ON SOME WEIGHTED AVERAGE VALUES OF L-FUNCTIONS

IGOR E. SHPARLINSKI

(Received 14 April 2008)

Abstract

Let $q \geq 2$ and $N \geq 1$ be integers. W. Zhang recently proved that for any fixed $\varepsilon>0$ and $q^{\varepsilon} \leq N \leq q^{1 / 2-\varepsilon}$, $$
\sum_{\chi \neq \chi_{0}}\left|\sum_{n=1}^{N} \chi(n)\right|^{2}|L(1, \chi)|^{2}=(1+o(1)) \alpha_{q} q N
$$ where the sum is taken over all nonprincipal characters χ modulo $q, L(1, \chi)$ denotes the L-functions corresponding to χ, and $\alpha_{q}=q^{o(1)}$ is some explicit function of q. Here we improve this result and show that the same asymptotic formula holds in the essentially full range $q^{\varepsilon} \leq N \leq q^{1-\varepsilon}$.

2000 Mathematics subject classification: primary 11M06.
Keywords and phrases: L-function, character sum, average value.

1. Introduction

For integers $q \geq 2$ and $N \geq 1$, we consider the average value

$$
S(q ; N)=\sum_{\chi \neq \chi_{0}}\left|\sum_{n=1}^{N} \chi(n)\right|^{2}|L(1, \chi)|^{2}
$$

taken over all nonprincipal characters χ modulo an integer $q \geq 2$, with L-functions $L(1, \chi)$ corresponding to χ, weighted by incomplete character sums.

Zhang [2] has given an asymptotic formula for $S(q ; N)$ which is nontrivial when $q^{\varepsilon} \leq N \leq q^{1 / 2-\varepsilon}$, for any fixed $\varepsilon>0$ and sufficiently large q.

In this article, we improve the error term of Zhang's formula, thereby making it nontrivial in the range $q^{\varepsilon} \leq N \leq q^{1-\varepsilon}$.

More precisely, let

$$
\alpha_{q}=\left(\beta_{q}+\gamma_{q}\right) \frac{\varphi(q)^{2}}{q^{2}}
$$

During the preparation of this work, the author was supported in part by ARC Grant DP0556431.
(C) 2009 Australian Mathematical Society 0004-9727/2009 \$16.00
where

$$
\begin{aligned}
\beta_{q} & =\frac{\pi^{2}}{6} \prod_{\substack{p \mid q \\
p \text { prime }}}\left(1-\frac{1}{p^{2}}\right) \\
\gamma_{q} & =\frac{\pi^{2}}{3 \zeta(3)} \prod_{\substack{p \mid q \\
p \text { prime }}}\left(1-\frac{1}{p^{2}+p+1}\right) \sum_{\substack{m, n=1 \\
\operatorname{gcd}(n m(n+m), q)=1}} \frac{1}{n m(n+m)}
\end{aligned}
$$

$\zeta(s)$ is the Riemann zeta-function, and $\varphi(q)$ denotes the Euler function.
It is shown in [2] that

$$
\begin{equation*}
S(q, N)=\alpha_{q} q N+O\left(\varphi(q) 2^{\omega(q)}(\log q)^{2}+N^{3}(\log q)^{2}\right) \tag{1}
\end{equation*}
$$

where $\omega(q)$ is the number of prime divisors of q.
Since

$$
\begin{equation*}
2^{\omega(q)} \leq \tau(q)=q^{o(1)} \quad \text { and } \quad \varphi(q)=q^{1+o(1)} \tag{2}
\end{equation*}
$$

where $\tau(q)$ is the number of positive integer divisors of q (see [1, Theorems 317 and 328]), we deduce that $\alpha_{q}=q^{o(1)}$; so the error term in (1) is of the form $O\left(q^{1+o(1)}+N^{3} q^{o(1)}\right)$.

In particular, the asymptotic formula (1) is nontrivial if $q^{\varepsilon} \leq N \leq q^{1 / 2-\varepsilon}$ for any fixed $\varepsilon>0$ and q is large enough.

Here we present a more accurate estimate of a certain sum which arises in [2]; this allows us to essentially replace N^{3} in (1) by $N^{2} q^{o(1)}$, rendering the formula nontrivial in the range $q^{\varepsilon} \leq N \leq q^{1-\varepsilon}$.

2. Main result

Theorem. Let q, N be integers with $q>N \geq 1$. Then

$$
S(q, N)=\alpha_{q} q N+O\left(\varphi(q) 2^{\omega(q)}(\log q)^{2}+N^{2} q^{o(1)}\right)
$$

as $q \rightarrow \infty$.
Proof. In [2] it was shown that that

$$
S(q, N)=M_{1}+M_{2}+O\left(N^{2}(\log q)^{2}\right)
$$

where

$$
M_{1}=\varphi(q) \sum_{m, n=1}^{N} \sum_{\substack{u, v=1 \\ m u=n v}}^{q^{2}} \frac{1}{u v} \quad \text { and } \quad M_{2}=\varphi(q) \sum_{m, n=1}^{N} \sum_{\substack{u, v=1 \\ m u=n v(\bmod q) \\ m u \neq n v}}^{q^{2}} \frac{1}{u v}
$$

Furthermore, Zhang [2] has showed that

$$
M_{1}=\alpha_{q} q N+O\left(\varphi(q) 2^{\omega(q)}(\log q)^{2}\right)
$$

Thus, it remains to show that

$$
\begin{equation*}
M_{2} \leq N^{2} q^{o(1)} \tag{3}
\end{equation*}
$$

Let

$$
J=\lfloor 2 \log q\rfloor .
$$

Then, on changing the order of summation, we obtain

$$
\begin{aligned}
M_{2} & =\varphi(q) \sum_{u, v=1}^{q^{2}} \frac{1}{u v} \sum_{\substack{m, n=1 \\
m u \equiv n v(\bmod q) \\
m u \neq n v}}^{N} 1 \\
& \leq \varphi(q) \sum_{i, j=0}^{J} \sum_{e^{i} \leq u<e^{i+1}} \frac{1}{u} \sum_{e^{j} \leq v<e^{j+1}} \frac{1}{v} \sum_{\substack{m, n=1 \\
m u=n v(\bmod q) \\
m u \neq n v}}^{N} 1 \\
& \leq 2 \varphi(q) \sum_{0 \leq i \leq j \leq J} \sum_{e^{i} \leq u<e^{i+1}} \frac{1}{u} \sum_{e^{j} \leq v<e^{j+1}} \frac{1}{v} \sum_{\substack{m, n=1 \\
m u \equiv n v(\bmod q) \\
m u \neq n v}}^{N} 1 \\
& \leq 2 \varphi(q) \sum_{0 \leq i \leq j \leq J} e^{-i-j} \sum_{e^{i} \leq u<e^{i+1}} \sum_{e^{j} \leq v<e^{j+1}} \sum_{\substack{m, n=1 \\
m u=n v(\bmod \\
m u \neq n v}}^{N} 1 .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
M_{2} \leq 2 \varphi(q) \sum_{0 \leq i \leq j \leq J} e^{-i-j} T_{i, j} \tag{4}
\end{equation*}
$$

where $T_{i, j}$ is the number of solutions (m, n, u, v) to the congruence

$$
m u \equiv n v(\bmod q), \quad 1 \leq m, n \leq N, \quad e^{i} \leq u<e^{i+1}, \quad e^{j} \leq v<e^{j+1}
$$

with $m u \neq n v$.
For a solution (m, n, u, v), if we write $m u=n v+k q$ with some integer k, then we see that

$$
1 \leq|k| \leq q^{-1} \max \{m u, n v\} \leq q^{-1} N \max \left\{e^{i+1}, e^{j+1}\right\}=e^{j+1} N / q
$$

Thus, there are $O\left(e^{j} N / q\right)$ possible values for k. Clearly, there are at most e^{i+1} possible values for u and N possible values m. Hence the product $n v=m u-k q$ can take at most $e^{i+j+2} N^{2} / q$ possible values and these are all of size $O\left(N q^{2}\right)=O\left(q^{3}\right)$.

Therefore, from the bound on the divisor function given in (2), we see that if m, u and k are fixed, then n and v can take at most $q^{o(1)}$ possible values. Hence

$$
T_{i, j} \leq e^{i+j} N^{2} q^{-1+o(1)}
$$

which, after substitution in (4), gives

$$
M_{2} \leq J^{2} \varphi(q) N^{2} q^{-1+o(1)}
$$

The bound (3) then follows.

3. Final remarks

As has already been mentioned, our result is nontrivial for $q^{\varepsilon} \leq N \leq q^{1-\varepsilon}$. However, the author sees no reason why an appropriate asymptotic formula cannot hold for even larger values of N, up to $q / 2$, say. It would be interesting to clarify this issue.

References

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Oxford University Press, Oxford, 1979).
[2] W. Zhang, 'On the mean value of L-functions with the weight of character sums', J. Number Theory 128 (2008), 2459-2466.

IGOR E. SHPARLINSKI, Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
e-mail: igor@ics.mq.edu.au

