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Emergence of a hexagonal pattern in
shear-thickening suspensions under orbital
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A dense particle suspension under shear may lose its uniform state to large local density
and stress fluctuations, which challenge the mean-field description of the system. Here,
we explore the novel dynamics of a non-Brownian suspension under orbital oscillations,
where localized density waves along the flow direction appear beyond an excitation
frequency threshold and self-organize into a hexagonal pattern across the system. The
spontaneous occurrence of the inhomogeneity pattern arises from a coupling between
particle advection and the shear-thickening nature of the suspension. Through linear
stability analysis, we show that they overcome the stabilizing effects of particle pressure at
sufficient particle volume fraction and oscillation frequency. In addition, the long-standing
density waves degenerate into random fluctuations when replacing the free surface with
rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous,
and the boundary conditions are crucial for developing local disturbance.

Key words: suspensions, pattern formation

1. Introduction

Dense suspensions composed of mixtures of particles and fluid are ubiquitous in natural
phenomena and industrial processes (Larson 1999; Wagner & Brady 2009). For a
sufficiently large volume fraction of particles, Φ, the suspensions can exhibit a wide
range of nonlinear phenomena, including yielding, shear thinning or thickening, and
shear jamming (Guazzelli & Morris 2011; Morris 2020; Nabizadeh, Singh & Jamali
2022), which has stimulated decades of research in the rheology and physics community
(Wagner & Brady 2009; Guazzelli & Pouliquen 2018). In particular, discontinuous shear
thickening (DST), where the suspension viscosity, η, increases over several orders of
magnitude, has recently been understood as a transition from lubricated to frictional
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particle interactions when the applied stress overcomes the interparticle repulsion
(Fernandez et al. 2013; Seto et al. 2013; Brown & Jaeger 2014; Wyart & Cates 2014).
Readers may refer to Morris (2020) for a recent review. The constitutive curve of such a
suspension, relating the shear stress τ and the shear rate γ̇ , displays an S-shape in which
a negatively sloped region connects the lubricated branch of low-viscosity at low stresses
and the frictional branch of high-viscosity at high stresses (Brown & Jaeger 2014; Mari
et al. 2015; Pan et al. 2015). Because of the characteristic dγ̇ /dτ � 0, the steady uniform
state of a suspension under shear may become unstable and reduced to large spatiotemporal
fluctuations of stress and densities (Lootens, Van Damme & Hébraud 2003; Rathee, Blair
& Urbach 2017, 2020). Structures and patterns, such as gradient banding (Hu, Boltenhagen
& Pine 1998; Olmsted 2008) and vorticity banding (Chacko et al. 2018; Saint-Michel,
Gibaud & Manneville 2018), may appear as a consequence. Those inhomogeneities, either
transient or periodic (Hermes et al. 2016; Ovarlez et al. 2020), challenge the mean-field
description of a shear-thickening suspension. Nevertheless, little is known about the
disturbance growth in shear thickening suspensions in flow configurations beyond simple
shear (Darbois Texier et al. 2020; Rathee, Blair & Urbach 2021). Moreover, although
boundary confinements are proposed as essential for the shear-thickening of non-Brownian
suspensions (Brown & Jaeger 2014), their influence on the instability development in such
systems, if any, have yet to be explored.

This paper investigates the instability arising in the flow direction in dense
non-Brownian suspensions under orbital shaking. A novel unsteady dynamics where
density waves self-organize into a hexagonal pattern is observed, accompanied by large
spatial stress fluctuations. Our result shows that it is closely related to the shear thickening
of the suspension. Moreover, the essential role of boundary conditions in the development
of heterogeneity is discussed.

2. Experimental protocol

The suspension consists of deionized water mixed with cornstarch particles of an average
size d = 15 μm, confined within an open cylindrical container. The mass density of
dry starch particles, ρp, is 1.61 kg m−3. When preparing density-matched suspensions,
caesium chloride is added to the solution. The container is subjected to a horizontal
orbital vibration, i.e. a circular translational motion of the entire platform. The oscillation
frequency, f , can be tuned from 0.5 to 8.33 Hz with a fixed amplitude A = 5 mm
indicating the radius of the orbital motion (figure 1a). An acrylic plate can be optionally
laid on the surface of the suspension, either moving with the container or fixed in
the laboratory reference. The following experiments are performed in the free surface
configuration, unless stated otherwise. A monochrome light emitting diode panel from
below illuminates the suspension. A high-speed camera (Microtron EoSens 1.1cxp2) is
fixed in the laboratory frame of reference, recording the light transmission. The spatial
resolution is 0.23 mm pixel−1. The local thickness of suspension, h, can be measured
on demand via an in-house-built laser profilometry (Zhao, de Jong & van der Meer
2015), and the typical resolution of h is 61 μm pixel−1 in the current configuration.
The transmission of the bottom light is through scattering events. We established a
one-dimensional multiscattering model, and the ratio between the incoming flux and the
transmitted flux is given as F(φ, h) = 1 + aφbh. The parameters a and b are calibrated
with the light intensity attenuation data for uniform cornstarch suspensions. Readers may
find the calibration data and method justification in Appendix A. By simultaneously
measuring h and F(φ, h), the local volume fraction, φ, can be calculated. An example
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Figure 1. (a) A schematic of the experimental set-up. The light transmission is captured by a charge-coupled
device (CCD) positioned at the top. (b) A top-view snapshot of the suspension at f = 7.67 Hz (supplementary
movie 1 available at https://doi.org/10.1017/jfm.2024.234). The dark (bright) areas correspond to the high (low)
φ regions. (c–f ) A zoomed-in area at different phases in one oscillation period. The dashed circle denotes the
trajectory of the centre of the dense area. An example of local particle fraction, φ, measurement is shown in
(g). The arrow indicates the instantaneous flow direction. Note that φ is computed accounting for both the light
transmission ratio and the surface deformation. Panel (h) illustrates the surface height along the dashed line
in (g).

is given in figure 1g–h, where both h and φ are measured. The container has a diameter
of 32 cm and a height of 5cm. Though the sidewall is critical for the surface wave of
a Newtonian fluid of low viscosity, such as water, under orbital shaking (Reclari et al.
2014), its effect is ignored here, as changing the diameter of the container from 32 cm
to 16 cm does not alter the phenomena studied in this work. The system is then defined
by three major experimental parameters: the oscillation frequency f ; the global particle
packing fraction Φ; the average thickness of the suspension h0. We first report our main
observations in a reference system of Φ = 0.42 and h0 = 5 mm. The influence of Φ and
the top confinement will be discussed afterwards.

3. Results

3.1. Experimental results
The suspension is uniform at low oscillation frequencies. However, when f is increased
beyond 3.67 Hz, high-density regions appear suddenly, followed by low-density tails.
These density patches self-organize into a hexagonal pattern with a further increase of
f , as shown in figure 1(b). Individual dense regions move in a circular path at the same
frequency f precisely, with little changes in location and size over time (figure 1c–f ; refer to
supplementary materials for multimedia view). The motion of the dense regions is defined
by the position of the highest density locally. The typical diameter of the circular path,
denoted as dw, measures 13.3 mm, which is larger than the orbit of the container. In such a
state, the surface becomes uneven too, introducing a peak-to-valley height difference �h ≈
1 mm. Dense/loose regions correspond to peaks/valleys (figure 1g). As the suspension
is bounded by the air–liquid interface, the observation indicates a non-uniform normal
stress distribution accompanying the density inhomogeneity, a hallmark of non-Newtonian
behaviour.

As reported by Oyarte Gálvez et al. (2017), the interaction force profile shows a
hysteresis when corn starch particles are pressed into contact. However, the inhomogeneity
transition here is reversible, which implies that the dense regions in our experiments are
not permanent aggregates of contacting particles. To reveal the microscopic nature of the
observed inhomogeneity, we measure the velocity of tracer particles near the suspension
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Figure 2. The local volume fraction φ (a) and particle velocity up (b) varies with the phase angle of the
oscillation. Both φ and up rise when a density wave passes through the measuring area. Here ud = πdwf is
the propagation velocity of the density wave concerned. Date here is collected at Φ = 0.41, f = 5.83 Hz and
h0 = 3 mm. The shallower suspension used here, thus more subtle surface deformation, improves the accuracy
of the measurement of φ and up.

surface, up, and local packing fraction, φ, simultaneously at a point on the path of a
high-density region. Both up and φ vary in phase with the same period as the oscillation, as
shown in figure 2, i.e. particles in denser regions tend to move faster. However, the particle
velocity remains lower than that of the density pattern, indicating that the motion of the
observed density pattern is the propagation of density waves. Furthermore, the gradient of
φ in the wavefront is significantly steeper than that at the rear (see figure 1g), a signature
of shock waves.

3.2. Instability onset
The non-uniform state cannot be modelled using a single-phase description of the
suspension. In the exploration of flow instabilities in particulate suspensions, two-fluid
models are normally used (Chacko et al. 2018; Batchelor 1988). The continuity equation
of particles reads

∂φ

∂t
+ ∇ · (upφ) = 0. (3.1)

When the inertia of particles is neglected, (3.1) can be written in the form of an
advection–diffusion equation of φ (Anderson, Sundaresan & Jackson 1995). Shock waves
are thus expected in certain circumstances. However, it has been demonstrated that the
inertia of particles (the advective term) is critical for instability development (Batchelor
1988; Johri & Glasser 2002). Therefore, we consider the momentum equation of particles
in addition.

The general analytical formulation of the stress tensor of the particle phase remains
a difficult task to tackle after decades of efforts (Jackson 2000; Guazzelli & Pouliquen
2018). Here, we exclusively consider the dominant terms for relatively dense suspensions,

φρp

(
∂up

∂t
+ (up · ∇)up

)
= Cd(U − up) + ηp∇2up − ∇Π. (3.2)

On the right-hand side of (3.2), the first term represents the hydrodynamic drag exerted
on particles, proportional to the relative velocity between the particle up and the average
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flow of the mixture U , and the Richardson–Zaki approximation for Cd (Richardson 1954;
Buscall et al. 1982) is used. Note that the mixture flow U is defined as the weighted average
of the velocity of the two phases. The second term is the viscous force between particles,
where ηp is the dynamic viscous coefficient. The third term describes the gradient of
particle pressure, Π . Both ηp and Π will be evaluated by their suspension counterparts, as
the stresses of particle phase dominate the suspension dynamics at high φ (Gallier et al.
2014). The stability analysis of (3.1)–(3.2) will be performed with respect to the uniform
state. Therefore, the mixture velocity U of the suspension in the uniform state is computed
first.

Consider a suspension with a volume fraction Φ that behaves as a uniform fluid with a
kinematic viscosity ν and is subjected to bottom oscillation. Since the orbital motion is the
superposition of two perpendicular harmonic oscillations of angular frequency ω = 2πf
with a phase difference of π/2, the flow velocity U = (Ux, Uy) is written as a complex
function U(z, t) = Ux + iUy which satisfies

∂U
∂t

= ν
∂2U
∂z2 , (3.3a)

∂U
∂z

∣∣∣∣
z=h

= 0 and U(z = 0, t) = Aωeiωt. (3.3b)

Equation (3.3b) indicates the no-slip condition on the bottom and the zero-shear condition
on the free surface. For shear-thickening fluid, the effective kinematic viscosity of the
suspension, ν = ν0(φJ − φ)−2, is rate-dependent (Boyer, Guazzelli & Pouliquen 2011;
Guazzelli & Pouliquen 2018; Singh et al. 2018). A recently developed phenomenological
constitutive model (Wyart & Cates 2014), based on the mean-field description of
shear-thickening process, suggests that φJ experiences a crossover from its frictionless
value φ0 to φm for frictional contacts, when the typical stress τ in the suspension exceeds
a characteristic value τ ∗, i.e. φJ = φ0 − e−τ∗/τ (φ0 − φm). For the sample used here, we
found ν0 = 0.95 × 10−6 m2 s−1, τ ∗ = 3.7 Pa, φm = 0.45 and φ0 = 0.58 according to
rheology measurements (see Appendix C).

Analogous to the Stokes problem in two dimensions, the solution of (3.3) can be
described by a dimensionless number l = √

2ν/ω/h (Yih 1968), the square of which is
merely the inverse Reynolds number representing the significance of viscosity relative to
inertia. For l ∼ 1, U follows the orbital motion of the bottom plate with little phase lag
and magnitude decay along with z. Due to the rate-dependence of ν, the shear stress τ =
ρν|∂U/∂z| and l are interrelated for a given φ = Φ (details are provided in Appendix B),
where ρ is the suspension density. To simplify the calculation, Ũ = |U(z = h, t)| and
τ̃ = τ(z = 0) are used to characterize the mainstream flow of the suspension in the
uniform state. We assume that the initial development of the instability occurs in the
mainstream direction, which results in the observed motion of density patterns. This
assumption is significant, as (3.1)–(3.2) are hence reduced to one dimension (the main
flow direction), and particle migration along the gradient and the vorticity directions are
neglected. A linear stability analysis can be readily performed for the reduced equations.
We leave the calculation details in Appendix B and present the main result here. The
uniform flow (φ = Φ and up = Ũ) becomes unstable against density perturbations of a
wavenumber k, provided (Zhao & Pöschel 2021)

C + k2 ηp

Cd
<

ΦŨ′√
Π ′/ρp

, (3.4)
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Figure 3. State diagram. The onset frequency ωc of density waves is denoted by open (solid) circles for the
(density-matched) aqueous cornstarch suspension. The contour lines of ΦŨ′/

√
Π ′/ρp (the right-hand side of

(3.4)) are plotted for comparison. Inset: the dimensionless number l varies with ω for Φ = 0.35 (no DST) and
Φ = 0.42 (DST occurs), respectively.

where Ũ′ and Π ′ are the derivatives of Ũ and Π with respect to φ at φ = Φ. In theory, C =
1 is a constant whose value is to be adjusted by comparing with experiments, accounting
for the neglected features in the model.

It is clear in (3.4) that the viscosity of the particle phase, ηp, stabilizes the short-wave
disturbances. Therefore, the instability first occurs at the long wave limit (k ∼ 0).
Denoting the container diameter as L = 32 cm, the second term on the left-hand side,
∼ η0/CdL2 ∼ d2/L2 ∼ O(10−5), is negligible. The onset of instability is thus insensitive
to the value of ηp, which, however, shapes the developed density waves (see § 3.3). On the
right-hand side of (3.4), Ũ′ introduces a shock-wave-like kinematic instability promoting
the growth of high φ regions, i.e. a higher φ leads to a faster flow locally, as confirmed
in figure 2. The particle pressure term Π ′, on the other hand, provokes the particle
migration out of the local high φ region. The competition between these two terms sets
the onset of instability. Here, Π = τ̃ (l, φ) is used (Brown & Jaeger 2012). With all terms
defined, we calculate the onset frequency of the disturbance growth, ωc, and find that
C = 1.15 aligns with the experimental observation (figure 3). In particular, the theoretical
ωc(Φ) agrees with its experimental counterparts quantitatively for the density-matched
suspensions, where buoyancy is absent. Otherwise, the onset frequency ωc is obscured
by the suspending threshold of the relatively dense suspension without density-match in
practice. The resultant higher value of C than the theory may be explained by the neglect
of the particle migration in the vorticity direction and the implemented equality of Π = τ̃ .
Both underestimate the denominator of the right-hand side of (3.4).

The model predicts a minimum packing fraction around Φ = 0.392 (figure 3), below
which (3.4) cannot be satisfied, and the uniform state is always stable. This result is
closely related to the shear-thickening nature of the suspension and reveals the underlying
mechanism of the instability development. The solution for Ũ in (3.3) increases rapidly
at intermediate φ, thus corresponding to a regime of large Ũ′. An increase of l would
shift this regime towards lower densities. The pressure term Π follows a similar trend.
It can be shown that the variation of ΦŨ′/

√
Π ′/ρp is dominated by

√
l/(φJ − Φ) for

ω � 10 rad s−1 (see Appendix B). The effective viscosity of the suspension ν in general
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A hexagonal pattern in dense suspensions under shear

grows with ω, i.e. ν ∼ ωα and α > 0. When approaching DST, α becomes considerably
larger than 1, and l ∼ ω(α−1)/2 displays a dramatic increase. Figure 3(inset) illustrates
this distinct behaviour. A minimum Φ is associated with the occurrence of DST (Fall
et al. 2015; Hermes et al. 2016), thus the same holds for the observed density waves
here. The relation with shear-thickening is additionally confirmed via experiments of
an aqueous solution of polydisperse silica beads (of an average diameter of 20 μm) in
the same set-up. It was known that dissolving electrolytes within the solvent reduces
the magnitude of repulsive forces between silica grains due to surface charge, and DST
disappears accordingly (Clavaud et al. 2017). We confirm that the density waves in the
suspension of silica beads under orbital oscillations are significantly weakened in the same
manner (supplementary movie 3).

3.3. Development of density waves
Once the disturbance arises and grows in the flow direction, secondary instabilities may
further develop (Anderson et al. 1995; Duru & Guazzelli 2002), and two-dimensional
structures form (Glasser, Sundaresan & Kevrekidis 1998). In our experiments, the density
waves self-organize into a hexagonal pattern as f increases (cf. figures 1 and 4 inset).
A comprehensive theoretical analysis of the formation of the observed pattern is beyond
the scope of this work. Instead, we argue that it can be understood from the symmetry
perspective. Consider that the uniform state becomes unstable at one moment and breaks
into alternating density bands perpendicular to the flow direction and separated by a
characteristic wavelength λc. In the following moments, however, the flow direction
changes constantly in the horizontal plane. Those bands cannot preserve the alignment
with the flow without breaking the translational symmetry in the lateral (vorticity)
direction. Therefore, the band structure is unstable and must be reduced to localized
density patches. Particle migration dominates when those high-density regions are
misaligned. The most stable structure thus maximizes the duration of the alignment with
the flow. In other words, the favourite structure retains the highest rotational symmetry
and a discrete translational symmetry of λc in two dimensions, i.e. the hexagonal pattern,
as observed. A subtle inference along this line of argument is that the maximum local
density fluctuates six times during one oscillation period if the observer travels along
with the density wave. Superharmonic oscillations of the local maxima of φ are indeed
observed in experiments. As shown in figure 4, the distance between neighbouring density
waves, λc, is larger than the diameter of their circular motion, i.e. dw/λc ≈ 0.5, ensuring no
intersection between their trajectories. Therefore, such superharmonic fluctuations suggest
the out-of-alignment and realignment events between the flow and the hexagonal pattern.

The wavelength of the observed pattern, λc, is measured from the two-dimensional
Fourier spectrum of the experimental images and averaged over one oscillation cycle,
typified by figure 4(inset). Data from the density-matched solution and the aqueous
suspension are plotted in figure 4. Overall, λc decreases with ω, demonstrating a shift
of dominance from long waves to short waves. Just above ωc, the relatively large error
bars indicate that the structure is not well-ordered yet. For the intermediate ω > ωc, λc of
the density-matched suspension is larger than the pure aqueous solvent, which indicates
that the vertical migration of particles could modify the inhomogeneous pattern. With
increasing ω, λc decreases towards an asymptotic value where the aqueous suspension
and the density-matched suspension match. The measured λc is compared with linearly
selected wavenumber λm, corresponding to the peak growth rate Fourier mode in the
linearized model. The magnitude of ηp, bounded by ρν(φ) = ρν0(φJ − φ)−2, is critical
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Figure 4. The length scale of the observed density pattern λc varies with ω in the aqueous-starch suspension
(open circles) and the density-matched suspension (solid circles). Experimental parameters here are Φ = 0.42,
h = 5 mm. The dashed line is the wave number calculated by the linearized model with a proliferated viscosity,
λm. See the main text for discussions. Inset: two-dimensional Fourier spectrum of figure 1(b).

for evaluating λm. From the perspective of linear analysis, ηp ∼ ρν(Φ) for the uniform
state is implemented, and the resultant λm is of the order of micrometres. Nevertheless, as
seen in figure 1(g), the local density, φ, can be as high as 0.449 for the developed density
waves, leading to viscosity proliferation locally. The corresponding ηp(φ) would shift λm
towards longer wavelength. The evaluation of λm with ηp = 2800 Pa s is in reasonable
agreement with λc (figure 4). It again indicates that the description of the fully developed
density pattern is beyond purely linear predictions (Anderson et al. 1995; Duru et al. 2002).

4. Discussions and concluding remarks

Our last remark is about the role of boundary confinement in the growth of density
disturbances. Recent advances suggest that the steady shear-thickening state is a precursor
to shear jamming (Brown & Jaeger 2012; Mari et al. 2015; Peters, Majumdar & Jaeger
2016; Singh et al. 2018), where the dilation of the particle phase under shear is (partially)
frustrated by the confining stress (Fall et al. 2008; Brown & Jaeger 2012). The boundary
confinement is thus considered essential. The open system studied so far is bounded by the
air–suspension interfacial tension, Γ , and the curvature of the free surface, �h/λ2

c (see
figure 1h). For the developed density waves, this confining pressure necessarily balances
the onset stress of DST, Γ �h/λ2

c ∼ τ ∗. Reducing Γ , e.g. by covering the suspension with
a layer of 0.1 mm thick silicone oil (10 cSt), decreases λc. On the other hand, confining
the suspension with an acrylic plate, either comoving or fixed in the laboratory frame
of reference, completely suppresses the density waves, though transient fluctuations of φ

and thrust on the plate are present instead, as reported for shear-thickening suspensions
in other configurations (Lootens et al. 2003; Hermes et al. 2016; Rathee et al. 2017,
2020). This dramatic contrast indicates that boundary confinement alters the underlying
growth of disturbances. Indeed, long-lived inhomogeneities have only been reported near
free surfaces previously (Hermes et al. 2016; Ovarlez et al. 2020; Gauthier, Ovarlez &
Colin 2023). We speculate that only density disturbances below a critical size may persist
under rigid confinements. The existence of finite-size inhomogeneities may be readily
manifested in experiments with the comoving top-plate confinement. In this configuration,
a suspension stays uniform for ω > ωc as described above. However, soon after removing
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the confinement and restarting the oscillation at ω < ωc, the inhomogeneous density
profile appears and proliferates for a finite duration, then decay towards the uniform
state (supplementary movie 2). It implies that finite-size clusters already exist in the
comoving–confinement configuration under shear (Cheng et al. 2011). Though those
clusters are too small to be accessible in our method, they may still be sufficiently large to
trigger the transient growth even for ω < ωc after removing the rigid confinement.

The effect of boundary confinement discussed above is non-trivial for understanding the
shear-thickening behaviour. As evidenced by recent experiments with spatial resolution
(Rathee et al. 2017, 2020; Saint-Michel et al. 2018; Ovarlez et al. 2020; Gauthier et al.
2021), the shear-thickened state is intrinsically heterogeneous. In this paper, we have
shown that the uniform state of a suspension under shear spontaneously breaks down
due to the shear-thickening property. In addition, the growth and the manifestation of
inhomogeneity highly depend on boundary conditions. With soft boundaries, such as the
free surface experiments here, dilation is allowed to a certain extent. In this scenario,
the inhomogeneity develops into a persistent density-wave state, where particles do not
make long-lived contact. On the other hand, with rigid confinement, dilation is frustrated.
When the dimension of a local high-density region is comparable to the gap between
boundaries, a sudden rise in the stress response is expected (Seto et al. 2013; Nabizadeh
et al. 2022). The intense stress compels particles into profound interactions, revealing
features that might otherwise remain hidden, such as the role of particle adhesion
(Gauthier et al. 2023) and the occurrence of hysteresis (Oyarte Gálvez et al. 2017).
Furthermore, macroscopic clusters of particles exist only briefly under intense stress,
leaving behind smaller ones that subsequently promote the reformation of high-density
clusters. From a heterogeneous perspective, the overall stress response of a suspension
in the conventional shear-thickened state (with rigid boundaries) is primarily governed
by the increasingly prominent formation and collapse of these high-stress regions (Rathee
et al. 2017, 2020; van der Naald et al. 2024). The constitutive relation, calibrated with bulk
rheology measurements, only captures these intermittent microscopic events on average.
Therefore, the heterogeneous scenario fundamentally differs from the homogeneous one,
similar to the discrimination between the parallel and serial relaxation schemes of glassy
systems (Berthier et al. 2011). Even though the mean-field theory could predict behaviours
near the DST transition, such as the instability onset in this work, it may fail for the
developed heterogeneous state, e.g. the effect of different boundary conditions. Knowledge
of microscopic/mesoscopic structures and dynamics are thus necessary to advance our
understanding of the nature of shear-thickening suspensions.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.234.
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Appendix A. Local particles fraction measurement

Only some light is transmitted once light passes through a suspension, and the rest is
either absorbed or scattered. To obtain a relation between the light transmission ratio and
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Figure 5. (a) At an arbitrary point inside the suspension layer, z. The intensity of the light backscattered by
the layer at z + dz is denoted as j, and the intensity of the light going forward is denoted as i. Here I0 is the total
incident light intensity, and I1 is the passing through light intensity, h is the thickness of the suspension. (b) The
relationship between light reduction ratio F(φ, h) and particle fraction φ and thickness h of the cornstarch
suspension.

local density, we establish a one-dimensional model (Kubelka & Munk 1931), described
in figure 5. An infinitesimal layer of the suspension absorbs and scatters a certain portion
S dz + R dz of the light of one unit of intensity passing through it, where S, the absorption
coefficient and R, the scattering coefficient, are functions of local particle density φ. The
change of the forward and backward light intensity, di and dj, across the layer satisfy

di = −(S + R)i dz + Sj dz, (A1)

dj = (S + R)j dz − Si dz. (A2)

Note that the second terms on the right-hand side of (A1) and (A2) represent the
contribution of back-scattered light. In other words, the back-scattered light intensity j
at z is partially redirected forward by the layer at z − dz again through the back-scattering
process and contributes to i(z). This mechanism sets it apart from the Beer–Lambert law,
where local light attenuation is completely lost in the final transmission.

For the suspension system studied here, cornstarch grains are white particles of irregular
shapes, and the absorbing portion of the light is thus neglected (S = 0). Therefore, the
incident luminous flux equals the sum of transmission and reflection. Then the solution of
(A1)–(A2) with the corresponding boundary condition, i(z = 0) = I0 and j(z = h) = 0, is

F(φ, h) = I0

I1
= 1 + Rh. (A3)

Here R is regarded as a function of local density φ, R = aφb, where a represents the ratio
of backscattering light per unit thickness, and b is related to the particle shape. We fit
the coefficients in (A3) using the light intensity attenuation data measured for uniform
cornstarch suspensions, which gives a = 4.08 mm−1, b = 0.74.

To obtain φ by (A3), the local thickness h is needed for the uneven surface at high
excitation frequency (figure 1g), in addition to the intensity attenuation ratio of the
backlight. The surface deformation is measured with an in-house-built high-speed laser
profilometer. The surface deflection also introduces a focusing effect of the light, causing
the trough to appear brighter. In our experiments, the maximum curvature of the deflection
is approximately 0.04 mm−1 (figure 1g). The resultant intensity variant is less than 1 %,
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f (Hz)

Φ 0.00 1.67 3.33 4.17 5.00 6.00 7.00 8.00 8.33

φ̄/Φ

0.355 1.00 0.99 1.00 1.01 1.02 1.03 1.02 1.02 1.01
0.360 1.00 1.01 1.02 1.02 1.04 1.03 1.03 1.04 1.01
0.370 1.00 1.00 1.00 0.99 1.00 1.01 0.99 0.98 0.98
0.375 1.00 1.01 1.02 1.01 1.03 1.03 1.03 1.01 1.03
0.380 1.00 1.00 1.01 1.01 1.00 1.01 1.00 1.05 1.02
0.385 1.00 1.00 1.00 1.03 1.01 1.02 — 1.02 —

Table 1. Evaluation of the error of the density calculation method.

Here Φ is the given global density, φ̄ = (1/n)Σφi is the calculated average density, f is the oscillation
frequency.

significantly lower than the observed value ∼20 %. Therefore, we neglect this effect in the
φ measurement.

Note that a uniform distribution of particles along the z direction is assumed in the above
analysis. In our experiments, particles may migrate towards the surface of the suspension
under certain conditions, which causes uneven distribution of particles and measurement
error of φ. To estimate the errors, we compare the average of φ measured via (A3) and the
global particles fraction Φ in table 1. The typical error is 3 % and slightly increases with
f , confirming the conservation of mass.

We only considered the transmission flux in the model. In practice, the light is
scattered in three dimensions. The transversal scattering causes blurring in the x–y plane.
A 5 mm-thick suspension acts as a Gaussian blur kernel with a radius of 5.8 mm. The
blurring radius increases approximately as the square of depth. Nonetheless, even with this
blurring effect, the position of the maximum gradient of the intensity remains unchanged.

Appendix B. Linear stability analysis

The stability analysis is performed with respect to the uniform state described by (3.3)
in the main text. A complex function describes the uniform flow, U(z, t) = Ux + iUy. We
use h, ω−1 and Aω as characteristic scales of length, time and velocity. The dimensionless
solution of the flow field, Û = U/(Aω), is

Û = exp(−ẑ/l)
1 + exp(2(1 + i)/l)

(exp(2(1 + i)/l) + exp(2ẑ(1 + i)/l)) exp(i(t − ẑ/l)), (B1)

where l = √
2ν/ω/h. The shear rate, γ̇ = |∂U/∂z|, and the shear stress, τ = ρνγ̇ , can

be further calculated. For simplicity, Ũ = AωÛ(ẑ = 1) and τ̃ = τ(z = 0) are used to
represent the mainstream. We give explicitly

τ̃ = ρνγ̇ (z = 0) = ρAhω2 l√
2

√
cosh(2/l) − cos(2/l)
cosh(2/l) + cos(2/l)

. (B2)

At given ω and Φ, the flow of the uniform state and τ̃ are thus fully described by l ∼ √
ν.

Since ν depends on shear stress in the shear-thickening constitutive relation, the values
of l and τ̃ are mutually determined. We find their value by numerically converging the
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constitutive relation and the flow solution, i.e. (B2) and

ν = ν0/(Φ − φJ)
2, where φJ = φ0 − exp(−τ ∗/τ̃ )(φ0 − φm). (B3)

This concludes the calculation of the uniform state. Next, we simplify the two-phase model
following the assumption stated in § 3.2 and then perform linear stability analysis on the
reduced model with respect to the uniform state.

The one-dimensional version of equations (3.1)–(3.2) in the main text can be written as

∂φ

∂t
+ ∂(upφ)

∂χ
= 0 (B4)

and

φρp

(
∂up

∂t
+ up

∂up

∂χ

)
= Cd(Ũ(φ) − up) + ηp

∂2up

∂χ2 − ∂Π

∂χ
, (B5)

respectively. Note that χ represents the coordinate in the flow direction, different from x.
As we focus our analysis along χ , the time-dependent phase angle in Ũ is ignored. The
Richardson–Zaki approximation is used for the drag coefficient,

Cd = 18ηf

d2
φ

(1 − φ)5 . (B6)

The small-amplitude perturbations of φ and up relative to Φ and Ũ are decomposed into a
linear combination of Fourier modes, each has a complex growth rate σk,

φ(χ, t) = Φ +
∑

k

φ̂k exp(ikχ + σkt),

up(χ, t) = Ũ(Φ) +
∑

k

ûk exp(ikχ + σkt).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B7)

Equations (B4) and (B5) are then linearized in φ̂k and ûk. The growth rate σk satisfies the
quadratic equations

(σk + ikŨ)2 +
(

ηpk2

ρpΦ
+ Cd

ρpΦ

)
(σk + ikŨ) + Π ′k2

ρp
+ i

CdŨ′k
ρp

= 0. (B8)

The roots of (B8) are

Re(σk) =
−a ±

√
a2 + b +

√
(a2 + b)2 + c2

2
2

, (B9)

Im(σk) = ±

√
−a2 − b +

√
(a2 + b)2 + c2

2
2

− kŨ, (B10)

where a = ηpk2/ρpΦ + Cd/ρpΦ > 0, b = −4Π ′k2/ρp < 0, c = 4CdŨ′k/ρp.
The uniform flow (φ = Φ and up = Ũ) becomes unstable if Re(σk) > 0. According to
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Figure 6. Theoretical computation of components of (B12).

(B9), this criterion is equivalent to c2 + 4a2b > 0,

1 + k2ηp

Cd
<

φŨ′√
Π ′/ρp

, (B11)

where Ũ′ and Π ′ are the derivatives of Ũ and Π with respect to φ at φ = Φ. Note that ηp
and Cd are functions of φ in general. In (B11), ηp(Φ) and Cd(Φ) are understood, as their
φ dependency leads to higher-order corrections. In (3.4) in the main text, the unity term
on the left-hand side of (B11) is replaced by a constant C.

The right-hand side of (B11) is plotted versus ω in figure 6(a). The parameters φ0, φm, τ ∗

and ν0 used here are the same as in the main text. For Φ = 0.42, the ratio, φŨ′/
√

Π ′/ρp,
increases almost monotonically with ω, and equation (3.4) in the main text is satisfied
beyond a critical value of ωc. However, for Φ = 0.35, this ratio increases slightly and then
declines towards a constant smaller than 1.

To determine the key ingredient dominating the variation of φŨ′/
√

Π ′/ρp, we further
decompose this ratio,

φŨ′√
Π ′/ρp

=
(

dŨ/dl√
dΠ/dl

φ
√

ρp

)√
l/(φJ − φ), (B12)

where Ũ′ = (dŨ/dl)(l/(φJ − φ)), Π ′ = (dΠ/dl)(l/(φJ − φ)) are understood. The two
terms on the right-hand side of (B12) are referred to as o1 = ((dŨ/dl)/(

√
dΠ/dl))φ√

ρp
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Figure 7. Rheological data for Φ = 0.38, Φ = 0.40, Φ = 0.41 (points), and the fitting (solid lines) with
Wyart-Cates relation. The data is presented in the suspension viscosity ηs and the shear stress τ .

and o2 = √
l/(φJ − φ). As illustrated in figure 6(b), the term o1 initially increases with ω

but soon saturates. In contrast, the dramatic increasing of o2 (in particular, of l) dominates
the ratio, φŨ′/

√
Π ′/ρp, beyond ω ≈ 10 rad s−1, as shown in figures 6(c)–6(d).

Appendix C. Rheology measurement on the cornstarch suspension

In the constitutive relation, ν0, τ
∗, φ0, φm are parameters. We determine these parameters

via the rheology properties of the aqueous suspension of cornstarch used in the experiment
(Anton Paar 302). The rheological data fitting procedure is as follows: the low viscosity
branch (frictionless branch) is first fitted with ηs = ν0ρs(φ0 − φ)−2 (ρs is the suspension
density), with ν0 and φ0 as the fitting parameters, which yields ν0 ∈ [0.57 0.95] ×
10−6 m2 s−1 and φ0 ∈ [0.563 0.585]. The high viscosity branch (frictional branch) is
then fitted with ηs = ν0ρs(φm − φ)−2, using the previous estimation of ν0 and leaving
φm as the only fitting parameter, which yields φm ∈ [0.443 0.458]. Once the values
of ν0, φ0 and φm are set, we determine the value of τ ∗ by fitting the full rheograms
ηs(τ ) with the Wyart–Cates model: ηs(φ) = ν0ρs(φJ(τ ) − φ)−2, with φJ(τ ) = φ0 −
exp−τ∗/τ (φ0 − φm). The best fit, shown in figure 7, gives for τ ∗ ∈ [2.6 8] Pa, where the
fitted value decreases with Φ. Here τ ∗ represents the critical stress required to overcome
the interparticle repulsive force and activate frictional contacts between particles, and the
average of its fitted value for relatively high Φ is taken. Based on the analysis above,
ν0 = 0.95 × 10−6 m2 s−1, φm = 0.45, τ ∗ = 3.7 Pa and φ0 = 0.58 are used in the main
text.
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