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It is well known that the lattice A(S) of congruences on a regular semigroup S contains
certain fundamental congruences. For example there is always a minimum band congruence /?,
which Spitznagel has used in his study of the lattice of congruences on a band of groups [16].
Of key importance to his investigation is the fact that j8 separates congruences on a band of
groups in the sense that two congruences are the same if they have the same meet and join with
p. This result enabled him to characterize 0-modular bands of groups as precisely those
bands of groups for which p->(p v /?, p A /?) is an embedding of A(S) into a product of
sublattices.

In this paper we make use of the minimum inverse semigroup congruence 8 to investigate
the congruences on an orthodox semigroup S. In Section 2 we show that <f)(p) = p v 8 is a
complete lattice homomorphism. In Section 3 we prove that 8 separates congruences on S in
the sense that two congruences are the same if they have the same meet and join with 8. More-
over if $ is the congruence on A(S) determined by the homomorphism </> above, then the
<D-classes of A(5) cross-section the 0-classes in the sense that two congruences are the same if
they lie in the same 6- and O-classes. Using these results we show that A(S) can be (lattice)
embedded in A(S)/0 x A(S/<5)andthatifSis<E>-modular,Y(/9) = (p A 8,p v «5) is an embedding.

In Section 4 we investigate the structure of the product of a 0-class with a <D-class, and give
a sufficient condition under which A(S) can be decomposed into a disjoint union of convex
sublattices, each of which is isomorphic to a product of a 0-class and a <D-class.

Applications of these results are collected in Section 5. We show that two congruences on
an orthodox semigroup are equal if they have the same kernel and same 0-class, extending a
result of Scheiblich [15] for inverse semigroups. It is also shown that on a regular semigroup
the lattice of inverse semigroup congruences is 0-saturated. This is used to extend many of the
results of Section 3 to the lattice £l(S) of orthodox congruences on a regular semigroup.

1. Notation and preliminary results. Our notation follows Clifford and Preston [1]. S
denotes a regular semigroup, is its set of idempotents and A(S) the lattice of congruences on S.
ForaeS,

V(a) = {xeS : axa = a and xax = x}.

Green's relations are denoted by 01, S£, 2tf and ®, and the ^f-class of a by Ha. S will be called
orthodox if £ is a subsemigroup.

RESULT 1.1. [12.] A cong ruence peA(S) is completely determinedby its idempotent classes;
that is, if p,xeA(S), then p = T if and only if, for each eeE, xpeoxxe.

We denote the union of these idempotent classes by kerp = {xeS: xpe for some eeE}.
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RESULT 1.2. [13.] For a regular semigroup S, the following are equivalent:

(i) S is orthodox.
(ii) For each a,beS and each a' e V(a) and V e V(b), b'd e V(ab).

(iii) For each eeE, V(e) £ E.

Also in [13], Reilly and Scheiblich defined the relation 6 on A(S) by

/?0Tcpn(£ x E) = rn(£ x £).

Their results, together with those of Scheiblich [14] and Hall [4], yield the following.

RESULT 1.3. The relation 8 is a congruence on A(S), each 6-class is a complete modular
sublattice, and the natural homomorphism of A(5) onto A(S)/0 is a complete lattice homo-
morphism. Moreover, ifm(p) denotes the minimum of the 0-class p6, this natural homomorphism
is an isomorphism of pO onto the lattice of idempotent-separating congruences on S//w(p).

RESULT 1.4. (Lallement [9].) Ifp e A(S), the idempotents ofSjp are precisely the elements of
the form ep for some eeE.

For a class ̂  of semigroups, p e A(5) will be called a ̂  congruence if S/p e%>. In [7], Howie
and Lallement studied the lattice properties of A(S), and in particular the relationships
between the minimum # congruences for various classes # of semigroups. We adopt the
following symbols for certain of these:

H = the maximum idempotent-separating congruence;
5 = the minimum inverse semigroup congruence;

l s = the universal congruence S x S;
0s = the diagonal congruence {(x, x) \ x e S};
X = the minimum orthodox semigroup congruence;
a = the minimum group congruence.

We also denote the lattice of orthodox congruences by fi(S) = {pe A(S): I ^ p) and the
lattice of inverse semigroup congruences by 7(5) = {p e A(S'): 8 ^ p). To denote one of the
above congruences, say 8, on another semigroup, say T, we use the notation 8(T). If r e A(5),
then A(T) denotes {pe A(5) : p £ T}. If a ^ p in A(S), [a, j3] = {y e A(S): a ^ y £ 0}.

RESULT 1.5. (Hall [3].) IfS is orthodox, then 8 = {(x,y) : x andy have a common inverse).
Moreover for each eeE, e8 = V(e).

Let S be an arbitrary semigroup. If p,yeA(S) and y ^ p, then the relation p/y on Sly
defined by p/y = {(xy,yy): (x,y)ep} is a congruence. Moreover the lattice A(5) v y is
isomorphic with A(S/y) under the map y v i - » ( ) i v x)/y. In particular, if y ^ p,T, then
(p A T)/}> = (p/y) A (t/y) and (p v x)jy = (p/y) v (r/y). If S is also regular, then it follows from
Result 1.4 that if y ^ p, T then p 6 T O p/y 9 t/y. These results are easily verified, as is pointed
out in [13] and [16].

If p is a relation on S then p* denotes the congruence generated by p.

2. The mapping p -»p v 8. Throughout the next three sections S denotes an orthodox
semigroup and^eA(5).
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LEMMA 2.1. Ifx(p v 8)eforsomeeeE, then x pffor somefe E. ThuskerQ)) = ker(p v 8).

Proof. Suppose that x(p v 8)e, where ee£. It suffices by Result 1.4 to show xpx2.
Let ye V(x). Since p v 5 is an inverse semigroup congruence, we have y(p v <5)e. Also xy is
an idempotent / in Rx, and x(p v <5)e(p v 8)xe(p v (5)xy = / . Thus/x/(p v 8)f3 = / . We
shall show that fxfpf for then x2 = (fx)2 = fxfx pfx = x, and we will be done. Since

fxf(p v 5)/, there exist xu x2, • •., xn in S such that/p *j 5 x2 p .. • p xn 8fxf. Setting y, =fxj
one computes ihatfpy18 y2p ... pyn8fxf. By Result 1.5, j ^ andj>2 have a common inverse w,
and since yi,y2efSffwf is also a common inverse. Nowfwf=f(fwf)fpyl(fwf)yl = yt pf,
so fwfpf. Also y2 =fy2fp (Jwf)y2(fwf) =fwfpf so J 2 P / Continuing in this manner, we
have fpfxf and the proof is complete.

LEMMA 2.2. Let e,fe E. Then e (p v §)f iffep efe andfpfef.

Proof. If e(pv8)f then e = e3(p v 8)efe. Thus there exist x1; ...,*„ such that
x2 ... pxn8 efe. Without loss of generality these may be chosen in eSe, and proceeding

as in 2.1 we have epefe. Similarly fpfef.
Conversely suppose e p efe and fpfef. Since ef8fe, we have fefSfe and ef8 efe. Thus

e p efe 8 efp ef8fe pfe 8fefpf and e(p v 8)f.

THEOREM 2.3. The minimum inverse semigroup congruence on S/p, denoted 8(S/p), equals
(P v 8)1 p.

Proof. First note that 8(S/p) ̂  (p v 8)1p since (p v 8)1 p is an inverse semigroup congru-
ence on Sip. .Define TBA(S) by xryo(xp)8(S/p)(yp). Then T ^ p, and zjp = 8{Sjp).
Also T ^ 5 since S/T = (5/P)/(T/P) = [Slp)j8{Slp). Hence T ̂  p v 5 and so t/p = c5(S/p) ^
(p v <5)/p. This establishes the equality.

We remark here that Theorem 2.3 holds more generally for any minimum # congruence
provided # is closed under homomorphic images.

THEOREM 2.4. If si is a collection of congruences on S, then 8 v (OJZ/) = n{8 v p : pes/}.
Hence the function </)(p) = p v 8 is a complete lattice homomorphism from A(S) onto I(S).

Proof. Clearly 5 v (ojaf) s n{<5 v p : pesf}. To show the converse suppose
x(r>{8 v p : pe^})e . Then x(8 v p)c for all pej^ , so, by 2.1, xpfp for some/pe£. This
implies e(p v (5)/p and thus by Lemma 2.2 we have efpepe and fpefp pfp for all pestf. We
deduce that exepe and xexpx for all pestf, so exe(n si)e and xex(r\ s/)x. By Result 1.5,
this means x(ns/) and e(n.s/) are related by 8(S/ns/). Since (8 v (nstf))lns/ is an inverse
semigroup congruence on S/nsf, we have x(nj^) and e(nj^) related by (8 v (nsf))lns/, and
thus x(5 v (n>s/))e. By Result 1.1 we are done.

Combining this with the remarks at the end of Section 1 we have the following result.

COROLLARY 2.5. The function p-*(p v 8)/8 is a complete lattice homomorphism of A(5)
onto A(S/<5).

3. Embeddings of A(S) in product lattices. A congruence p is idempotent separating if
p00s. This idea was first considered by Munn [11] who showed that these are precisely the
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congruences contained in ^f. Munn also showed that these congruences commute with each
other. The next lemma shows that they also commute with any congruence below 5. One
should note, however, that congruences below 5 need not commute with each other.

LEMMA 3.1. If p,xeh{S) with p S \i andx £ 8, then pot = top = p v x.

Proof. Suppose xpzxy. Then xfizSy, so there exists w in V(y)nV(z). One computes
that y = ywy =ywzwypywxwy. Also x =zwxwz since zw and wz are M- and if-related to z
(and hence to x), respectively. But zwxwzxywxwy, so xxywxwypy and x(xop)y, and we
are done.

LEMMA 3.2. If p, x £ p. and p v 8 = x v 8 then p = x.

Proof. Suppose p, x £ p. and p v 8 = x v <5. Then p<>(5 = pv<5 = TV(5=To<5. We
show that xpe implies xxe. If xpe then x(po8)e so x(TO<5)e. Thus there existsy such that
xxybe. However xpe and p £ p. £ ^ imply that e is the identity of Hx, and j<5e implies
j>eii. But then xxy and T £ Jf imply j> is the identity of Hx, so y = e and ;cre. By inter-
changing the roles of p and T we see that xpe iff xre , and we are done.

LEMMA 3.3. IfpOx andp v 5 = x v 5, </*£« p = T.

Let K be the least element of p6. Then p/K and X/K are idempotent separating on
S/K. If p v 5 = x v 5, then, by Theorem 2.3, (p//c) v 8(S/K) = (p//c) v ((K V 8)IK) =
(py K v 8)/K = (p v <5)/K = (T v 8)/K = (X/K) V 8(S/K). By Lemma 3.2, this implies p/ic = T/K,
which implies p = x.

THEOREM 3.4. If p v 8 = x v 8 and p A 8 = x A <5 /Aen p = T.

Proo/. Assume p v 5 = x v <5 and p A 8 = x A 8. By Lemma 3.3 it suffices to show p6x.
If ep/ then e(p v <5)/, and so e(x v 5)/. By Lemma 2.2 this means epefe,fpfef, exefe, and
/ r / e / . Also efeSfef since idempotents commute in S/5, and efepfef since ep/ . Thus
efe(p A 8)fef, so e/e(t A 8)fef and hence efexfef Combining these results we have exf.
Interchanging p and x yields pQx, and the proof is complete.

Combining this theorem with Corollary 2.5 we have the following result.

COROLLARY 3.5. (a) The function p -> (p9,(p v 8)18) from A(5) to A(5)/0 x h{SjS) is a
complete lattice embedding.

(b) The function T(p) = (p A <5,p v 8) is one-to-one.
The function T in (b) is not in general a lattice homomorphism, for 8 A (p v x) may not

equal (8 A p) v (<5 v T), even in bands (where 8 = 2i). Consider the following example.

EXAMPLE 3.6. Let Dt and D2 be right zero bands on {e,f} and {«',/'} respectively. Let
0 : Dx -• D2 be defined by <£(e) = c' and </>(/) = / ' , and define B to be the mapping band on

Thus for asDx and beD2, ab = <£(a)Z> = b and to = 6<£(a) = $(a).
has three elements other than 1 and 0. One is 8 = 9. Another is p = {(«',/')}*

which has only one nontrivial class, namely {e',f}. The last is x = {(e,e')}* which has only
two nontrivial classes, {e,e'} and {/,/'}. It is easily computed that e(8 A (p v x))f however
e [(p A 8) v (T A 8)] f is false. The complete lattice of congruences on B is as in Figure 1.
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In [16], Spitznagel made the following definition. Let F be a congruence on A(S). We
say that A(S) is F-modular provided the conditions p,t,oceA(S), p ^ t , pTx, a v p = a v T,
and a A p = a A T imply p = T. Spitznagel then showed that if T is a band of groups, that is, a
union of groups on which ^f is a congruence, and if y? is the minimum band congruence on T,
then the function ^ : A(T) -> (A(r) v /?) x (A(T) A p.) defined by \j/(p) = (p v Jf, p A X ) is
an embedding if and only if A(5) is 0-modular.

Define the relation $ on A(S) by p$xop v 5 = T V <5. If S is an orthodox semigroup,
then, by Theorem 2.4, <£> is the congruence associated with the homomorphism <£(p) = p v <5,
and the <D-classes are complete convex sublattices of A(S). Moreover it follows from Lemma
3.3 that the ^-classes cross-section the 0-classes of A(S) in the sense that p9x and p $ r imply
p = T. We can now prove an analogue of part of Spitznagel's result.

THEOREM 3.7. IfA(S) is ̂ -modular, then the map T(p) = (p A 8, p v 8) is an embedding of
A(S) into A((5) x I(S).

Proof. From Corollaries 2.5 and 3.5 we need only show that p -»p A 5 is v -preserving;
that is, (p v T) A 8 = (p A <5) v (T A 8). We note that (p A 5) v (T A 8) ^ (/> v T) A <5, and
that since both are below <5, they are <J>-related. Thus since A(S) is O-modular, in order to show
(p v x) A 8 =(p A 6) v (T A 8) it suffices to show that (1) p v [(p v T) A 8] = p v [(p A 5) v
(T A 5)], and (2) p A [(p v T) A <5] = p A [(p A S) V (T A 8)].

For the first equality, note first that (p A 8) v (T A 5) ̂  (p v T) A 8 and hence p v
[(p A 5) v (T A 8)] S P v [(p v T) A 5]. Now note that p v [(p A 8) v (T A 5)] = p v (T A 5).
Since 5 v [p v [(p v T) A 8]] = (p v 8) v [5 v [(p v T) A 5]] = (p v <5) v 5 = p v 5 = (8 v p)
v (T A 8) = 5 v [p v (T A 5)], we have that p v (T A 8)®p v [(p A 8) v (T A 5)]. Con-
sequently, to show (1) it will suffice, by <J>-modularity, to show that (a) x v [p v
(T A 8)] = T v [p v [(p A 5) v (T A 8)]] and (b) T A [p v (T A 5)] = T A [p v [(p A 8) v
(T A (5)]]. For (a), note that T V p ^ T V [p v (T A 5)] ̂  T V [p v [(p v T) A 5]] ̂  T V [p v
(p v T)] = T v p, so (a) holds. For (b), we first note x A [p v (T A 8)] ^ T A [p v [(p v T) A 8]]
^ T A [p v 5]. If we can show (c) T A (p v 8) = T A [p v (T A 5)], we will be done. First note

that, by Theorem 2.4, 8 v [x A (p v 8)] = (8 v T) A [5 v (p v 5)] = (5 v T) A (p v <5) =
(8 v T) A (8 v p v (T A 8)) = 5 v [x A [p v (T A 5)]]. Hence (c) will follow from Lemma 3.3
if we can show that x A (p v 8) 9 x A (p v (T A 5)). If e (T A (p v 5))/, then e xf and
e(pv8)f. By Lemma 2.2 we then have efepe and fefpf. Also e r / implies efexfef. Since S
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is orthodox, one can easily compute efe eV (fef), and hence efe 8fef by Result 1.5. Thus
epefe(x A 8)fefpf so e(p v (T A <5))/. As noted above, exf so e(x A [p v (T A <5)])/.
It now follows from x A (p v (T A 8)) ̂  T A (p v 5) that T A (p v 5) 0 x A (p v (T A 8)), and
the proof of (1) is complete.

For (2), since (p A 8) v (x A 5) g 8 we have p A [(p A 5) v (T A 8)] g p A 8. However
p A 5 = p A (p A 8) ̂  p A [(p A 8) v (T A (5)], and (2) follows. The proof is now complete.

The converse to this theorem is not true, and in this way the analogy between our situation
and that of Spitznagel [16] breaks down. The reason for this is that while 0-classes are modular
[13], O-classes need not be. The interested reader can check that if B is the " 4 x 4 " rectangular
band, then A(B) has only one <£-class, and it is non-modular.

4. Decomposing A(5) into a union of product lattices. We have seen that a congruence p
on an orthodox semigroup 5 is completely determined by p A 5 and p v 5. A natural question
is the following: Given y ^ 8 andr ^ 8, under what conditions does there exist a p e A(S) such
that p A 8 = y and p v 8 = T ? Example 3.6 shows that in general such a p need not exist.

In the sequel we shall denote the minimum element of p<t> by p. It is not hard to show that
l s is the minimum rectangular band congruence on S, and a is the minimum completely simple
semigroup (here rectangular group) congruence on S.

We now show that p can be recovered from p and 8 A p.

LEMMA 4.1. V/"peA(S), f/ze/i p = (<5 A p) v p.

Proof. Since 8 v [(8 A p) v p] = (5 v p = 8 v p, by Lemma 3.3 we need only show
p6(8 A p) v p. Always we have p jg (5 A p) v p, so this reduces to showing that epf implies
e[(8 A p) v p]/ . If epf, then e(p v 5) /and so epefe and fp fef by Lemma 2.2. But epf
also implies efepfef, and efe 8fef since 5 is an inverse semigroup congruence. Hence
epefe(p A 8)fefpf so e[(<5 A p) v p]f.

THEOREM 4.2. Suppose y,xe A(S) such that y g <5 andT ^ 5. T/ie following are equivalent:

(i) 7%ere ejcwta p e A(S) JMC/I //ta/ p v 8 = T OAK/ p A 8 = y.
(ii) (f v y) A <5 = y.

Proo/. (i) => (ii): Let p be such that p v 8 = T and p A 8 = y. Then p ^ f and p ^ y, so
p ^ f v y. Hence y = p A < 5 ^ ( i v y ) A < 5 ^ y .

(ii)=> (i): Suppose y ̂  5 and x^8 are such that (f v y) A 8 = y. Setting p = f v y,
one easily computes that p A 8 = y and p v 8 = x.

Another natural problem is to investigate the sublattices of A(S) consisting of the product
of a 0-class and a $-class. The simplest of these is A(ji) x A(<5), and we begin with it.

LEMMA 4.3. If p,x ^ fi v 8, then pQx iff p A 8 = x A 8. Thus each congruence below 8 is
the minimum element of its 0-class.

Proof. It is easy to show that in general for a,peA(S), a ̂  p implies a g p. Also

8 = fx, since ft is the least element of (ji v 5)0. For any o t ^ v ^ w e then have O s g a ^
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so thata0Os. Since 0 is a congruence, a v (a A 8)90S V (a A 8) = a A 8. But, by Lemma 4.1,
a = a v (a A 8), so a 9 a. A 8.

Now if p . T ^ / i v 5, then p A 5 = T A 8 implies p9p A 8 = x A 89x, SO p0r . Con-
versely, if p0T, then p A 89X A 5. But (p A 8) v 8 = 8 = (T A 8) v <5, so, by Lemma 3.3,
p A 8 = T A 5.

For the last statement, if a :£ 5 then for any peoc0, consider (p A a) v 8 and (p A a) A 8.
Then p A a = p A (a A 5) = (p A <5) A a = (a A <5) A a = a, so a ^ p, and the proof is complete.

THEOREM 4.4. .//" p,x ^ pv 8, then (p v T) A 8 = (p A 8) v (T A <5). Consequently
A(/* v 5) is isomorphic to A(p) x A((5).

Suppose p, T ^ p v 5. By the above lemma, [(p v T) A 8] 9 (p v T) 0 [(p A (5) v
(T A 8)], and since (p v T) A 8 and (p A 5) v (T A 8) are in A(8), they are equal.

Thus the function T(p) = (p A (5,p v 5) of Corollary 3.5(b) is a lattice homomorphism of
A(/i v (5) into A(<5) x [8,p. v 5]. To show that it is onto, suppose yeA(<5) and xe[8,p. v 5].
Then (f v y) A 8 = (f A 8) V (y A 8) = 0s v y = y, and so, by Theorem 4.2, there exists a
peA((i v 5) such that p w 8 = x and p A 8 = y. Thus T is onto A(<5) x [5,/iv 5].

But the mapping p-> p of [8,p, v 8] onto A(p.) is an isomorphism since it is the inverse of
the mapping </>(p) = p v 8. Thus A(ji v 5) is isomorphic to A(JJ.) X A(8) under the mapping
p -»(p, p A 5), and the proof is complete.

Outside A(ji v 5) things are not so nice. We shall see below that although p. is the top of
its 0-class, p,v 8 need not be the top of its 0-class. Also p A 8 need not be OS, so A(S) is not
necessarily a product. However, one might hope to write it as a union of products of 0-classes
with sublattices of A(8). This idea motivates the rest of this section.

First we would like to find a condition under which n v 8 is the maximum element of its
0-class. If T and /? are, respectively, the maximum and minimum elements of a 0-class of a
regular semigroup S, Reilly and Scheiblich [13] have shown that p -> p/p is an isomorphism of
P9 onto the lattice of idempotent separating congruences on SJP, and that p.(S/P) = %\p. In
what follows we let P = 8 and let x be the largest element of 89, so

axb-*>(a8) t/S (b8)<=>(aS)p.(S/S)(b5).

J. M. Howie [6] has characterized p. on an inverse semigroup T by

p(T) = {(x,y)eTx T: xex'1 = yey~l for all idempotents eeT}.

On an orthodox semigroup S, p. has been characterized by J. Meakin [10] as

p(S) = {(a,b)eS x S: there exists a'eV{a) and b'eV{b) for which

aea' = beb' and a'ea = b'eb for all eeE}.

Thus for T the maximum of 89, we have

and (aS)~iF(aS) = (bS)'1 F(bS)

for all idempotents Fin S/8. Now F=f8 for some fsE, and for any a'e V(a), (a8)~l = (a'8)
since 8 is an inverse semigroup congruence. So a x b o {a8)(fS){a'5) = (b8)(J8)(b'8) and
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(a'b)(fb)(ab) = (b'b)(fb)(bb)oafa'bbfb' and a'fadb'fb for some (all) a'e Via) and b'eV(b)
and all/e£".

We can now prove the following result.

LEMMA 4.5. Let S be an orthodox semigroup satisfying

(*) h,feE, h ^fJfa, a'1 eV(a)nHa, and aha'1 eV(h) imply aha'1 = h.

Then on S, /i v b — x, the largest element of 69.

Proof. It suffices to show that a t e implies a\i v be. To motivate the proof, note that if
fi v b = T then, by Lemma 3.1, nob = x, and thus axe implies the existence of an x such that
a fix be. Then xde implies xeE, and a fix implies a tf x, so that x must be the identity of Ha.

Assume that axe. We first show that Ha is a group with identity/, and axf. Since T is an
inverse semigroup congruence, axe implies a'xe for each a'e V(a). Thus adxe and a'axe.
Now aa' and a'a are idempotents which are inverses of one another ([13]), so (aa')(a'a) is an
idempotent/in Ha and Ha is a group ([1, p. 58-9]). Moreover,/= (aa')(a'a)xexa.

From this we deduce that since x6d we have ebf. From the discussion preceding the
statement of the lemma, we know that at/implies aha'dfhfda'ha for all heE and a'e V(a).
Let geE and a~1eV(a)nHa. Then the idempotent A =fgf is below/and satisfies aha'1 =
afgfa~x —aga~lbfgf= h, and similarly a~1habh. But aha~1bh implies aha~leV(h) by
Result 1.5, so we have h ^fj^a^a'1 and aha~1e V(h) and a~lhae V(h). So the hypotheses
of (*) are satisfied, and we conclude that aha'1 = h = a~xha, i.e. aga'1 =fgf= a~1ga for all
geE. By Meakin's characterization of n we have a/z/, and, combined with ebf, this means
any be. The proof is complete.

We discuss below various classes of orthodox semigroups in which (•) is satisfied. An
example of one in which it is not satisfied is the following.

Let

T= (a,e,f: a2 = e,e2 = e,f2 =f,ea = ae = a,ef=fe =f,(af)(af) = af,(fa)(fa) =/a>.

Then T is a six element orthodox semigroup whose Green's relations are described by the
following diagram.

a
e

f

af

fa

afa

Here/5^ etf a and afae V(f) but afa ^f. There are four congruences on T:

P — {(/j/a)}* collapses the rows of the rectangular band;
k = {(/ af)}* collapses the columns of the rectangular band;
b = p v X identifies all elements of the rectangular band;
T = {(e,a)}* has two classes, one of which is {e,a}.

Since n = Q, pv 8 = 5. However T is the largest element of bO, and x ^ b.
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THEOREM 4.6. Let S be an orthodox semigroup such that each homomorphic image of S
satisfies condition (*). Then A(5) is a union of products ofQ-classes and<5>-classes in the following
sense:

A(S) = u {[ft, T] : T and ft are the maximum and minimum of a 0-class above S},

and each [ft, T] is isomorphic to ftO x ft<$>.

Proof. Let p e A(S) and let T and ft be, respectively, the maximum and minimum elements
of (p v 5)0. It is easily seen that [ft,r] is a union of <£-classes and that

{[ft, T] : T and ft are the maximum and minimum of a 0-class above 6}

is a partition of A(S). We show that [ft, T] is isomorphic to ftO x ft®.
From the remarks preceding the previous lemma, ftO is isomorphic to A(p(S/ft)) under the

map y -> y/ft; and fi(S/ft) — T//? where f is the maximum of ftO. We claim that ft<5> is isomorphic
to the lattice A(5(S/ft)) of congruences on Sjft below <5(S/j5) under the same map a -»a//?. For

Xefttooft <k^ftv8 = ftoO(S/ft) = jB//? ^ A/j8 ̂  (J5v5)/^ = 5(Slft).

Now the map y -»y/j5 sends [̂ , T] to {ae A(5/j8): O g a g T//?}. Since S/^ satisfies (•) and
5(S/j5) = (<5 v )5)/^ = J?//5, the top of the 0-class of 8(S/ft) = ft/ft is //(S//?) v 5(5/jB) = I/j5 v
/J/^ = (f v ft)jft. Thus //(5//S) = [maximum element of (ftlft)O]l(ft/ft) = (f v ^)//?. However, we
also have MS//0 = T/& s o t n a t T/j5 = (T v ft)jft, and hence T = f v /?. We conclude that

= {a e A(S/ft) :O^x^xvft)lft = fi(S/ft) v

We have thus shown that the mapping y -> y/ft is an isomorphism both from [ft, z] onto
A(n(S/ft) v <5(S/j5)) and from ^0 x ft® onto A(/i(5/j5)) x A(<5(5/j5)). Since the two ranges are
isomorphic by Theorem 4.4, the two domains are isomorphic, and the proof is complete.

COROLLARY 4.7. Let S be an orthodox semigroup satisfying either of the following conditions:

(a) S is a band of groups;
(b) E is naturally ordered (e ^f and g ^ h imply eg ^fhfor all e,f,g,heE).

Then each homomorphic image of S satisfies (•), and hence A(S) is a union of products of 6-
classes and ^-classes in the sense of Theorem 4.6.

Proof. Let S be an orthodox semigroup and istfheE with h ^fjffa, a~1e V{a)r\Ha,
and aha'

(a) If S is a band of groups, then J f is a congruence. Hence h ^ fjf a and a~1eHa imply
h =fhf3^aha~l. However, aha'1eE ([13, Lemma 1.4]) and we conclude that h = aha'1.

Spitznagel [17] has shown that any homomorphic image of a band of groups is again a
band of groups. Hence each homomorphic image of S satisfies (*).

(b) If E is naturally ordered we compute that h = haha~ 1h ^faha~ 1h = aha~ xh. Easily
wehavea/za"1 ^ / , soaha~lh ^fh = h. These together yield h = aha~1h. A similar argument
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shows h = haha~1. Hence aha'x = (aha''^(aha'-1) = haha'-1 = h, and so S satisfies (*).
Howie [5] has shown that the class of naturally ordered bands is a subvariety of the variety of
bands, and hence that any homomorphic image of a naturally ordered band is again naturally
ordered. Combining this with Result 1.4 we conclude that any homomorphic image of S
also has a naturally ordered band of idempotents and hence satisfies condition (*).

REMARK. The results of this section yield a method for computing all the congruences on
(and hence all homomorphic images of) an orthodox semigroup satisfying the hypotheses of
Theorem 4.6 if one assumes that the congruences on the inverse semigroup S/8 are " known ".
One computes 7(5) by using the inverse of the isomorphism p -> p/8 of this set onto A(S/8).
By computing the minimum element /? of each 0-class and then computing /?$, one can then
compute fid x f}<&. These computations may be simplified by noting that if we define
§ = {(efe, e): e /?/} * then § = ft. For since /? v 8 = J?, by Lemma 2.2 {(efe, e) : e 0 / } £ J5, and
hence $ g J3. Thus §v8^Pv8 = p. However, if ejS/then efe §e and fef§f, so by Lemma
2.2 e(§ v <5)/. We conclude that (§ v <5)0/?; however since /} is the minimum of its 0-class,
§ v 5 = p. This means J3 ^ §, and we conclude ft = @. It is because of this description of fi
that Theorem 4.6 was stated in terms of the minimum elements in 0-classes; in fact, one can
show that if xe j30 (and the hypotheses of Theorem 4.6 are satisfied) then fid x /?<!> is isomorphic
to W x T<D.

5. Applications and related results. Scheiblich has shown [15] that any congruence p on an
inverse semigroup is completely determined by its restriction p n ( £ x E) (0-class) and kerp.
Green [2] has given an alternative approach to the result. We now prove this result for
orthodox semigroups.

THEOREM 5.1. Let S be an orthodox semigroup and let p,teA(S). Then p = x iff pOx and
kerp = kerf.

Proof. Ifp0t,then(p v <5)0(T v 8)sinceflisacongruence. ifkerp = kert,thenker(p v 8)
= ker(t v 8) by Lemma 2.1. Thus in A(S/8), [{p v 8)18)0 [(T V 8)/8] and ker((p v 8)/8) =
ker((t v 8)/8). By Scheiblich's result we then have (p v 8)18 = (T V 8)18, so p v 8 = x v 8.
Since p9x by assumption, Lemma 3.3 implies p = x, and the proof is complete.

Howie and Lallement [7] have shown the existence of a minimum orthodox congruence A
on a regular semigroup T. We will now consider extending the results of the previous sections
to Q.(T) = {orthodox congruences on T) = A(T) v X.

LEMMA 5.2. Let T be a regular semigroup and let p,xeA(T) be such that pQx. Then
peI(T)iffxeI(T).

Proof. We first claim that for an orthodox semigroup S, pdx and peI(S) imply xeI(S).
For peI(S)oefpfe for all eJeEoefxfe for all e,/e E (since p 9 x and effeeE)oxeI(S).

Next we claim that if p, xe A(T) and p 6x with peI(T) then xeQ(T). This can be proved
by showing that if F and G are idempotent t-classes then FG contains an idempotent. Now
F=ft and G = gx for some/, g eE by Result 1.4. Howie and Lallement [7] have shown that
we can always find an idempotent inverse e fovfg. Then efg = hx and fge = h2 are idempotents.
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Now e = e(fg)ebe(efg) = efg = ht, since idempotents commute in Tjb. Similarly edh2.
Since b ^ p, we have epAj and ep/j2, so exh1 and e t / ^ . We conclude that e = e2xh2h1 =
(fge)(efg) =fg, and the second claim is proved.

Finally to prove the lemma we note that if p, xeA(T) and 5 ^ pOx then, by the above,
T ^ A . Hence T/A is defined, and p/XOx/X. Moreover p\X ^ b\X = (5(S/A) since b ^ A. Thus by
the first claim T/A is an inverse semigroup congruence (on the orthodox semigroup S\X) and
hence xjX ^ b/X. We conclude that T ^ <5. Interchanging the roles of p and x yields a corre-
sponding result, and the lemma is proved.

The above result says that the sublattice I(S) of A(S) is 0-saturated, a fact which can be
inferred, for bands of groups, from Proposition 4.1 of [16]. One should note that Sl(S) is not
in general 0-saturated; for in [7, p. 153] it is shown that the minimum band congruence ft is the
top of the 0-class of the minimum band of groups congruence n and n ^n v A ^ /?, but n need
not be in C1(S).

Since 7(5) £ £2(S), it follows than any peI(S) can be written in the form p = x/X for some
xe£l(S). Consequently <5(S/A) = 5(S)/X and S/5 = (S/A)/(<5/A).

THEOREM 5.3. Let S be a regular semigroup. The map p -* (pd, (p v 6)15) is an embedding
o/n(S) into CI(S)I9 x A(S/<5).

Proof. Note that first p -> p/A is an isomorphism of Cl(S) to A(5/A). By Corollary 3.5 the
map pjX-> ((p/A)0, ((p/A) v 5(5/A))/<5(5/A)) is an embedding. Now p\XQx\XopQx, and
{{p\X) v b{S\X))\b{S\X) = dpIX) v (8IX))I(5IX) = (p v <5)/(5. It thus follows that p->(p0,
(p v b)/b) is an embedding.

The definition of the relation O in Section 3 can be extended to fi(S): for p,xeil(S),
p<&xop v b — x v b. Since

p <D x o p/X v 5/A = T/A v 5/A o pjX v 5(S/A) = T/A V <5(S/A),

it follows from the results of Section 2 that ^ is a congruence on Q(5). Using Theorem 3.7
and techniques like those in the previous theorem, one can prove the following (we omit the
details).

THEOREM 5.4. Let S be a regular semigroup. Then

(a) Y(p) = (p A b, p v b), when restricted to Sl(S), is one-to-one;
(b) »/fi(S) is (^-modular, then T is a lattice embedding of£l(S) into [X,b].

The function T above can be defined on all of A(5); however, it need not be one-to-one, as
the following example shows.

Let G = {e,a,b,ab} be the Klein Four-group, and let / = {1,2}. Let S b e t h e / x /Rees
matrix semigroup over G° with sandwich matrix P having all entries e except for one entry ab.
One computes that A(S) A ^f has three congruences other than 0s and Jf. Call these A (for
one is the minimum orthodox congruence), a and p. None of these is comparable to any other,
and one can show that Y(a) = (0s, l s ) = T(jS).
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Note added in proof. Theorem 5.1 has been obtained independently by Ruth Fergenbaum
in [18].
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