5 in Lemma 2). This follows from the fact that the
supports of all elements of type Xg are well-ordered and from the following obvious
properties of elements of the base group of a wreath product: if \//, ijf\, fa e Gs and
s e S then

Now we are able to continue the full order of S to a full order on the whole group G\.

For two non-equal elements s\X\, s2xi £ G\ define

s\X\ < S2X2

if and only if S] < s2 or st = s2 and xi (so) < X2(•*<))> where s0 is the 'first coordinate'
(the least element of 5 according to the order defined on the group S) such that
^,(j0) ^ X2fao)- (Clearly Xi(s) = Xi(s) holds for infinitely many 'first' values of
s.) Existence of such a coordinate s0 follows from the fact that <r(xi) and o{xi) are
well-ordered and S\X\ ^ 2̂X2-

This order relation is a full order. Firstly it is easy to see that this relation is transitive
and that for arbitrary elements s{xi, s2Xz e G\ one and only one of following three
alternatives can take place

S\X\

Assume further stxi < s2Xi and sx e G\. It remains to show that

S1X1 • SX = S\s(Xi)sX < s2s(xi)sX = 2̂X2 • sx,

sx • S1X1 = ssi(xY'Xi < ss2(x)SlX2 = sx • s2Xi-

Let us prove the first of these relations. It is obvious that if si < s2 then sts < s2s,

for ' < ' is a full order on 5. Assume $i = s2. Since cr((xiY) — &(X\) • s and
iiY) s we get

(XiY < (X2Y if and only if X\ < Xi-
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And clearly

(Xi)' < (XiY if and only if (X\Y - X < (XzY • X-

because the simultaneous multiplication of some of coordinates of (x\Y and of (X2Y
by the same elements (coordinates of x) does not change the relation (x\Y < (X2)s-

It remains to note that the reduction of this order of the group G\ on the first copy
Go makes the latter order isomorphic to G. •

As the next step we must embed Gi subnormally into a group D such that

(1) D is of the same cardinality as G\.
(2) The isomorphic image of G\ under this embedding lies in the derived subgroup

D'.
(3) The group D can be fully ordered in such a way that the reduction of the order

on the isomorphic image of G\ makes this image order isomorphic to G\.

Of course we could get such a group D simply from Lemma 3 and Lemma 2
taking the commutator word [^1,^2] = x^x^x\x2 instead of general word set V.
As S we could then use the y\i-fret group Fii^SXj). Then the group D would belong
to variety var (GO • 9̂ 2- Nevertheless we will take another construction (given by
P. Neumann [24] and frequently used in literature) not only because it allows a more
'economical' embedding (namely into a group in the variety var (GO 21) but also
because the same construction will be used in the next section.

LEMMA 4. For an arbitrary fully ordered group G\ there exists a fully ordered
group D which belongs to variety var (GO 21 and which satisfies the conditions (1),
(2) and (3) listed above.

PROOF. Let C = (c) be an infinite cycle generated by the element c. The group Gi
is subnormally embeddable into the wreath product G\ Wr C, mapping onto its first
copy in the base group Gf. Let \frg be the element of this first copy corresponding to
the element g e G\.

We choose D to be the subgroup of this wreath product generated by c and by the
following elements ng in Gf (g e G\):

' [1, if i < 0 .

For arbitrary g € G\,

) = (*-!*;„) (O = (*,*;.,) (O = J*1 ||'. = £
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Thus [ng-i, c] = \jrg and therefore the first copy of G\ lies in the derived subgroup D'.
Let us denote by k the embedding g t-> \jfg of G\ onto the first copy of G\ in Gf.

For each element c'n e D the support o{n) has a minimal element. Let us define
the following order relation on D: c'n\ < dn2 if and only if i < j or if i = j
and 7Ti(c*) < 7T2(c*), where c* is the least power of c for which 7Ti(c*) and 7r2(c*)
are different. In analogy with the proof of Lemma 3 we see that we have defined
a full order on D and that its reduction on the first copy of G\ makes that copy
order isomorphic to G\. Clearly D belongs to variety var (G\) 21 and is of the same
cardinality as G\. D

Now assume our initial group G to be countable. Then the corresponding group D
is also countable. We take another infinite cycle Z = (z) and embed D into the wreath
product D Wr Z, again onto the first copy of D in the base group Dz. We can order
the elements of D linearly, D = {do,du ... ,dn, ...}, and define a special element co
o f D z :

,i)=Uk, if i = 2*, * = 0, 1,2, . . . ;

~ { l , if i e Z \ { 2 * | * = 0 , 1 , 2 , . . . } .

We use an idea of Hall from [3]. For arbitrary dn we have coiz~2 J ( l) = dn. So for
arbitrary dn and dm:

We note further that for arbitrary j # 0

[co^K co(z~2m)](zJ) = 1,

because for u\,vx, w2. v2 e I and ux ^ u2 the equation 2"' — 2"' = 2"2 — 2n has only
one solution: u\ = vx and M2 = ^2-

Thus every element of the derived group D' belongs to the derived group of the
two-generator group G2 = {co, z"1). The group G\ is embeddable into two-generator
group G2, for it is embeddable into D'. Moreover, the following holds:

LEMMA 5. If G\ and G2 are the groups constructed above, then G\ can be sub-
normally embedded in G2, and G2 can be ordered in such a way that G\ is order
isomorphic to its image in G2.

PROOF. G\ is subnormal in D' because G\ is subnormal in D. The derived group
D' is subnormal in G2 because it is subnormal in D Wr Z. (£>' is normal in the base
group Dz, for D' is characteristic in the first copy and the latter is normal in the base
group.)
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Let us consider the subgroup N < D Wr Z generated by the first copy of D and
the elements co and z- We note that for each element z'8 e N the support CT(<5) has a
minimal element. Thus we define an order similar to that of Lemma 4: z'&\ < zJ 82

if and only if i < j or if 1 = j and 8i(zk) < 82(z
k), where zk is the least power of

z such that 81 (zk) is different from 82(z
k)- We have defined a full order on N and its

reduction on the first copy of D makes that copy order isomorphic to D. Clearly N
belongs to the variety var (D) 21. Now simply choose the order on the group G2 to be
the reduction of the order we have just defined on N to its subgroup G2. •

Denote by 6 the subnormal embedding of D' in G2 obtained in Lemma 5. Now
we are able to present a subnormal verbal embedding \i of G into the two-generator
group G2 as follows:

ix = vk6,

where G << G\ « D' « G2. The defect of G in G2 is 6, for the defect of each of
these embeddings is 2. The group G2 belongs to the variety var (G) 9tc2l2.

To conclude the proof of Theorem 1 it remains to notice that if the group G is
soluble, say of length /, the group G2 is also soluble, having length / + c + 2, and if
the group G is torsion free, the two-generator group G2 is also torsion free, for it is a
subgroup of the torsion free group (((G Wr 5) Wr C) Wr Z). Theorem 1 is proved.

3. Some related problems

As we mentioned in the introduction, the result of B. Neumann and Hanna Neumann
given in [22] guarantees not only embeddability of a soluble countable group of length
/ into a soluble two-generator group, but also that the length of the latter is at most
/ + 2. This is the best possible general value because according to [22, Lemma 5.3]
there is an abelian group which cannot be embedded in a two-generator metabelian
group. (See also [8].)

It is easy to see that this condition on the solubility length cannot be strengthened
by requirement of 'verbality' of the embedding. For if V contains the commutator
word<5,(*i,... ,x2,),

80 = X, 8,(Xi, . . . ,X2<) = [<$,_](*!, . . . ,X2i-\), <5,_i(.X2<-i + l, . . . , *2')L

then for t > 2 the two-generator group G2 (constructed for this V and for a countable
group G of length /) cannot be of length 1 + 2 because, if this were the case, the verbal
subgroup V(G2) of G2 would be of length at most 1 + 2 — t. But such a group cannot
contain a group of length /.

Nevertheless a shorter version of our construction of Section 2 enables us to exhibit
another embedding, with the same properties apart from 'verbality'.
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THEOREM 2. For each countable group G, there exists a two-generator group G2

in the variety var (G) 2l2 with a subnormal subgroup G isomorphic to G. If G is a
fully ordered group the group G2 can be fully ordered in such a way that the reduction
of its order on G makes the latter order isomorphic to G.

In particular, if the group G is soluble of length I, the two-generator group G2 is
soluble of length 1 + 2 but not I + 1 in general.

If moreover the group G (soluble of length I) is torsion free, the group G2 (soluble
of length 1 + 2) can be chosen to also be torsion free.

As we mentioned in the introduction this theorem strengthens results of [20], of [22],
and of [1].

The proof of Theorem 2 is based on the constructions of Lemma 4 and Lemma 5. To
avoid repetition we only sketch it. We note that this construction is more economical
than that of Section 3 in [20], for at each step in each wreath product we take a
smaller part of the base group than in [20] (and not all elements of the base group with
well-ordered supports).

PROOF OF THEOREM 2. First we embed the given fully ordered group G subnor-
mally into a group D so that G < D', and continue the full order of G on D as in
Lemma 4. Next we embed the group D into the wreath product D Wr Z (where
Z = (z) is an infinite cycle) and choose an element a> e Dz as in the previous section.
Then the two-generator group

G2 = {co,z~l)

contains the derived group of the first copy of D in Dz. Thus, as in Lemma 5, G is
subnormal in G2 of defect 4, and the full order D can be continued to a full order on
G2. Clearly, G2 G var (G) 2121 = var (G) 2l2. •

Let us turn to another problem. Lemma 2 and Lemma 3 establish verbal, subnormal
embedding of an arbitrary infinite group into a group of the same cardinality. This
embedding is of defect 2, and it is very natural to ask whether or not this defect can
be reduced to 1, that is, whether or not this embedding can be normal.

Normal verbal embeddings of groups are of independent interest. The problem
is formulated and solved for finite p -groups by Heineken in [5]. For the general
criterion of normal verbal embeddability we refer to our Main Theorem in [6]. Here
we give a result on normal verbal embeddings of ordered groups which strengthens
the statement A of our Theorem 1 in [15].

THEOREM 3. For an arbitrary fully ordered group G and arbitrary non-trivial
word set V, there exists a fully ordered group H of the same cardinality as G with a
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subnormal subgroup G of defect 2 such that G lies in V(H) and the reduction of the
order ofH on the subgroup G makes the latter order isomorphic to G.

If the group G is soluble or torsion free, the group H can be chosen to satisfy these
properties.

If the group G is finitely generated, the group H can be chosen to be finitely
generated as well.

The defect of embedding cannot in general be made smaller: for some fully ordered
group a normal verbal embedding cannot be obtained.

PROOF. The embedding needed is already constructed in Lemma 2 and Lemma 3.
So it suffices to take H = G\.

Assume G is generated by finitely many elements glt g2,... , g,. Denote by g,
(/ = 1, . . . , t) the image of g, in G. For each of these elements there exist words
Wjj € V (j = 1 , . . . , Si) and elements hkj e H (k = I,... , luj) such that:

(/ = 1, . . . , t\ e , i , . . . , €USi = ±1). So if the group H is not finitely generated, it is
enough to replace it by the finitely generated group

{hkj e H\ i = 1 , . . . , t\ j = 1 s,;k=l,..., /,,,),

which contains the subgroup G.
Our criterion of normal verbal embeddability [6] enables us to construct an example

of a group G which for a certain word set V cannot be normally embedded into a
group H such that G c V(H), even without requiring H to be fully ordered, torsion
free, soluble or of the same cardinality as G! But since none of the examples in [6]
is a torsion free fully ordered group—fully ordered groups must be torsion free—we
give here a scheme of construction of fully ordered and 'not n V-embeddable' (see
[6]) groups.

Every absolutely free group Fn can be fully ordered [19]. Let 23 be a non-abelian
variety such that the group of automorphisms

A =Aut(Fn(Q3))

of the 93-free group of rank n has a non-trivial identity w = 1. It is easy to find
examples of such varieties: it suffices to take a locally finite variety 53. Then the
group of automorphisms A is finite and we can take w — xk, where k = exp A. Then

and this condition guarantees, by the Main Theorem in [6], that the fully ordered
group Fn is not normally embeddable into a group H such that its image lies in
Hk = {xk \x e H). D
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In fact we could easily find many other examples of word sets V with this property.
And we could find other fully ordered groups which do not posses normal verbal
embeddings; in particular such groups can even be nilpotent. Let G = Fn(9Tc) and 03
be a subvariety of 9TC such that Aut (Fn@3)) satisfies a non-trivial identity w = 1. It
suffices to take as 23 the variety defined by the identities

[*i,... ,JCC+1] = 1 and x' = 1

for some I > 2. Then F«(2J) is finite and we can take w = xk, where k =
expAut(Fn(23)). Again Inn(G) £ (Aut(G))* and so G is not normally embed-
dable into a group H such that its image lies in Hk.

The last theorem and this consideration gives rise to following problem.

PROBLEM. For the given non-trivial word set V and fully ordered group G, find a
criterion under which G can be normally embedded into an appropriate fully ordered
group H with a subgroup G such that G lies in V(H) and the reduction of the order
of H on G makes the latter order isomorphic to G.

In this direction we restrict ourselves to Theorem 3 because this problem will be
considered elsewhere [18].
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