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A CLASS OF MELON MULTIPLIERS 

A. C. McBRIDE AND W. J. SPRATT 

ABSTRACT. We examine a class of functions which can serve as Mellin multipliers 
in the setting of the spaces Fp^ which we have used extensively in other papers. The 
conditions to be satisfied by such a multiplier h do not involve h' explicitly. This means 
that multipliers involving T-functions can be handled by means of the asymptotics of 
T(z) alone, without the need to study i/> = T ' / r , thereby saving effort in the case of 
complicated multipliers. 

1. In [7], Rooney introduced a class A of Mellin multipliers such that each multiplier 
h G A gives rise to a corresponding bounded linear mapping T from Lp^ into Lp^ for 
1 < p < oo and suitable complex numbers /x. In particular, the relation 

(M(Tf))(s) = h(s)(Mf)(s), Re s = - Re /i 

holds for al l / £ Lp^ D Z ^ , where M denotes the Mellin transform. 
Recently we have been concerned with multipliers for continuous linear mappings 

from Fp>/x into Fp^, where Fp^ is a certain subspace of smooth functions in LPffl. It was 
proved in [3, Theorem 3.3] that every multiplier which gives rise to a continuous linear 
mapping from LPtti into Lp^ does likewise for FPtPj, i.e. every LPjfl multiplier is an FA/i 

multiplier. However, the class of Fp^ multipliers is strictly larger. 
The definition of Rooney's class A involves a condition on h\ the derivative of h, 

and this condition can be tedious to verify if h is complicated. We have been particularly 
interested in multipliers involving products and/or quotients of gamma functions where 
the appropriate condition on h' can be checked via the asymptotics of Y and ifr = V/T. 
However, the calculations involving -0 are unnecessary. We shall obtain another criterion 
involving h, but not h\ which will guarantee that h is an FPffi multiplier and which will 
be applicable in particular to our T-function multipliers. See [4], [5] and [6] for details 
of this application, along with the necessary background. 

2. First let us establish the notation to be used. Throughout we shall assume that 
1 < p < oo and that \x is a suitable complex number. 

DEFINITION 2.1. 

(i) We denote by Lp^ the set 

(2-1) Lp^ = {/ : ll/IU < ™} 
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where 

(2-2) ||/|U = {flx-oml'dx/x}1/'. 

(ii) We denote by FPffJL the set 

(2.3) Fp^ = {/ G C°°(0,oo) : 51 / G L ^ for / = 0,1,2,...} 

where 

(2.4) (Sf)(x) = xf(x). 

For / = 0,1,2,. . . and/ G FPili9 define i/f*"(f) by 

(2.5) ^(f)=Wf\\P^ 
REMARK 2.2. 

(i) The expression || ||A/i in (2.2) defines a norm on LA/i and (LPflÀ, \\ \\Ptfl) is a 
Banach space, 

(ii) For each / = 0,1,2, . . . , the expression l/f'^if) defines a seminorm on FPtP and 
l/Q^if) defines a norm. The topology generated by the multinorm {i/f̂  } °°0 turns 
Fp^ into a Fréchet space, 

(iii) The seminorms {i/f,fl}^0 are more convenient here than the equivalent family 
of seminorms { 7f M } °°0 defined by 

which are used in [4] and elsewhere. 
(iv) Although [i is assumed to be real in [7], we can allow /i to be complex without 

any difficulty. The spaces (Lp^, || H^) and (Lp,Re^, || ||p,Re/i) are identical, so 
that there is no loss of generality in taking /i real when it is convenient. 

(v) Our set Lp^ corresponds to LP in [7]. 

DEFINITION 2.3. For suitable functions/, we define fW/, the Mellin transform of/, 
by 

(2.6) (Mf)(s) = j™jTlf{x)dx 

for suitable complex numbers s. 

THEOREM 2.4. For 1 < p < 2 andf G LptfA, !Mf exists almost everywhere on the 
line 

(2.7) R e s = - R e / z 

the integral (2.6) being interpreted in terms of mean convergence. 

PROOF. See [7] but note Remark 2.2(v). • 

DEFINITION 2.5. The set A consists of all functions h for which there exist extended 
real numbers a and /? (depending on h) with a < (3 such that 

(i) h(s) is analytic on the strip a < Re s < fi 
(ii) h(s) is bounded on every closed substrip a' < Res < /?' where 

or < « ' < / ? ' < /3 
(iii) fora < Res < /?, \h'(s)\ = 0(| I m ^ ^ a s | lms\ —• oo. 
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THEOREM 2.6. Every function h G A is an Lp^ multiplier. More precisely, for a, (3 
as in Definition 2.5, there exists a linear operator T such that 

(i) T is a bounded linear operator from LPtti into Lp^ for 1 < p < oo and a < 
- R e / i < (3 

(ii) 

(2. 8) (M(Tf))(s) = h(s)(Mf)(s) on the line Re s = - Re \i 

wheneverf G Lp^ D Z ^ , 1 < p < oo and a < — Re// < f3. 

PROOF. See [7, Theorem 1]. • 

THEOREM 2.7. Every function h G A is an FPjfJL multiplier. More precisely, for a, (3 
as in Definition 2.5, there exists a linear operator T such that 

(i) T is a continuous linear operator from Fp^p into Fp4i for 1 < p < oo and a < 
-Re/x < fi 

(ii) (2.8) holds for f G Fp^ Pi F^^ where 1 < p < oo and a < — Re/i < /?. 

PROOF. See [3, Theorem 3.3]. • 

REMARK 2.8. 

(i) In the situation of Theorems 2.6 and 2.7 we shall call T SL (Mellin) multiplier 
transform having h as its multiplier. 

(ii) Functions other than those in A can act as multipliers of continuous operators, 
simple examples being 1 and — s which correspond to the identity operator and 
6, as in (2.4), the latter only being meaningful in Fp^ rather than in Lp^. 

3. As indicated in § 1 we now introduce a class of functions which can serve as 
multipliers but which are characterised by conditions which do not involve a"growth" 
estimate of the derivative. It turns out that the growth estimate in Definition 2.5(iii) is a 
consequence of the alternative conditions, these being easier to check in certain cases. 

DEFINITION 3.1. The set $ consists of all functions h for which there exist real num­
bers a and (3 (depending on h) with a < (3 such that 

(i) h(s) is analytic on the strip a < Re s < (3 
(ii) sh{s) is bounded on every closed substrip a' < Res < (3' where a < a' < 

THEOREM 3.2. <B is a subset of A. 

PROOF. We check the conditions of Definition 2.5. Condition (/) for A follows from 
condition (/) for (B. Also boundedness of sh(s) on the strip a' < Res < (3' guarantees 
boundedness of h(s) on the same strip with \h(s)\ = 0(lms\_1) as \lms\ —-> oo within 
the strip. It remains to get a similar estimate for the derivative. For given a' and /37, let 

c = -min(/3 -f3',a' -a) 
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M = sup{ \sh(s)\ : a ' - e < R e s < / ? ' + e}. 

Note that [a' - e,/37 + e] C (a,(3) so thatMexists by Definition 3.1(H). Let p = e/2. 
Then for a7 < Res < f3f, we may write 

where Cp denotes the circle with centre s and radius p, Cp lying entirely within the strip 
a' — e < Re s < f3f + e by choice of p. By a standard estimate, we obtain 

1 M M 
\sh'(s)\ < - r-27rp + |A(j)| = - + |A(J)|. 

27T p Z P 

As noted above, \h(s)\ is bounded on a7 < Res < (3' and hence so is |s/z7(s)|. It now 
follows that \h'(s)\ — 0(| Ims|_1) as | \ms\ —> oo within the strip a7 < Res < /37. This 
verifies the third condition in Definition 2.5 and therefore completes the proof. • 

The multiplier transforms corresponding to multipliers in (B form a subset of those 
corresponding to those in Si. For instance we lose the identity transformation whose 
multiplier h, given by h(s) = 1, belongs to A but not to (B. The transforms corresponding 
to multipliers in $ can be characterised as convolution integral operators by virtue of the 
following result. 

THEOREM 3.3. Let h £ *B and let a and (3 be as in Definition 3.1. Then there exists 
a function k such that 

(i) k G L\^ for all p, satisfying a < — Re \x < (3 
(ii) (Mk){s) — h(s) on the strip a < Res < f3. 

The corresponding multiplier transform T is given by 
rOO 

(3.1) (Tf)(x) = (k*f)(x) = Jo k(x/t)f(t)dt/t (f€Lp,,) 

and is a bounded linear mapping from Lp^ into itself for \ < p < oo, a < — Re/x < /3. 

PROOF. See [8, Theorem 2.35]. • 

EXAMPLE 3.4. Let us review a familiar operator in the context of the class (B. Con­
sider the multiplier 

h(s) = r ( r /+5) / r ( r /+7 +s) 

where 77 and 7 are complex numbers with Re 7 > 0. h is analytic in the half-plane 
Re s > — Re 77. Take a = — Re 77, f3 to be any real number such that (3 > a. For 
condition (ii) in Definition 3.1 we may make use of the formula [1, 1.18(6)] 

(3.2) |r(jc + ôO| ~ (2ir)l/2\y\x-l'2e-*W2 as\y\ -> 00. 

Then if we write 7 = 7i + ill2,1 = 11+ ill, s = a + ir, take —771 < a' < a < (3' < (3 
and note that (3.2) is uniform in x for x in a compact subset of R, we get 

Tirj+s) 

(3.3) s-T(r] + 7 + s) 
<(r±\ K 1772+r l^ - 1 / 2 

< ( C + T )- ; r r r 

| 7 7 2 + 7 2 + r | ^ + 7 l + a - 1 / 2 

x exp[-7r{|772+r| - 1772 +7 2 + T | } / 2 ] 
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(C a constant) and for boundedness as | r | ->oowe require 1 — 7i < 0 i.e. Re7 > 1. 
In this case the corresponding multiplier transform is the Erdélyi-Kober operator Kf1 

given by 

(3.4) (K^f)(x) = [rmr1** ^{t-xf-'r^mdt 

which has the form (3.1) with the kernel 

(3.5) k(t) = [ r (7 ) ] _ 1 ( i -0 7 ~^ o < t< i 
0 t> 1 

We deduce that, for Re 7 > 1, ^ ' 7 is a bounded linear mapping from Lp^ into itself 
whenever Re 77 > Re /i (as (3 > a was arbitrary). However, it is well-known that the 
resulting operator remains bounded under the weaker condition Re 7 > 0 (and Re 77 > 
Re [i as before). Indeed we can check that the kernel k in (3.5) belongs to L\^ under these 
conditions. Thus the set $ does not tell the whole story in the Lp^ setting, i.e. h G *B is 
sufficient to guarantee a convolution integral operator but not necessary. 

REMARK 3.5. At this stage the reader may wonder why we have introduced *B at all. 
It is true that the multiplier h in Example 3.4 belongs to A under the weaker condition 
Re 7 > 0, as can be checked via the asymptotics of the function ?/> = V / T given by 
[1, 1.18(7)]. However, although our class $ may seem to be deficient in the Lp^ setting, 
it comes into its own (suitably modified) in the FPjfi setting. It is in that setting that we 
can obtain the most elegant theory for multipliers involving products and/or quotients of 
gamma functions. Accordingly, we shall proceed to Fp^ for our subsequent discussions. 

4. When we are working in FA/i, polynomials are available to us as multipliers, 
with the polynomial P(s) = £"=0 ats1 corresponding to the continuous linear operator 
P(—6) — H"=0 cii(—S )l. We shall exploit this to the full in defining our next class of 
multipliers. 

DEFINITION 4.1. The set C consists of all functions h for which there exist extended 
real numbers a and j3 (depending on h) such that 

(i) h(s) is analytic on the strip a < Re s < (5 
(ii) for each a0 and /3o satisfying a < a0 < /Jo < (3, there exists a non-negative 

integer TV = A^(a0, /?o> h) such that 

/4 1 \ { (ao — s)~Nsh(s) is bounded on every closed substrip 
I a' < Res < (3f where a0 < a' < [3f < /30. 

REMARK 4.2. 

(i) Condition (ii) in Definition 4.1 says that if we restrict attention to ao < R e s < /3Q 
we can find a non-negative integer N such that (a0 — s)~~Nh(s) defines a multiplier 
in (B. However if we change ao and /3o, we are allowed to change N in order to 
control the growth of h. 

(ii) Instead of introducing the factor (a0
 _ s)_yv, we could equally well have intro­

duced (/?o — s)~N, with the same effect. 
Immediately we can prove 
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THEOREM 4.3. Let h G C and let a, (3 be as in Definition 4.1. Then there exists an 
operator T such that, for 1 < p < oo and a < — Re fi < (3, 

(i) T is a continuous linear operator from FPtfJl into Fp^ 
(ii) {M(Tfj){s) = h(s){Mf)(s) on the line Res = - Re /i for all f G FPifJL D F2tfA. 

PROOF. Choose a0 and (3o such that a < a0 < /?0 < (3. With N as in Definition 
4.1(ii), let 

(4.2) h0(s) = (a0 - syNh(s) («o < Re s < #>). 

By Theorem 3.3 and Remark 4.2(i), there exists a function &o such that, for all /i satisfying 
a0 < — Re/i < ô» 

(4.3) ko G Li,M and (fWit)(j) = h0(s) for Re ,s = - Re /i. 

Let 7b be the convolution integral operator generated by ko via (3.1) and let 

(4.4) T=(a0 + 6fT0 

where oto+è stands for OCQI + 6,1 being the identity operator on Fp^. Under the stated 
conditions, 7b is a continuous linear mapping from Lp^ into Lp^. Also, if/ G F ^ , a 
standard result involving the Mellin convolution * allows us to say that 

8\Tof) = S^ko * / ) = h*8if=To(6if)fori = 0 ,1,2, . . . . 

Hence To defines a continuous linear mapping from Fp^ into FpjfJL under the stated condi­
tions and the same is therefore true of T. For appropriate p and /x and for/ G F ^ D F^, 

(M(Tf))(s) = (a0 - j f (fW(r(/))(j) = (ao ~ 5 f ( ^ / : o ) W ( ^ / ) W 

= (a0 - sfho(s)(Mf)(s) = h(s){Mf)(s) 

where we have used successively (4.4), (4.3) and (4.2). Since the above argument applies 
to any strip ao < Re s < (3o where a < oco < j3o < f3, we have constructed an oper­
ator T satisfying the requirements of the theorem. (That the versions of T coming from 
different substrips agree on the intersection of the substrips is proved by an argument 
similar to that in [7, Lemma 3.2].) This completes the proof. • 

The conditions in Definition 4.1 led to the appearance of 6 and choice of ao ensured 
that ao + Ô was an invertible operator. The operator 6 itself is invertible on Fp^ iff 
Re/i ^ 0, a condition which may or may not be satisfied throughout the range a < 
— Re/i < j3, depending on the values of a and (3. Nevertheless, we can now obtain an 
equivalent characterisation of C which is easier to use in that there is no explicit mention 
of a0 and/3o. 

THEOREM 4.4. A function h belongs to the class C if and only if there exist extended 
real numbers a and (3 (depending on h) such that 

(i) h(s) is analytic on the strip a < Re s < (3 
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(ii) for each closed substrip a' < Re 5 < f3f with a < a' < (3f < (3, there exists a 
non-negative integer N such that h(s) is uniformly of order \s\N as \s\ —> 00, in 
the sense that there exist constants M and K such that 

(4.5) \s'Nh(s)\<M Vs:a'<Res<(3f and\s\> K. 

PROOF. Let h G C- Then condition (i) of the theorem is satisfied and it remains to 
check (ii). With a', j3' as stated in (ii), choose a0 and (3o : a < a0 < af < [3' < [3Q < 
(3. By Definition 4.1 (ii), there exists a positive integer N' such that (ao — s)~N sh(s) is 
bounded on the strip oc' < Re s < f3' and from this (4.5) follows easily with N — N' —\. 

Conversely, let h satisfy the conditions of Theorem 4.4. We need only check that h 
satisfies Definition 4.1(ii). Given a and (3, choose ao and J3Q : a < a0 < (3o < (3 
and consider the substrip a' < Res < (3f where ao < oc' < j3' < /?o- The quantity 
sh(s)/ (a0 — s)N+l is bounded in modulus for a ' < Res < f3f with N as in (4.5), since 
for such s satisfying \s\ > K we can use (4.5) and when \s\ < K, we use boundedness 
of a continuous function on a compact set. This leads to (4.1) with N replaced by /V + 1 
and the proof is complete. • 

We shall use Theorem 4.4 to rehabilitate the Erdélyi-Kober operator we discussed in 

§3. 

EXAMPLE 4.5. Consider again the function h(s) in Example 3.4. Let 

(4.6) Q = {zeC : R e z ^ 0 , - 1 , - 2 , . . . } . 

Then h(s) is analytic in the region corresponding to r] +s G £1 Suppose that 77—̂1 G Q. We 
can find a strip containing the line Re s — —Re\x where h{s) is analytic. Calling this strip 
a < Res < (3, we see that on any closed substrip a' < Res < (3' containing Res = 
— Re /x in its interior, there is an estimate of the form (3.3) for T(r] +s)/ T(r] +7 +s) which 
shows that its modulus behaves like | s |~ R e 7 as \s\ —» 00 in this substrip. Accordingly 
we may simply choose any integer TV such that N > — Re 7 to see that h satisfies the 
conditions of Theorem 4.4 for any 7 G C. By Theorems 4.3 and 4.4, h is the multiplier 
of an operator, called K^1 as before, which is a continuous linear mapping from Fp^ 
into Fp^ provided only that 1 < p < 00 and 77 — /1 G £2. 

For this operator we can say more. The function \j h has the same form as h with 77 
and 7 replaced by 77 +7 and —7 respectively. Thus 1 / h will be the multiplier of A^+7,_7 

which is a continuous linear mapping from Fp^ into Fp^ provided only that 1 < p < 00 
and 77+7 - / i ^ H . Combining our results, 

f if 1 < p < co, 77 — /i G Q and 77 + 7 — \i G Q then 
\ K^1 is a homeomorphism from Fp^ onto Fp^ with inverse A^+7'~7. 

This is in accord with known results [2, Chapter 3], which also hold for/7 = 1 and/? = 00 
(although our theory here has to be modified to handle these values of p.) 

https://doi.org/10.4153/CMB-1992-036-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-036-4


A CLASS OF MELON MULTIPLIERS 2 5 9 

REMARK 4.6. 

(i) Other Erdélyi-Kober operators can be handled similarly. It is worth repeating the 
point that in Example 4.5 we have made use of formula (3.2) for the T-function 
but we did not require to use a corresponding result for x/j = V/ T. When the 
multiplier h consists of products and quotients of many T-functions, the saving 
in effort becomes well worthwhile, as illustrated in [6]. 

(ii) Statement (4.7) illustrates another point. In general, a multiplier h G C will give 
rise to a homeomorphism on Fp^ provided that 1/ h also belongs to C and that 
corresponding strips overlap. We shall summarise the situation briefly in the fol­
lowing theorem. 

THEOREM 4.7. Let h be such that 
(i) h G C, with numbers a and (3 as in Theorem 4.4 

(ii) 1/ h G Cy with corresponding numbers a\ and (3\ 
(Hi) S = {s : a < Res < f3} P\ {s : a\ < Re s < (3\} is non-empty. 

Then for 1 < p < oo and —\i G S, h is the multiplier of a homeomorphism T from Fp^ 
onto Fp^. 

PROOF. This is almost immediate. • 

5. In Theorem 3.3 we saw that multipliers in *B gave rise to convolution integral 
operators, although there were convolution integral operators on Lp^ which did not arise 
in this way, such as K^1 for 0 < Re7 < 1 in Example 3.4. It turns out that we can give 
a precise characterisation of the continuous linear operators on FPtti which correspond to 
multipliers in the class C. For this, we need one further simple piece of notation. 

DEFINITION 5.1. For any a > 0, define the dilation operator Xa on Fp^ by 

(5.1) (\af)(x)=f(ax) (x>0). 

THEOREM 5.2. A function h is in the class C, with a, (3 as in Definition 4.1, if and 
only if it is the Mellin multiplier of a mapping T such that 

(i) T is a continuous linear mapping from FPjti into Fp^ for 1 < p < oo and a < 
-Re// < p 

(ii) T commutes with Xa for all a > 0. 

PROOF. Certainly if/i E C, (i) will follow from Theorem 4.3 and (ii) is easily 
checked since, under the appropriate conditions, 

(fW(A/))(j) = a~\Mf)(s) 

and a~s will commute with h(s). The reverse implication is more complicated and we 
omit details which can be found in [8, Theorem 3.24]. • 

REMARK 5.3. Condition (ii) in Theorem 5.2 is the analogue for the Mellin trans­
form of translation invariance for the Fourier transform. The theorem is an analogue of 
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results for Fourier multipliers to be found in [9], and the proof uses techniques such as 
interpolation which are also found in [91. 

This concludes our brief look at a class of multipliers which includes many of the 
Mellin multipliers which arise in common applications. 
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