A Real Holomorphy Ring without the Schmüdgen Property

Murray A. Marshall

Abstract

A preordering T is constructed in the polynomial ring $A=\mathbb{R}\left[t_{1}, t_{2}, \ldots\right]$ (countably many variables) with the following two properties: (1) For each $f \in A$ there exists an integer N such that $-N \leq f(P) \leq N$ holds for all $P \in \operatorname{Sper}_{T}(A)$. (2) For all $f \in A$, if $N+f, N-f \in T$ for some integer N, then $f \in \mathbb{R}$. This is in sharp contrast with the Schmüdgen-Wörmann result that for any preordering T in a finitely generated \mathbb{R}-algebra A, if property (1) holds, then for any $f \in A, f>0$ on $\operatorname{Sper}_{T}(A) \Rightarrow f \in T$. Also, adjoining to A the square roots of the generators of T yields a larger ring C with these same two properties but with ΣC^{2} (the set of sums of squares) as the preordering.

1 Introduction

For any finite subset $S=\left\{f_{1}, \ldots, f_{m}\right\}$ of the polynomial ring $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$, let $K_{S}=\{a \in$ $\left.\mathbb{R}^{n} \mid f_{i}(a) \geq 0, i=1, \ldots, m\right\}$ and let T_{S} denote the preordering of $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ generated by S, i.e., the set of all finite sums of terms of the form $f_{1}^{e_{1}} \ldots f_{m}^{e_{m}} g^{2}, g \in \mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$, $e_{1}, \ldots, e_{m} \in\{0,1\}$. We have the following result:

Theorem 1 (Schmüdgen [7, Cor. 3]) Let S be a finite subset of $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ with K_{S} compact. Then, for any $f \in \mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$, if $f>0$ on K_{S} then $f \in T_{S}$.

Notes

(1) According to the Positivstellensatz (see the version in [5] for example), if $f>0$ on K_{S} then $(1+s) f=1+t$ holds for some $s, t \in T_{S}$. The conclusion in Theorem 1 is stronger. (If $f>0$ on K_{S} then, by compactness of $K_{S}, f>\frac{1}{n}$ on K_{S} for some integer $n \geq 1$, so, by Theorem $1, n f=1+n\left(f-\frac{1}{n}\right) \in 1+T$.) The hypothesis of Theorem 1 is also stronger. In the Positivstellensatz, K_{S} is not required to be compact.
(2) As one might expect, the Positivstellensatz is a major ingredient in the proof of Theorem 1.
(3) See [7] for the connection of Theorem 1 to the K-moment problem for Borel measures on compact semi-algebraic sets.

We introduce some terminology and notation. Let A be any commutative ring with 1 . If $T \subseteq A$ is any preordering, i.e., any additively and multiplicatively closed subset of A containing the squares, $\operatorname{Sper}_{T}(A)$ denotes the subspace of the real spectrum $\operatorname{Sper}(A)$ [3], [5] consisting of all orderings P of A such that $P \supseteq T$. We will say $f \in A$ is T-bounded if there exists an integer $N \geq 0$ such that $-N \leq f(P) \leq N$ holds for all $P \in \operatorname{Sper}_{T}(A)$. The elements of A which are T-bounded form a subring of A which we will denote by $\mathrm{B}_{T}(A)$.

[^0]In the case where $T=\Sigma A^{2}$, the set of sums of squares, $\mathrm{B}_{T}(A)$ is what is called the real holomorphy ring of A; see [1]. We will say $f \in A$ is strongly T-bounded if there exists an integer $N \geq 0$ such that $N-f, N+f \in T$. The elements of A which are strongly T-bounded also form a subring of A which we denote by $\mathrm{SB}_{T}(A)$. If $T=\Sigma A^{2}$, we denote $\mathrm{B}_{T}(A)$ (resp., $\mathrm{SB}_{T}(A)$) simply by $\mathrm{B}(A)$ (resp., $\mathrm{SB}(A)$). Clearly $\mathrm{SB}_{T}(A) \subseteq \mathrm{B}_{T}(A)$.

Theorem 2 Suppose $(\mathbb{O}) \subseteq A$ and $B_{T}(A)=A$. Then the following are equivalent:
(1) $\mathrm{SB}_{T}(A)=A$.
(2) For any $f \in A$, if $f>0$ on $\operatorname{Sper}_{T}(A)$, then $f \in T$.

Proof The fact that (1) implies (2) follows from the Kadison-Dubois Theorem; see [2], [8]. The other implication is obvious.

In view of Theorem 1 , it is natural to consider rings A with the property that (1) and (2) hold for every preordering T of A such that $\mathrm{B}_{T}(A)=A$. We will refer to this property of rings as the Schmüdgen property. In [8] Wörmann proves that every finitely generated \mathbb{R} algebra has the Schmüdgen property. Applying Wörmann's result to $A=\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$, $T=T_{S}$ (using the well-known correspondence between semi-algebraic sets and constructible sets [3], [5]) yields another proof of Theorem 1. In [6], Monnier shows that the Schmüdgen property holds for certain more general types of \mathbb{R}-algebra of finite transcendence degree.

The object of the present paper is to show that, without some special assumption on A, the Schmüdgen property can fail badly. We do this by producing an \mathbb{R}-algebra A of infinite transcendence degree and a preordering T in A such that $\mathrm{B}_{T}(A)=A$, but $\mathrm{SB}_{T}(A)=\mathbb{R}$; see Proposition 1 below. Also, replacing A by a suitable extension obtained by adjoining square roots of the generators of T, we can even assume $T=\Sigma A^{2}$ if we want; see Proposition 2 below.

Notes

(1) $\operatorname{Sper}_{T}(A)=\operatorname{Sper}_{\tilde{T}}(A)$ and $\mathrm{B}_{T}(A)=\mathrm{B}_{\tilde{T}}(A)=\operatorname{SB}_{\tilde{T}}(A)$ where $\tilde{T}=\cap\{P \mid P \in$ $\left.\operatorname{Sper}_{T}(A)\right\}=\left\{f \in A \mid f \geq 0\right.$ on $\left.\operatorname{Sper}_{T}(A)\right\}$. Thus our question is related to the question of how T "sits" inside the bigger preordering \tilde{T}.
(2) By the Positivstellensatz (e.g., see [5]), $f>0$ on $\operatorname{Sper}_{T}(A)$ iff there exist $s, t \in T$ such that $f(1+s)=1+t$. This is valid for any A and any preordering $T \subseteq A$. Also, going to the localization $A \rightarrow A[1 / f], f \geq 0$ on $\operatorname{Sper}_{T}(A)$ iff $f\left(f^{2 k}+s\right)=f^{2 k}+t$ for some $s, t \in T$ and some integer $k \geq 0$.
(3) Suppose that $\mathrm{B}_{T}(A)=A$ holds and let $t \in T$ be given. Then, using the Positivstellensatz, there exists a sequence of elements t_{i} in T and integers $N_{i} \geq 1$, such that $t_{1}=t$ and $\left(N_{i}-t_{i}\right)\left(1+t_{i+1}\right) \in T$, for $i=1,2, \ldots$. This is clear and, moreover, it is the motivation for our construction.

2 The Example

Take $A=\mathbb{R}\left[t_{1}, t_{2}, \ldots\right]$, the polynomial algebra over \mathbb{R} in countably many variables, and let T be the preordering in A generated by the elements t_{i} and the elements $\left(1-t_{i}\right)\left(1+t_{i+1}\right)$,
$i \geq 1$. Clearly $T=\bigcup_{n \geq 1} T_{n}$ where T_{n} denotes the preordering in $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ generated by t_{1}, \ldots, t_{n} and the elements $\left(1-t_{i}\right)\left(1+t_{i+1}\right), i=1, \ldots, n-1$. Also, $T_{n}+T_{n}\left(1-t_{n}\right) \subseteq$ S_{n}, where S_{n} denotes the preordering in $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ generated by the elements $t_{i}, 1-t_{i}$, $i=1, \ldots, n$.

Lemma $1 S_{n} \cap-S_{n}=\{0\}$.

Proof This is well-known, e.g., by [3, Prop. 7.5.6], there exists a support $\{0\}$ ordering on $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ containing S_{n}. Here is an elementary proof. We want to show that any sum of non-zero elements of S_{n} is non-zero. Suppose $f \in S_{n}$ is a sum of non-zero terms of the form a square in $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ times some product of the generators $t_{1}, \ldots, t_{n}, 1-t_{1}, \ldots, 1-t_{n}$ of S_{n}. Expanding as a polynomial in t_{n} with coefficients in $\mathbb{R}\left[t_{1}, \ldots, t_{n-1}\right]$, we see that, in each term, the coefficient of the lowest power of t_{n} appearing is a square times a product of generators of S_{n-1}. Adding, we see that the coefficient of the lowest power of t_{n} appearing in f is a sum of non-zero elements of S_{n-1} so, by induction on n, it is not zero. This implies $f \neq 0$.

Lemma 2 Suppose $f \in T_{n}, f \notin T_{n-1}$. Then, as a polynomial in t_{n} with coefficients in $\mathbb{R}\left[t_{1}, \ldots, t_{n-1}\right], f$ has degree ≥ 1 and the leading coefficient of f is in S_{n-1}.

Proof Since $f \in T_{n}, f$ is a sum of non-zero terms of the form a square in $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ times some product of elements from the set $\left\{t_{1}, \ldots, t_{n},\left(1-t_{1}\right)\left(1+t_{2}\right), \ldots\right.$, $\left.\left(1-t_{n-1}\right)\left(1+t_{n}\right)\right\}$. Expanding as a polynomial in t_{n} with coefficients in $\mathbb{R}\left[t_{1}, \ldots, t_{n-1}\right]$, we see that, in each term, the coefficient of the highest power of t_{n} appearing is a square times a product of generators of T_{n-1} times $\left(1-t_{n-1}\right)^{\delta}, \delta=0$ or 1 . Adding and using Lemma 1, f has degree ≥ 1 and the coefficient of the highest power of t_{n} appearing is an element of $T_{n-1}+T_{n-1}\left(1-t_{n-1}\right) \subseteq S_{n-1}$.

Proposition $1 \mathrm{~B}_{T}(A)=A, \mathrm{SB}_{T}(A)=\mathbb{R}$.

Proof If $P \in \operatorname{Sper}_{T}(A)$ then $t_{i} \in P$ and $\left(1-t_{i}\right)\left(1+t_{i+1}\right) \in P$, so $0 \leq t_{i}(P) \leq 1$. Since the elements t_{i} generate A as an \mathbb{R}-algebra, it follows that $\mathrm{B}_{T}(A)=A$. Let $f \in \mathrm{SB}_{T}(A)$, so $N-f^{2} \in T$ for some integer $N \geq 0$. If $f \notin \mathbb{R}$, then $N-f^{2} \in T_{n} \backslash T_{n-1}, n \geq 1$. By Lemma 2, the leading coefficient of $N-f^{2}$ is $-g^{2}$, where g is the leading coefficient of f, and $-g^{2} \in S_{n-1}$. Since $S_{n-1} \cap-S_{n-1}=\{0\}$, this is impossible.

Note Since $\mathrm{B}_{T}(A)=A$, it follows (for example by applying the Kadison-Dubois Theorem [2] to the preordering $\left.\tilde{T}=\cap\left\{P \mid P \in \operatorname{Sper}_{T}(A)\right\}\right)$ that the maximal elements in $\operatorname{Sper}_{T}(A)$ all arise from \mathbb{R}-algebra homomorphisms $\alpha: A \rightarrow \mathbb{R}$ such that $\alpha(T) \geq 0$. In this way, $\operatorname{SperMax}_{T}(A)$ is identified with the Hilbert Cube $[0,1]^{\infty}$. If $a=\left(a_{1}, a_{2}, \ldots\right) \in$ $[0,1]^{\infty}$, the evaluation mapping $f \mapsto f(a)$ is an \mathbb{R}-algebra homomorphism from A to \mathbb{R} with $f(a) \geq 0$ for all $f \in T$. The corresponding element of $\operatorname{SperMax}_{T}(A)$ is $P_{a}=\{f \in A \mid$ $f(a) \geq 0\}$. The identification $\operatorname{SperMax}_{T}(A) \cong[0,1]^{\infty}$ is a homeomorphism of topological spaces.

Formally adjoining to A the square roots of the generators of T, we get the big ring

$$
C=A\left[\sqrt{t_{i}}, \sqrt{\left(1-t_{i}\right)\left(1+t_{i+1}\right)} \mid i \geq 1\right] .
$$

The ring C with the preordering ΣC^{2} has the same two properties as the ring A with the preordering T. That is:

Proposition $2 \mathrm{~B}(C)=C, \mathrm{SB}(C)=\mathbb{R}$.

Proof Let $u_{i}=\left(1-t_{i}\right)\left(1+t_{i+1}\right)$. Since the inequalities $-1 \leq \sqrt{t_{i}} \leq 1$ and $-\sqrt{2} \leq \sqrt{u_{i}} \leq$ $\sqrt{2}$ hold on $\operatorname{Sper}(C)$ and since the elements $\sqrt{t_{i}}, \sqrt{u_{i}}$ generate C as an \mathbb{R}-algebra, it follows that $\mathrm{B}(C)=C$. Formally adjoining square roots of finitely many of the elements t_{i} and then of finitely many of the elements u_{i} we obtain a finite tower of subrings $A=D_{0} \subseteq \cdots \subseteq D_{s}$ of C where, at each stage, $D_{k}=D_{k-1}\left[\sqrt{p_{k}}\right]$. Any finite subset of C belongs to such a tower. One verifies that C is an integral domain by verifying D_{s} is an integral domain, by induction on s, for any such tower. This just amounts to checking, in each case (p_{s} is equal to t_{i} or u_{i} for some i), that the polynomial $X^{2}-p_{s}$ is irreducible over the field of fractions of D_{s-1}. Let T_{k} be the preordering in D_{k} generated by the elements t_{i}, u_{i}. To show $\operatorname{SB}(C)=\mathbb{R}$, it suffices to prove, by induction on s, that if $f \in D_{s}$ and $N-f^{2} \in T_{s}$ for some integer $N \geq 1$, then $f \in \mathbb{R}$. By assumption, $N-f^{2}=g_{1}+\cdots+g_{r}$ where each g_{i} is a square in D_{s} times a product of generators of T. Thus $f=f_{1}+f_{2} \sqrt{p_{s}}, g_{i}=g_{i 1}+g_{i 2} \sqrt{p_{s}}$, with $f_{j}, g_{i j} \in D_{s-1}$, $j=1,2$ and $N-\left(f_{1}^{2}+f_{2}^{2} p_{s}\right)=g_{11}+\cdots+g_{r 1}$. Also, the elements $g_{i 1}$ belong to T_{s-1}, so $N-f_{1}^{2} \in T_{s-1}$ and $N^{2}-\left(f_{2}^{2} p_{s}\right)^{2}=\left(N-f_{2}^{2} p_{s}\right)\left(N+f_{2}^{2} p_{s}\right) \in T_{s-1} T_{s-1} \subseteq T_{s-1}$. Thus, by induction on $s, f_{1}, f_{2}^{2} p_{s} \in \mathbb{R}$. Since $f_{2}^{2} p_{s}$ has a square root in C, we must have $f_{2}^{2} p_{s} \geq 0$, and since $X^{2}-p_{s}$ is irreducible over the field of fractions of D_{s-1}, this implies $f_{2}=0$. Thus $f=f_{1} \in \mathbb{R}$.

Note The functorial mapping $\operatorname{Sper}(i): \operatorname{Sper}(C) \rightarrow \operatorname{Sper}(A)$, where $i: A \rightarrow C$ is the inclusion, is continuous with image $\operatorname{Sper}_{T}(A)$ and, by [4, Th. 6.2], the mapping $\operatorname{Sper}(i)$ is closed. SperMax (C) is homeomorphic to the infinite torus $\left(\mathbb{S}^{1}\right)^{\infty}$ where \mathbb{S}^{1} is the 1 -sphere. If $\left(b_{1}, c_{1}, b_{2}, c_{2}, \ldots\right) \in\left(\mathbb{S}^{1}\right)^{\infty}\left(\right.$ so $\left.b_{i}^{2}+c_{i}^{2}=1\right)$ the associated \mathbb{R}-algebra homomorphism from C to \mathbb{R} is given by $\sqrt{t_{i}} \mapsto b_{i}, \sqrt{u_{i}} \mapsto c_{i} \sqrt{1+b_{i+1}^{2}}$. The surjection $\left(\mathbb{S}^{1}\right)^{\infty} \rightarrow[0,1]^{\infty}$ corresponding to the mapping $\operatorname{SperMax}(C) \rightarrow \operatorname{SperMax}_{T}(A)$ induced by $\operatorname{Sper}(i)$ is given by $\left(b_{1}, c_{1}, b_{2}, c_{2}, \ldots\right) \mapsto\left(b_{1}^{2}, b_{2}^{2}, \ldots\right)$.

References

[1] E. Becker and V. Powers, Sums of powers in rings and the real holomorphy ring. J. Reine Angew. Math. 480(1996), 71-103.
[2] E. Becker and N. Schwartz, Zum Darstellungssatz von Kadison-Dubois. Arch. Math. 39(1983), 421-428.
[3] J. Bochnak, M. Coste and M.-F. Roy, Géométrie Algébrique Réelle. Ergeb. Math. Grenzgeb., Springer, Berlin-Heidelberg-New York, 1987.
[4] M. Coste and M.-F. Roy, La topologie du spectre réel. In: Ordered fields and real algebraic geometry, Contemp. Math. 8, Amer. Math. Soc., 1981, 27-59.
[5] T.-Y. Lam, An introduction to real algebra. Rocky Mtn. J. Math. 14(1984), 767-814.
[6] J.-P. Monnier, Schmüdgen Positivstellensatz. Manuscripta Math., to appear
[7] K. Schmüdgen, The K-moment problem for compact semi-algebraic sets. Math. Ann. 289(1991), 203-206.
[8] T. Wörmann, Strikt positive Polynome in der semialgebraischen Geometrie. PhD Thesis, Dortmund, 1998.

Department of Mathematics \& Statistics
University of Saskatchewan
Saskatoon, SK
S7N 0W0
email: marshall@math.usask.ca

[^0]: Received by the editors August 13, 1997.
 AMS subject classification: Primary: 12D15, 14P10; secondary: 44A60.
 (C)Canadian Mathematical Society 1999.

