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It is well known that the lattice A(S) of congruences on a regular semigroup S contains
certain fundamental congruences. For example there is always a minimum band congruence f,
which Spitznagel has used in his study of the lattice of congruences on a band of groups [16].
Of key importance to his investigation is the fact that § separates congruences on a band of
groups in the sense that two congruences are the same if they have the same meet and join with
B. This result enabled him to characterize 6-modular bands of groups as precisely those
bands of groups for which p—(p v B, p A f) is an embedding of A(S) into a product of
sublattices.

In this paper we make use of the minimum inverse semigroup congruence d to investigate
the congruences on an orthodox semigroup S. In Section 2 we show that ¢(p)=p v disa
complete lattice homomorphism. In Section 3 we prove that § separates congruences on § in
the sense that two congruences are the same if they have the same meet and join with 6. More-
over if @ is the congruence on A(S) determined by the homomorphism ¢ above, then the
®d-classes of A(S) cross-section the f-classes in the sense that two congruences are the same if
they lie in the same 6- and ®-classes. Using these results we show that A(S) can be (lattice)
embedded in A(S)/0 x A(S /6)and thatif S'is ®-modular, Y(p) = (p A , p v §)isanembedding.

In Section 4 we investigate the structure of the product of a 8-class with a ®-class, and give
a sufficient condition under which A(S) can be decomposed into a disjoint union of convex
sublattices, each of which is isomorphic to a product of a 0-class and a ®-class.

Applications of these results are collected in Section 5. 'We show that two congruences on
an orthodox semigroup are equal if they have the same kernel and same f-class, extending a
result of Scheiblich [15] for inverse semigroups. It is also shown that on a regular semigroup

the lattice of inverse semigroup congruences is f-saturated. This is used to extend many of the
results of Section 3 to the lattice Q(S) of orthodox congruences on a regular semigroup.

1. Notation and preliminary results. Our notation follows Clifford and Preston [1]. S
denotes a regular semigroup, E its set of idempotents and A(S) the lattice of congruences on .
Foraes,

V(a)={xeS:axa=a and xax=x}.

Green’s relations are denoted by &, %, s and 2, and the #-class of a by H,. S will be called
orthodox if F is a subsemigroup.

REsuLT 1.1. [12.] A congruence pe A(S)iscompletely determined by its idempotent classes;
that is, if p,1e A(S), then p = t if and only if, for each ee E, xpe<>x1e.
We denote the union of these idempotent classes by kerp ={x€S: xpe for some ecE }.
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ResuLT 1.2. [13.] For a regular semigroup S, the following are equivalent:

(i) S is orthodox.
(ii) For each a,be S and each a'€ V(a) and b’ e V(b), b'a’ e V (ab).
(iii) For each ecE, V(e) < E.

Also in [13], Reilly and Scheiblich defined the relation 8 on A(S) by
pO0t<pn(E x E)=1tn(E x E).
Their results, together with those of Scheiblich [14] and Hall [4], yield the following.

RESULT 1.3. The relation 0 is a congruence on A(S'), each 0-class is a complete modular
sublattice, and the natural homomorphism of A(S) onto A(S)/0 is a complete lattice homo-
morphism. Moreover, if m(p) denotes the minimum of the 6-class p8, this natural homomorphism
is an isomorphism of p6 onto the lattice of idempotent-separating congruences on S/m(p).

RESULT 1.4. (Lallement [9].) If pe A(S), the idempotents of S/p are precisely the elements of
the form ep for some ecE.
For a class € of semigroups, p € A(S) will be called a % congruence if S[pe®. In[7], Howie

and Lallement studied the lattice properties of A(S), and in particular the relationships
between the minimum % congruences for various classes € of semigroups. We adopt the
following symbols for certain of these:

i = the maximum idempotent-separating congruence;
6 = the minimum inverse semigroup congruence;

1 = the universal congruence S x S;
05 = the diagonal congruence {(x,x)|xeS};

A = the minimum orthodox semigroup congruence;

o = the minimum group congruence.

We also denote the lattice of orthodox congruences by Q(S) = {peA(S): 1 < p} and the
lattice of inverse semigroup congruences by I(S) = {peA(S): 6 < p}. To denote one of the
above congruences, say 8, on another semigroup, say T, we use the notation (7). If te A(S),
then A(z) denotes {peA(S):p St} Ifa < Bin A(S), [«, 8] = {yeA(S):a <y < B}

REesuLT 1.5. (Hall [3).) If S is orthodox, then § = {(x,y) : x and y have a common inverse}.
Moreover for each ecE, ed = V (e).

Let S be an arbitrary semigroup. If p,yeA(S) and y < p, then the relation p/y on Sfy
defined by p/y = {(xy,y7) : (x,y)ep} is a congruence. Moreover the lattice A(S) v y is
isomorphic with A(S/y) under the map y v 1= (y v 7)/y. In particular, if y < p,z, then
(o A7)y =(p/y) A (zfy)and (p v 1)fy = (p/y) v (z/y). If Sis also regular, then it follows from
Result 1.4 that if y < p, 7 then p8t<>p/y61/y. These results are easily verified, as is pointed
out in [13] and [16].

If p is a relation on S then p* denotes the congruence generated by p.

2. The mapping p — p v . Throughout the next three sections S denotes an orthodox
semigroup and pe A(S).
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LemMma 2.1. Ifx(p v 8)eforsomeecE, thenx pf forsomefeE. Thusker(p) = ker(p v 9).

Proof. Suppose that x(p v 8)e, where ecE. It suffices by Result 1.4 to show x p xZ.

Let ye V(x). Since p v d is an inverse semigroup congruence, we have y(p v 6)e. Also xy is

an idempotent fin R,, and x(p v 8)e(p v 8)xe(p v 8)xy =f. Thus fxf(p v 8)f*=f We
shall show that fxfpf, for then x% = (fx)® =fxfxpfx = x, and we will be done. Since

Sxf(p v 8)f, there exist x,,x,, ..., x, in Ssuchthat fpx,8x,p ... px,8fxf. Settingy, = fx,f
one computesthatfpy,dy,p ... py,6fxf. ByResult 1.5, y, and y, have a common inverse w,

and since y,,y, €fSf, fwf is also a common inverse. Now fwf = f(fwf)fpy,.(/wy, =y 0/,

so fwfpf. Also y, =fy,fo(wy,(fwf) =fwfpf, so y,pf. Continuing in this manner, we
have fpfxf, and the proof is complete.

LeMMA 2.2. Lete,feE. Thene(p v 8)fiff epefe and fpfef.

Proof. If e(p v d)f, then e=e*(p v 8)efe. Thus there exist x,,...,x, such that
epx;8x,... px,0efe. Without loss of generality these may be chosen in eSe, and proceeding
as in 2.1 we have epefe. Similarly fpfef.

Conversely suppose epefe and fpfef. Since efdfe, we have fefdfe and efdefe. Thus

epefedefpefofepfedfefpf, and e(p v 6)f.
THEOREM 2.3. The minimum inverse semigroup congruence on S|p, denoted 5(S/p), equals
(p v 8)/p.

Proof. First note that 6(S/p) £ (p v 8)/p since (p v 8)/p is an inverse semigroup congru-
ence on S/p. .Define te A(S) by xty<>(xp)d(S/p)(yp). Then t = p, and 1/p = (S/p).
Also t 2 d since S/t = (S/p)/(z/p) = (S/p)/6(S/p). Hence 7= p v & and so t/p = &(S/p) 2
(p v 8)/p. This establishes the equality.

We remark here that Theorem 2.3 holds more generally for any minimum % congruence
provided € is closed under homomorphic images.

THEOREM 2.4. If o is a collection of congruences on S, then§ v (nsf) = n{é v p: pe s }.
Hence the function ¢(p) = p v 8 is a complete lattice homomorphism from A(S) onto I1(S).

Proof. Clearly 6 v (n)=n{dvp:pesl}. To show the converse suppose
x(n{dvp:pesd})e. Then x(8 v p)e for all pe s, so, by 2.1, x pf, for some f,eE. This
implies e(p v )/, and thus by Lemma 2.2 we have ef,epe and f,ef,pf, for all pesf. We
deduce that exepe and xexpx for all pe o, so exe(n of)e and xex(n ) x. By Result 1.5,
this means x(n&) and e(n%f) are related by 6(S/nef). Since (6 v (n))/N is an inverse
semigroup congruence on S/n&Z, we have x(n&f) and e(nf) related by (6 v (n))/nsZ, and
thus x(6 v (n of))e. By Result 1.1 we are done.

Combining this with the remarks at the end of Section 1 we have the following result.

COROLLARY 2.5. The function p — (p v 6)[d is a complete lattice homomorphism of A(S)
onto A(S/d).

3. Embeddings of A(S) in product lattices. A congruence p is idempotent separating if
p00g. This idea was first considered by Munn {11] who showed that these are precisely the
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congruences contained in . Munn also showed that these congruences commute with each
other. The next lemma shows that they also commute with any congruence below 6. One
should note, however, that congruences below é need not commute with each other.

LemMa 3.1. Ifp,teA(S) withpS uandt S 6, then pot=10p=p v 1.

Proof. Suppose xpzty. Then xpuzdy, so there exists w in ¥V (y)nV(z). One computes
that y = ywy =ywzwy pywxwy. Also x =zwxwz since zw and wz are #- and #-related to z
‘(and hence to x), respectively. But zwxwztywxwy, so xTywxwypy and x(rop)y, and we
are done.

Lemma 3.2. Ifp,tSpandpvdé=1tvothenp=r.

Proof. Suppose p,1Sp and pvd=1v S Then ped=pvd=1tvd=108 We
show that x pe implies xte. If xpe then x(pod)e so x(tod)e. Thus there exists y such that
xtyde. However xpe and p © u € o imply that e is the identity of H,, and yde implies
yeE. But then xty and t = 5 imply y is the identity of H,, so y =e and xte. By inter-
changing the roles of p and © we see that xpe iff xte, and we are done.

LemMMA 3.3. IfpOtandpv d=1tv o, thenp=r.

Proof. Let i be the least element of pf. Then p/x and t/x are idempotent separating on
Sfx. If pvdé=1v s, then, by Theorem 2.3, (p/x) v 6(S/x) = (p/x) v ((x v d)/k) =
(pvrvdk=(vdk=(tvdk=(>/k) v IS/k). ByLemma3.2, this implies p/x = t/k,
which implies p = 7.

THEOREM 3.4. Ifpvé=1vdandpAnS=1Adthenp=r.

Proof. Assumepvd=tvdandpAd=1Ad ByLemma 3.3itsuffices to show pfr.
If epfthen e(p v 3)f, and so e(z v 8)f. By Lemma 2.2 this means e pefe, fpfef, etefe, and
Stfef. Also efedfef since idempotents commute in S/5, and efepfef since epf. Thus

efe(p A 0)fef, so efe(r A d)fef and hence efetfef. Combining these results we have etf.
Interchanging p and 7 yields p 8, and the proof is complete.
Combining this theorem with Corollary 2.5 we have the following result.

COROLLARY 3.5. (a) The function p — (p8,(p v 6)/8) from A(S) to A(S)/8 x A(S/d) is a
complete lattice embedding.

(b) The function Y(p) = (p A 6,p Vv 8) is one-to-one.

The function Y in (b) is not in general a lattice homomorphism, for § A (p v ) may not
equal (6 A p) v (0 v 1), even in bands (where 6 = 2). Consider the following example.

ExampLE 3.6. Let Dy and D, be right zero bands on {e,f} and {¢’,f’} respectively. Let
¢ : D, - D, be defined by ¢(e) = ¢’ and ¢(f) =f’, and define B to be the mapping band on
D,uD,. Thus for ae D, and be D,, ab = ¢(a)b = b and ba = b¢(a) = ¢(a).

A(B) has three elements other than 1 and 0. One is d = 9. Another is p = {(¢/,f")}*
which has only one nontrivial class, namely {¢’,f'}. The last is T = {(¢,¢’)}* which has only
two nontrivial classes, {e,e’} and {f,f'}. Itis easily computed that e(d A (p v 1))f, however
e[(p Ad)v (z A D) fis false. The complete lattice of congruences on B is as in Figure 1.
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0 P
FiGURE 1

On e

In [16], Spitznagel made the following definition. Let I' be a congruence on A(S). We
say that A(S) is T-modular provided the conditions p,7,aeA(S), p £ 1, pT't,avp=a v 1,
anda A p =a A Timply p = 1. Spitznagel then showed that if Tis a band of groups, that is, a
union of groups on which 3 is a congruence, and if f is the minimum band congruence on T,
then the function ¥ : A(T) — (A(T) v B) x (A(T) A n) defined by Yy(p) = (p v o2, p A ) is
an embedding if and only if A(S) is 8-modular.

Define the relation ® on A(S) by p®t<p v d=1v . IfSisan orthodox semigroup,
then, by Theorem 2.4, @ is the congruence associated with the homomorphism ¢(p) = p v 6,
and the ®-classes are complete convex sublattices of A(S). Moreover it follows from Lemma
3.3 that the ®-classes cross-section the -classes of A(S) in the sense that p 1 and p @t imply
p =t. We can now prove an analogue of part of Spitznagel’s result.

THEOREM 3.7. If A(S) is ®-modular, then the map Y(p) = (p A 6, p v 8) is an embedding of
A(S) into A(0) x I(S).

Proof. From Corollaries 2.5 and 3.5 we need only show that p —» p A § is v -preserving;
that is, (pv)Ad=(pAd)v(t Ad). Wenote that (p Ad)v(TAd)EL(pv1)Ad, and
that since both are below 9, they are ®-related. Thus since A(S) is ®-modular, in order to show
(pvr)Aad=(p Ad)v (t Ad) it suffices to showthat (D) pv [(pvi)Aadl=pvipad)v
(tAd),and QD pAallpv)adl=pallpad)v(xAdl

For the first equality, note first that (p AS) V(t A8 =Z(pv1)Ad and hence p v
[oAad)v(iEad)lSpvpvtadl Nownotethatpv [(p Ad) Vv (t Ad)]l=p Vv (t Ad)
Since vpvpvoadll=(evdviovipvdadll=(vd)vi=pvd=@Gvp)
vizad)=0vipv(@Ead)], we have that pv (T Ad)PpVvilpAad)v(tand)) Con-
sequently, to show (1) it will suffice, by ®-modularity, to show that (a) tv[p v
CAad)l=tvpvilpad)v(zAad]] and (b) TAlpvEAd]l=tAalpvpadyv
(t AJd)]]. For (@), notethat tvp<tvpv@E@adlstvipvpvadllStvipv
(pv1)]=1vpso(a)holds. For(b),wefirstnotetAfpv (T Aadlstalpvilev)adl]
StAafpvd] Ifwecanshow ()t A(p v d) =1 A[p vV (T A b)), wewillbedone. Firstnote
that, by Theorem 24, dv[tAa(pvd)]=@vDAbvvdA=Gviialpvd=
Gvoa@vpv@aad)=dvtalpv (@ adll Hence (c) will follow from Lemma 3.3
if we can show that tA(pvd)BtA(pv(tad) If e(zA(pvd)f, then etf and
e(p vo)f. ByLemma 2.2 we then have efepe and fefpf. Also etfimplies efetfef. Since S
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is orthodox, one can easily compute efec V(fef), and hence efed fef by Result 1.5. Thus
epefe(t A d)fefpf, so e(pv (t Ad))f. As noted above, etf, so e(T A fp v (t AHNS
It now follows from tA(pv(rAd))StA(pvd)thatzAa(pvdita(pv(zAd),and
the proof of (1) is complete.

For (2), since (p Ad)v(tad)Sdwehave paf(pad)v(tAad]Zpad However
pAd=pA(Ad)ZpAallpAd)v(tad)) and (2) follows. The proof is now complete.

The converse to this theorem is not true, and in this way the analogy between our situation
and that of Spitznagel [16] breaks down. The reason for this is that while 8-classes are modular
[13], @-classes need not be. The interested reader can check that if Bis the “4 x 4 rectangular
band, then A(B) has only one ®-class, and it is non-modular.

4. Decomposing A(S) into a union of product lattices. We have seen that a congruence p
on an orthodox semigroup Sis completely determined by p A §and p v §. A natural question
is the following: Giveny £ é and 1 2 J, under what conditions does there exist a pe A(S) such

that p Ad =9y and p v 6 =1? Example 3.6 shows that in general such a p need not exist.
In the sequel we shall denote the minimum element of p® by p. Itis not hard to show that

1 is the minimum rectangular band congruence on S, and & is the minimum completely simple
semigroup (here rectangular group) congruence on S.
We now show that p can be recovered from g and é A p.

LemMa 4.1. If peA(S), thenp=(0 A p) v p.

Proof. Sincedv{dAp)vp]l=dvp=0dvp, by Lemma 3.3 we need only show
pO( A p) v p. Always we have p = (6 A p) v p, so this reduces to showing that e pf implies

e[(d A p)v plf. If epf, then e(p v 8)f and so epefe and fpfef by Lemma 2.2. But epf
also implies efepfef, and efedfef since & is an inverse semigroup congruence. Hence

epefe(p A 8)fefDf, s0 el(6 A p) v PIf.
THEOREM 4.2. Supposey, 1€ A(S)suchthaty < dandt = 0. The following are equivalent:

(i) There exists pe A(S) such that pv =t and p A & =y.
i) @vy)ad=y.

Proof. (i)=>(ii): Letpbesuchthatpvd=tandpAd=y. Thenp=tandp=y,so
p=Tvy. Hencey=pAdZ=Z@FTvyadzy.

(ify=(i): Suppose y < d and 7= J are such that (fvy)Ad=y. Setting p=7vy,
one easily computes that p A d=yand pv d =1.

Another natural problem is to investigate the sublattices of A(S') consisting of the product
of a f-class and a ®-class. The simplest of these is A(u) x A(6), and we begin with it.

LeMma 4.3. Ifp,cSuv o, thenpOtiff p Ad=1AJS. Thus each congruence below é is
the minimum element of its 0-class.

Proof. It is easy to show that in general for a,peA(S), « < p implies ¥ < p. Also
U v 6 = p,since pis the least element of (u v 6)®. Foranya < p v § wethenhave Og £ & < g,

https://doi.org/10.1017/50017089500003256 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500003256

CONGRUENCES ON AN ORTHODOX SEMIGROUP 187

sothat @6 0g. Since #is acongruence,& v (@ A §)005 v (¢ A d) =a A . But, by Lemma4.1,
a=0av(aAd)soaband.

Now if p,1Zpuvd, then pAd=1Ad implies ppAd=1Ad01, so plz. Con-
versely, if pO1, then p AdOBT AS. But (pAd)vd=56=(tAd) Vv, so, by Lemma 3.3,
pAd=1TAD.

For the last statement, if « < 6 then for any pea8, consider (p A a) v é and (p A o) A Q.
ThenpAaa=pA@Ad)=(pAd)Aa=(eAd Aa=a,soa= p,and the proof is complete.

THEOREM 4.4. If p,tEpvd, then (pvi)Ad=(pAd)v(tAd). Consequently
A@ue v 0) is isomorphic to A(u) x A(S).

Proof. Suppose p,t S i v . By the above lemma, [(p v 1) Ad8)0(p v T)B[(p AJ) Vv
(tA )], and since (pv 1) A S and (p Ad) v (1 A ) are in A(S), they are equal.

Thus the function Y(p) = (p A d,p v 8) of Corollary 3.5(b) is a lattice homomorphism of
A(u v ) into A(S) x [6,u v 6]. To show that it is onto, suppose ye A(S) and te€[d, 1 v J].
Then GvYAS=FTASHV(yAI)=0svy=1y, and so, by Theorem 4.2, there exists a
peA(u v d)suchthatpv d=1and p A 6§ =y. Thus Y is onto A(J) x [5,u v J].

But the mapping p — p of [§, u v 6] onto A(y) is an isomorphism since it is the inverse of
the mapping ¢(p) = p v 6. Thus A(u v 8) is isomorphic to A(i) x A(6) under the mapping
p—(p,p A 8), and the proof is complete.

Outside A(u v d) things are not so nice. We shall see below that although u is the top of
its f-class, u v & need not be the top of its f-class. Also p A d need not be 05, so A(S) is not
necessarily a product. However, one might hope to write it as a union of products of 8-classes
with sublattices of A(8). This idea motivates the rest of this section.

First we would like to find a condition under which y v § is the maximum element of its
f-class. If T and B are, respectively, the maximum and minimum elements of a 6-class of a
regular semigroup S, Reilly and Scheiblich [13] have shown that p — p/f is an isomorphism of
B0 onto the lattice of idempotent separating congruences on S/f, and that u(S/f) = 7/8. In
what follows we let f = 6 and let 7 be the largest element of 66, so

atb<>(ad) ©/5 (b8) <> (ad) u(S/5) (bS).
J. M. Howie [6] has characterized x on an inverse semigroup T by

u(T) = {(x,y)e T x T: xex™! = yey™* for all idempotents e T}.

On an orthodox semigroup S, u has been characterized by J. Meakin [10] as
w(S) = {(a,b)eS x S: thereexists a'e¥V(a) and b'eV(b) for which
aea’ = beb’ and a’ea = b'eb for all ec E}.

Thus for 7 the maximum of 68, we have

atb<(ad)F(ad)™' = (bS)F(b6)™! and (ad)”'F(ad) = (b8)™'F(bd)

for all idempotents Fin S/§. Now F = f5 for some f€ E, and for any a’e V (a), (ad)™* = (a'6)
since & is an inverse semigroup congruence. So atb<>(ad)(f6)a's) = (bO)(f6)(b'd) and
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(a'd)(f3)(ad) = (b'0)(fo)(bd)<>afa’ dbfb’ and a'fadb’fb for some (all) a’e V(a) and b’ e V' (b)
and all feE.
We can now prove the following result.

LEMMA 4.5. Let S be an orthodox semigroup satisfying
» h,feE, h < f#a, a~*eV(a)nH,, and aha™' e V(h) imply aha™' = h.
Then on S, p v 6 = 1, the largest element of 0.

Proof. 1t suffices to show that ate implies ap v de. To motivate the proof, note that if
i v 6 =t then, by Lemma 3.1, uod = 7, and thus ate implies the existence of an x such that
auxde. Then xdeimplies xe E, and au x implies a 3# x, so that x must be the identity of H,,.

Assume thatate. We first show that H, is a group with identity f, and azf. Since 7is an
inverse semigroup congruence, ate implies a’ te for each a’'e V(a@). Thus aa’te and d'are.
Now aa’ and a’a are idempotents which are inverses of one another ([13]), so (aa’}a’a) is an
idempotent fin H, and H, is a group ([1, p. 58-9]). Moreover, f= (aa')(d’a)tera.

From this we deduce that since 186 we have edf. From the discussion preceding the
statement of the lemma, we know that atf implies aha' d fhfd a’ha for all he E and a' € V (a).
Let geE and a~'e V(a)nH, Then the idempotent & = fgf is below f and satisfies aha™! =
afgfa! = aga™'S5fgf = h, and similarly a~*hadh. But aha™'h implies aha'e V(h) by
Result 1.5, sowe have h < fo# a# a~* and aha™'e V(h) and a™ *hae V' (h). So the hypotheses
of (*) are satisfied, and we conclude that aha™ = h=a"'ha, i.e. aga™' = fgf = a~'ga for all
geE. By Meakin’s characterization of u we have apuf, and, combined with edf, this means
ap v de. The proof is complete.

We discuss below various classes of orthodox semigroups in which () is satisfied. An
example of one in which it is not satisfied is the following.

Let

T={a,e,f:a*=¢,e® =e,f* = f,ea = ae = a,ef = fe = f,(af)(af) = af,(fa)(fa) = fa).

Then T is a six element orthodox semigroup whose Green’s relations are described by the
following diagram.

a
e

f
af

fa

afa

Here f < esf a and afac V(f) but afa # f. There are four congruences on T

p = {(f,fa)}* collapses the rows of the rectangular band;
A= {(f, af)}* collapses the columns of the rectangular band;
0 = p v A identifies all elements of the rectangular band;
7 = {(e,a)}* has two classes, one of which is {e,a}.
Since u =0, u v d = 0. However t is the largest element of §0, and 7 # 6.
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THEOREM 4.6. Let S be an orthodox semigroup such that each homomorphic image of S
satisfies condition (*). Then A(S) is a union of products of 0-classes and ®-classes in the following
sense:

A(S) = U{[B, 1] : tand B are the maximum and minimum of a 6-class above 6},

and each (B, 1) is isomorphic to B0 x B®.

Proof. Let peA(S)and let z and f be, respectively, the maximum and minimum elements
of (p v 8)0. Tt is easily seen that [, 1] is a union of ®-classes and that

{[B,]: © and B are the maximum and minimum of a f-class above 6}

is a partition of A(S). We show that [B, 1] is isomorphic to B8 x p®.

From the remarks preceding the previous lemma, B8 is isomorphic to A(u(S/B)) under the
map y — y/B; and u(S/B) = /B where T is the maximum of 0. We claim that f® is isomorphic
to the lattice A(6(S/B)) of congruences on S/B below 6(S/f) under the same map ¢ — ¢/B. For

AepO<>B <A< Bv=PB<0(S/B)=BIB< AP (Bv)B=05(S/B)
Now the map y — v/ sends [B, 7] to {ae A(S/B): 0 <« < 1/B}. Since S/P satisfies (x) and
5(SIB) = ( v B)/B = BIB, the top of the 6-class of &(S/B) = B/B is u(S/B) v &(S/B) =%/B v

BIB = v B)/B. Thus u(S/B) = [maximum element of (8/B)01/(B/B) = (% v B)/B. However, we
also have u(S/f) = t/B, so that t/f = (T v B)/B, and hence 1 =% v f. We conclude that

{x€A(S/B): 0 < a < 1/B}
= {aeA(S/B):0 S a = TV B)/B = u(S/B)v 5(S/B)}
= A(u(SIB) v &(SIB)).
We have thus shown that the mapping y — /B is an isomorphism both from [B,1] onto
A(u(S/P) v 8(S/B)) and from BO x B® onto A(u(S/B)) x A(S(S/B)). Since the two ranges are
isomorphic by Theorem 4.4, the two domains are isomorphic, and the proof is complete.
CoRrOLLARY 4.7. Let S be an orthodox semigroup satisfying either of the following conditions:
(a) S is a band of groups;
(b) E is naturally ordered (e < f and g < h imply eg < fh for all e,f,g,heE).
Then each homomorphic image of S satisfies (x), and hence A(S) is a union of products of 0-
classes and ®-classes in the sense of Theorem 4.6.
Proof. Let S be an orthodox semigroup and let f,hcE with h £ f# a, a”*e V(a)nH,,
and aha~'e V(h).

(a) If Sis a band of groups, then J# is a congruence. Hence h £ f# aand a™ '€ H, imply
h=fhfs# aha=*. However, aha™'eE ([13, Lemma 1.4]) and we conclude that / = aha™".

Spitznagel [17] has shown that any homomorphic image of a band of groups is again a
band of groups. Hence each homomorphic image of S satisfies (*).

(b) If E is naturally ordered we compute that h = haha™*h £ faha™*h = aha™*h. Easily
we haveaha™' £ f,soaha™*h £ fh = h. These together yield 4 = aha™*h. A similar argument
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shows h = haha™'. Hence aha™' = (aha™*)h(aha™') = haha™' = h, and so S satisfies ().
Howie [5] has shown that the class of naturally ordered bands is a subvariety of the variety of
bands, and hence that any homomorphic image of a naturally ordered band is again naturally
ordered. Combining this with Result 1.4 we conclude that any homomorphic image of S
also has a naturally ordered band of idempotents and hence satisfies condition ().

RemMARK. The results of this section yield a method for computing all the congruences on
(and hence all homomorphic images of ) an orthodox semigroup satisfying the hypotheses of
Theorem 4.6 if one assumes that the congruences on the inverse semigroup .S/d are *“ known .
One computes I(S) by using the inverse of the isomorphism p — p/é of this set onto A(S/d).
By computing the minimum element § of each f-class and then computing f®, one can then
compute S0 x pO. These computations may be simplified by noting that if we define
B = {(efe,e) : epf}* then f = B. Forsince B v 6 = B, by Lemma 2.2 {(efe,e) : e ff} = B, and
hence B < B. ThusBv § < B v §=p. However, if e Bfthen efe fe and fef Bf, so by Lemma
22 e(B v d)f. We conclude that (8 v 6)6; however since f is the minimum of its 6-class,

B v 6 =p. This means B < B, and we conclude B = . It is because of this description of B
that Theorem 4.6 was stated in terms of the minimum elements in §-classes; in fact, one can

show that if 7€ 8 (and the hypotheses of Theorem 4.6 are satisfied) then f6 x B® is isomorphic
to 70 x 0.

5. Applications and related results. Scheiblich has shown [15] that any congruence p on an
inverse semigroup is completely determined by its restriction pn(E x E) (f-class) and ker p.
Green [2] has given an alternative approach to the result. We now prove this result for
orthodox semigroups.

THEOREM S5.1. Let S be an orthodox semigroup and let p,t1e A(S). Thenp =tiff p@rand
ker p = kerrt.

Proof. If pO1,then(p v 6)8(t v d)since fisacongruence. If ker p = kert,thenker(p v 6)
= ker(r v ) by Lemma 2.1. Thus in A(S/d), [(p v 6)/6]18[(z v 8)/6] and ker((p v 9)/d) =
ker((t v 8)/6). By Scheiblich’s result we then have (p v §)/6 =(t v §)/§, 50 pv =1 Vv 6.
Since p 8t by assumption, Lemma 3.3 implies p = 7, and the proof is complete.

Howie and Lallement [7] have shown the existence of a minimum orthodox congruence A
on a regular semigroup T. We will now consider extending the results of the previous sections
to Q(T') = {orthodox congruences on T'} = A(T) v 4.

LeMMA 5.2. Let T be a regular semigroup and let p,1e A(T) be such that pOt. Then
pel(T) iff teI(T).

Proof. We first claim that for an orthodox semigroup S, p#t and pel(S) imply teI(S).
For pel(S)<>efpfeforall e, fe E<>eftfefor all e, fe E (since p07 and ¢f, fee E)<«=>1I(S).
Next we claim that if p, 7€ A(T) and p 01 with pe I(T') then teQ(T). This can be proved
by showing that if F and G are idempotent 7-classes then FG contains an idempotent. Now
F = fr and G = gt for some f,ge E by Result 1.4. Howie and Lallement [7] have shown that
we can always find an idempotent inverse e for fg. Then efg = h, and fge = h, are idempotents,
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Now e = e(fg)edelefg) = efg = h,, since idempotents commute in 7/6. Similarly edh,.
Since d £ p, we have eph, and eph,, so eth, and eth,. We conclude that e = e*th,h, =
(fge)(efg) = fyg, and the second claim is proved.

Finally to prove the lemma we note that if p,7e A(T) and § < p @< then, by the above,
72 A. Hence t/4is defined, and p/10t/A. Moreover p/A = §/A = §(S/A)since 6 = A. Thus by
the first claim t/A is an inverse semigroup congruence (on the orthodox semigroup S/4) and
hence t/A = 6/A. We conclude that T = 5. Interchanging the roles of p and t yields a corre-
sponding result, and the lemma is proved.

The above result says that the sublattice 7(.S) of A(S) is 0-saturated, a fact which can be
inferred, for bands of groups, from Proposition 4.1 of [16]. One should note that Q(S) is not
in general f-saturated; forin [7, p. 153] it is shown that the minimum band congruence f§ is the
top of the #-class of the minimum band of groups congruence z and n < 7 v A < f, but © need
not be in Q(S).

Since I(S) € Q(S), it follows than any pe I(S) can be written in the form p = t/A for some
1eQ(S). Consequently 6(S/1) = 6(S)/A and S/S = (S/2)/(6/A).

THEOREM 5.3. Let S be a regular semigroup. The map p — (p0, (p v 8)/6) is an embedding
of Q(S) into Q(S)/6 x A(S/9).

Proof. Note that first p — p/A is an isomorphism of Q(S) to A(S/2). By Corollary 3.5 the
map p/i—((p/N)0, ((p/%) v 6(S[A)/6(S/A)) is an embedding. Now p/A0t/A<pf1, and
((p/A) v O(SIANI6(SIA) = ((p/A) v (BI))(6]A) = (p v 8)/6. Tt thus follows that p— (p#,
(p v 8)/d) is an embedding.

The definition of the relation ® in Section 3 can be extended to Q(S): for p,7eQ(S),
pPt<>pv =1V Since

p®Te>pliv d|A=1/Av /A< pfAv &(S/A) = t/Av &(S/),

it follows from the results of Section 2 that @ is a congruence on Q(S). Using Theorem 3.7
and techniques like those in the previous theorem, one can prove the following (we omit the
details).

THEOREM 5.4. Let S be a regular semigroup. Then

@) Y(p)=(p A b, p v 5), when restricted to Q(S), is one-to-one;
(b) if Q(S) is ®-modular, then Y is a lattice embedding of Q(S) into [2,d].

The function Y above can be defined on all of A(S); however, it need not be one-to-one, as
the following example shows.

Let G = {e,a,b,ab} be the Klein Four-group, and let I = {1,2}. Let Sbethel x I Rees
matrix semigroup over G° with sandwich matrix P having all entries e except for one entry ab.
One computes that A(S) A 5 has three congruences other than 0g and #. Call these A (for
one is the minimum orthodox congruence), « and f. None of these is comparable to any other,
and one can show that Y(x) = (05, 15) = Y(B).
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Note added in proof. Theorem 5.1 has been obtained independently by Ruth Fergenbaum
in [18].
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