
ANZIAM J. 49(2008), 451–461
doi:10.1017/S1446181108000138

PERTURBATION THEORY FOR THE LU AND QR
FACTORIZATIONS

CHI-YE WU1 and TING-ZHU HUANG ˛ 2

(Received 12 March, 2008; revised 27 April, 2008)

Abstract

In this paper we derive perturbation theorems for the LU and QR factors. Moreover,
bounds for κL (A)/κ ′L (A) and κU (A)/κ ′U (A) are given for the LU factorization of a
nonsingular matrix. By applying pivoting strategies in the LU factorization, estimates
for κL (P AQ)/κ ′L (P AQ) and κU (P AQ)/κ ′U (P AQ) are also obtained.
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1. Introduction

Let A ∈Rn×n be a nonsingular matrix, and suppose that the leading principal
submatrices of A are nonsingular. Then A has an LU factorization

A = LU, (1.1)

where the factors L and U are unit lower triangular and upper triangular matrices,
respectively; this factorization is unique (see Higham [5] for details).

Error bounds were derived by Stewart [7] for a first-order expansion of the LU
factorization of a perturbation of the identity. He further applied these results to obtain
perturbation expansions of the LU, Cholesky and QR factorizations.

Suppose that A = L H L and A + E = (L + G)H (L + G) are the Cholesky
factorizations of A and A + E , respectively. Sun [9] presented lower and upper bounds
for ‖G‖/‖L‖ in terms of ‖E‖/‖A‖. Perturbation bounds were also given for the QR
factorization of a complex m × n matrix A of rank n. Indefinite QR factorization
is a generalization of the well-known QR factorization, where Q is a unitary matrix
with respect to the given indefinite inner product matrix J . Perturbation bounds for
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the so-called “triangular” case of the indefinite QR factorization were given by Sanja
Singer and Saša Singer [6].

Chang et al. [3] gave new first-order perturbation bounds for Q1 and R in
the QR factorization for a given real m × n matrix of rank n; these bounds are
generally sharper than the equivalent results for the R factor in [7, 9], and are more
straightforward than the sharp result in [10] for the Q1 factor alone. Stewart [8]
generalized the results mentioned in [3] via a different approach. In this paper, by
applying different tools and methods from those used in [8], we derive different
perturbation results concerning the factors of LU decomposition for a given real
nonsingular n × n matrix; moreover, by a similar method, a perturbation theorem for
the QR factorization is also obtained.

Chang and Paige [2], on the other hand, studied the sensitivity of the LU
factorization; they wanted to investigate κL(A)/κ ′L(A) and κU (A)/κ ′U (A), but results
on these ratios did not appear in their earlier work. In this paper we shall fill this gap,
and also analyse the ratios of κL(P AQ)/κ ′L(P AQ) and κU (P AQ)/κ ′U (P AQ).

First-order perturbation bounds are frequently used. Dopico and Molera [4]
presented expressions for terms of any order in the series expansions of the perturbed
LU and Cholesky factors. In this paper, by using the first-order terms in the Taylor
series for the LU and QR factors of the perturbed matrix A + tG, and applying the
so-called matrix–vector equation approach, perturbation theorems for the factors are
obtained. It is notable that the conditions and results shown in this paper differ from
those in [4].

The main purpose of this paper is to establish perturbation theorems for the LU
and QR factors and to bound the ratios κL(A)/κ ′L(A) and κU (A)/κ ′U (A). Moreover,
by applying pivoting strategies in the computation, we also provide estimates for the
ratios κL(P AQ)/κ ′L(P AQ) and κU (P AQ)/κ ′U (P AQ).

2. Preliminaries

Previously, the approach that was most often taken for perturbation analyses of
factorizations was what we refer to as the “matrix equation” approach. For the LU
factorization, this involves expressing the matrix equation as a matrix–vector equation
of the form

W

[
uvec(U̇ (0))
slvec(L̇(0))

]
= vec(G). (2.1)

Since the leading (n − 1)× (n − 1) block of U is nonsingular, W is also nonsingular
and, from (2.1), [

uvec(U̇ (0))
slvec(L̇(0))

]
=W−1vec(G).

Partitioning W−1 into two blocks, it follows that

W−1
=

[
YU
YL

]
.
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Then, the condition numbers for the factors L and U , defined respectively by

κL(A)= lim
ε→0

sup
1A

{
‖1L‖F

ε‖L‖F
: A +1A = (L +1L)(U +1U ), ‖1A‖F ≤ ε‖A‖F

}
and

κU (A)= lim
ε→0

sup
1A

{
‖1U‖F

ε‖U‖F
: A +1A = (L +1L)(U +1U ), ‖1A‖F ≤ ε‖A‖F

}
,

are given by

κL(A)=
‖YL‖2‖A‖F

‖L‖F
and κU (A)=

‖YU‖2‖A‖F

‖U‖F
. (2.2)

Let Un−1 denote the leading (n − 1)× (n − 1) block of U . Then

κ ′L(A)= inf
D∈Dn

κ ′L(A, D) and κ ′U (A)= inf
D∈Dn

κ ′U (A, D),

where

κ ′L(A, D)= κ2(L D−1)
‖U−1

n−1‖2‖A‖F

‖L‖F
, κ ′U (A, D)= κ2(D

−1Ũ )
‖L−1

‖2‖A‖F

‖U‖F
,

(2.3)
with Ũ =U + (α − unn)eneT

n for some α 6= 0.
To simplify the notation in this paper, for any n × n matrix X = (xi j ) we define the

strictly lower triangular matrix and the upper triangular matrix by

slt(X)= (si j ), ut(X)= X − slt(X), where si j =

{
xi j if i > j,
0 otherwise.

Therefore

‖slt(X)‖2 ≤ ‖X‖2, ‖ut(X)‖2 ≤ 2‖X‖2.

3. Perturbation theorems for the LU factors

In this section, we present the results on how L and U change as A changes, and
give perturbation theorems for the factors L and U .

THEOREM 3.1. Let A ∈Rn×n
n have nonsingular leading k × k principal submatrices

for k = 1, . . . , n − 1, write its LU factorization as A = LU, and suppose that
1A ∈Rn×n satisfies 1A = εG. If ε is small enough so that the first n − 1 leading
principal submatrices of A + tG are nonsingular for all |t | ≤ ε, then

L̄−1 L̇(0)+ U̇ (0)Ū−1
= L̄−1ḠŪ−1, (3.1)

L̇(0)= L̄ slt(L̄−1ḠŪ−1), (3.2)

U̇ (0)= ut(L̄−1ḠŪ−1)Ū , (3.3)

where L + 1
2 L̇(0)ε = L̄, G + O(ε)= Ḡ and U + 1

2U̇ (0)ε = Ū .
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PROOF. From the results of [2], A + tG has the unique LU factorization

A + tG = L(t)U (t), |t |< ε. (3.4)

Since L(t) and U (t) are continuously differentiable for |t | ≤ ε by a standard algorithm
for LU factorization, they can be expanded as

L(t)= L(0)+ L̇(0)t + O(t2), U (t)=U (0)+ U̇ (0)t + O(t2). (3.5)

Setting t = ε, we write

L(0)= L , U (0)=U, L(ε)= L +1L , U (ε)=U +1U.

Then (3.5) can be rewritten as

L(t)= L + L̇(0)ε + O(ε2), U (t)=U + U̇ (0)ε + O(ε2). (3.6)

Combining (3.4) with (3.6), it follows that

A + εG = (L + L̇(0)ε + O(ε2))(U + U̇ (0)ε + O(ε2))

= LU + LU̇ (0)ε + L̇(0)Uε + L̇(0)U̇ (0)ε2
+ O(ε2). (3.7)

From (1.1) and (3.7), we deduce

G = LU̇ (0)+ L̇(0)U + L̇(0)U̇ (0)ε + O(ε)

= (L + 1
2 L̇(0)ε)U̇ (0)+ L̇(0)(U + 1

2U̇ (0)ε)+ O(ε). (3.8)

Multiplying by (L + 1
2 L̇(0)ε)−1 on the left and by (U + 1

2U̇ (0)ε)−1 on the right, (3.8)
becomes

(L + 1
2 L̇(0)ε)−1(G + O(ε))(U + 1

2U̇ (0)ε)−1

= U̇ (0)(U + 1
2U̇ (0)ε)−1

+ (L + 1
2 L̇(0)ε)−1 L̇(0). (3.9)

Setting

L + 1
2 L̇(0)ε = L̄, G + O(ε)= Ḡ, U + 1

2U̇ (0)ε = Ū ,

(3.9) can be rearranged to

L̄−1 L̇(0)+ U̇ (0)Ū−1
= L̄−1ḠŪ−1.

Note that L̄−1 L̇(0) is strictly lower triangular and U̇ (0)Ū−1 is upper triangular; thus
we obtain

L̄−1 L̇(0)= slt(L̄−1ḠŪ−1), U̇ (0)Ū−1
= ut(L̄−1ḠŪ−1).
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Then

L̇(0)= L̄slt(L̄−1ḠŪ−1), U̇ (0)= ut(L̄−1ḠŪ−1)Ū . 2

Following a different route, Chang and Paige [2] established the equations

L−1 L̇(0)+ U̇ (0)Ũ−1
= L−1GŨ−1,

L̇(0)= Lslt(L−1GŨ−1),

U̇ (0)= ut(L−1GŨ−1)Ũ ,

with Ũ =U + (α − unn)eneT
n for some α 6= 0. The above equations are clearly

analogous in form to those in Theorem 3.1.

THEOREM 3.2. Under the same conditions as in Theorem 3.1, further suppose that

1
2‖L

−1 L̇(0)‖2ε < 1 and 1
2‖U

−1U̇ (0)‖2ε < 1.

Then

‖L̇(0)‖2
‖L‖2

≤
φ + O(ε)

1− 1
2 (κ2(L)+ 1)φε

, (3.10)

‖U̇ (0)‖2
‖U‖2

≤
2‖U−1

‖2‖L−1
‖2‖G‖2 + O(ε)

1− (κ2(U )+ 1)‖L−1‖2‖G‖2‖U̇ (0)‖2‖U−1‖2ε
(3.11)

where φ = ‖L−1
‖2‖G‖2‖U−1

‖2.

PROOF. From the assumptions we obtain

(L + 1
2 L̇(0)ε)−1

= (I + 1
2 L−1 L̇(0)ε)−1L−1

= (I − 1
2 L−1 L̇(0)ε + O(ε2))L−1, (3.12)

(U + 1
2U̇ (0)ε)−1

= (I + 1
2U−1U̇ (0)ε)−1U−1

= (I − 1
2U−1U̇ (0)ε + O(ε2))U−1. (3.13)

It follows from (3.12) and (3.13) that

L̄−1ḠŪ−1

= (L + 1
2 L̇(0)ε)−1(G + O(ε))(U + 1

2U̇ (0)ε)−1

= (I − 1
2 L−1 L̇(0)ε + O(ε2))L−1(G + O(ε))(I − 1

2U−1U̇ (0)ε + O(ε2))U−1

= (L−1G − 1
2 L−1 L̇(0)L−1Gε + O(ε))(I − 1

2U−1U̇ (0)ε + O(ε2))U−1

= L−1GU−1
−

1
2 L−1GU−1U̇ (0)U−1ε − 1

2 L−1 L̇(0)L−1GU−1ε + O(ε).

(3.14)
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Taking the 2-norm of (3.2) and (3.14) gives

‖L̇(0)‖2 ≤ ‖L̄‖2‖L̄−1ḠŪ−1
‖2

≤ (‖L‖2 + 1
2‖L̇(0)‖2ε)(φ +

1
2φ‖U̇ (0)‖2‖U

−1
‖2ε

+
1
2‖L

−1
‖2‖L̇(0)‖2φε + O(ε))

= (‖L‖2 + 1
2‖L̇(0)‖2ε)(φ +

1
2‖L

−1
‖2‖L̇(0)‖2φε + O(ε))

= κ2(L)‖G‖2‖U
−1
‖2 +

1
2κ2(L)‖L̇(0)‖2φε

+
1
2‖L̇(0)‖2φε + O(ε).

Thus we have (3.10)
On the other hand, taking the 2-norm of (3.3) and (3.14) gives

‖U̇ (0)‖2 ≤ 2‖Ū‖2‖L̄−1ḠŪ−1
‖2

≤ 2(‖U‖2 + 1
2‖U̇ (0)‖2ε)(φ +

1
2φ‖U̇ (0)‖2‖U

−1
‖2ε + O(ε))

= 2κ2(U )‖L
−1
‖2‖G‖2 + κ2(U )‖L

−1
‖2‖G‖2‖U̇ (0)‖2‖U−1

‖2ε

+ ‖L−1
‖2‖G‖2‖U̇ (0)‖2‖U−1

‖2ε + O(ε).

Thus we have (3.11). 2

4. Bounds for κL(A)/κ ′
L(A) and κU (A)/κ ′

U (A)

Based on the definitions of κL(A) and κU (A) and the results in [7] on perturbation
of the LU factorization, we obtain

κL(A) ≤ ‖L
−1
‖2‖U

−1
‖2‖A‖F ,

κU (A) ≤ ‖L
−1
‖2‖U

−1
‖2‖A‖F , (4.1)

with ‖1A‖F ≤ ε‖A‖F . Since κL(A) and κU (A) are the condition numbers for the
factors L and U , from the definitions of κ ′L(A) and κ ′U (A) we find that

κL(A)≤ κ
′

L(A), κU (A)≤ κ
′

U (A).

In the section, we give bounds for the ratios κL(A)/κ ′L(A) and κU (A)/κ ′U (A).

THEOREM 4.1. Under the same conditions as in Theorem 3.1, further suppose that

‖L−1GU−1
‖2ε ≤

1
4

and ‖1A‖F ≤ ε‖A‖F . Then

1

κ2(L D−1)
≤
κL(A)

κ ′L(A)
≤

‖L−1
‖2‖L‖F‖U−1

‖2

infD∈Dn κ2(L D−1)‖U−1
n−1‖2

,

1

κ2(D−1Ũ )
≤
κU (A)

κ ′U (A)
≤
‖U−1

‖2‖U‖F

infD∈Dn κ2(D−1Ũ )
.

(4.2)
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PROOF. From the assumptions we obtain (4.1). The results of [2] then imply that

‖YL(A)‖2 ≥ ‖U
−1
n−1‖2, ‖YU (A)‖2 ≥ ‖L

−1
‖2. (4.3)

Combining (4.3) with (2.2) gives

κL(A)≥
‖U−1

n−1‖2‖A‖F

‖L‖F
, κU (A)≥

‖L−1
‖2‖A‖F

‖U‖F
. (4.4)

From the definitions of κ ′L(A) and κ ′U (A), we have

κ ′L(A)≤ κ2(L D−1)
‖U−1

n−1‖2‖A‖F

‖L‖F
, κ ′U (A)≤ κ2(D

−1Ũ )
‖L−1

‖2‖A‖F

‖U‖F
. (4.5)

Then, by combining (4.4) and (4.5),

κL(A)

κ ′L(A)
≥

((‖U−1
n−1‖2‖A‖F )/‖L‖F )

κ2(L D−1)((‖U−1
n−1‖2‖A‖F )/‖L‖F )

=
1

κ2(L D−1)
,

κU (A)

κ ′U (A)
≥

((‖L−1
‖2‖A‖F )/‖U‖F )

κ2(D−1Ũ )((‖L−1‖2‖A‖F )/‖U‖F )
=

1

κ2(D−1Ũ )
.

From (4.1) and the definitions of κ ′L(A) and κ ′U (A), we conclude that

κL(A)

κ ′L(A)
≤

‖L−1
‖2‖U−1

‖2‖A‖F

infD∈Dn κ2(L D−1)((‖U−1
n−1‖2‖A‖F )/‖L‖F )

=
‖L−1

‖2‖L‖F‖U−1
‖2

infD∈Dn κ2(L D−1)‖U−1
n−1‖2

,

κU (A)

κ ′U (A)
≤

‖L−1
‖2‖U−1

‖2‖A‖F

infD∈Dn κ2(D−1Ũ )((‖L−1‖2‖A‖F )/‖U‖F )

=
‖U−1

‖2‖U‖F

infD∈Dn κ2(D−1Ũ )
. 2

Based on the results of Theorem 3.1, we can also obtain bounds for κL(A)/κ ′L(A)
and κU (A)/κ ′U (A). However, here they become κL̄(A)/κ

′

L̄
(A) and κŪ (A)/κ

′

Ū
(A),

respectively, where

L + 1
2 L̇(0)ε = L̄, G + O(ε)= Ḡ and U + 1

2U̇ (0)ε = Ū .

In the future, we would like to investigate these quantities; but we omit the analysis
from this paper.

It is well known that standard algorithms for LU factorization without pivoting
are not numerically stable. Therefore, it is possible that the application of pivoting

https://doi.org/10.1017/S1446181108000138 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000138


458 C.-Y. Wu and T.-Z. Huang [8]

strategies in the computation will cause ‖U−1
n−1‖2/‖L‖F to become larger. We

cannot, however, say whether the condition number κL(P AQ) is larger or smaller
than κL(A). Moreover, upon applying partial pivoting (with Q = I ), we cannot tell
whether κU (P A) is larger or smaller than κU (A). Nevertheless, using complete
pivoting strategies in the computation can lead to significant improvements in
κU (P AQ) and κU (A). Thus it is necessary that the bounds on κL(P AQ)/κ ′L(P AQ)
and κU (P AQ)/κ ′U (P AQ) are further studied; we provide some details in the
next theorem.

THEOREM 4.2. If the same conditions hold as in Theorem 4.1, then

6
√

2n(n + 1)(4n + 6n − 1)
≤
κL(P AQ)

κ ′L(P AQ)
≤
‖L−1

‖2‖U−1
‖2‖L‖F

‖U−1
n−1‖2

,

1

κ2(Ũ )
≤
κU (P AQ)

κ ′U (P AQ)
≤ ‖U−1

‖2‖U‖F ,

(4.6)

where P and Q are permutation matrices.

PROOF. With no loss of generality, we apply partial pivoting strategies (with Q = I )
in the computation. By [5, Lemma 8.6], we have |li j | ≤ 1 and |(L−1)i j | ≤ 2i− j−1 for
all i > j . Thus

κ2(L)≤ κF (L)≤

√
2n(n + 1)(4n + 6n − 1)

6
. (4.7)

Setting D = I and combining (4.4) and (4.5) with (4.7), we obtain

κL(P AQ)

κ ′L(P AQ)
≥

6
√

2n(n + 1)(4n + 6n − 1)
.

Then, from (4.4),

‖U−1
n−1‖2‖A‖F

‖L‖F
≤ κL(P AQ)≤ κ ′L(P AQ). (4.8)

From (4.1) and (4.8), it follows that

κL(P AQ)

κ ′L(P AQ)
≤
‖L−1

‖2‖U−1
‖2‖A‖F

((‖U−1
n−1‖2‖A‖F )/‖L‖F )

=
‖L−1

‖2‖U−1
‖2‖L‖F

‖U−1
n−1‖2

.

On the other hand, (4.4) and (4.5) together give

κU (P AQ)

κ ′U (P AQ)
≥

1

κ2(Ũ )
.

Then, from (4.4),

‖L−1
‖2‖A‖F

‖U‖F
≤ κU (P AQ)≤ κ ′U (P AQ). (4.9)
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Finally, from (4.1) and (4.9), it follows that

κU (P AQ)

κ ′U (P AQ)
≤
‖L−1

‖2‖U−1
‖2‖A‖F

((‖L−1‖2‖A‖F )/‖U‖F )
= ‖U−1

‖2‖U‖F . 2

5. Perturbation theorem for the Q R factors

It is well known that A + tG has a unique QR factorization with ‖A−1
‖2‖G‖2ε

< 1 [9]. In this section, we present results on how Q and R change as A changes, and
prove a perturbation theorem for the QR factors.

THEOREM 5.1. Let A ∈Rn×n be nonsingular, and let 1A ∈Rn×n satisfy 1A = εG
and

‖A−1
‖2‖G‖2ε < 1.

Suppose that

1
2‖Q̇(0)‖2ε < 1 and 1

2‖R
−1 Ṙ(0)ε‖2 < 1.

Then

‖Ṙ(0)‖2
‖R‖2

≤
‖G‖2 + (1+

√
2)( 1

2‖G‖2‖A−1
‖2 ε + κ2(A))‖ Ȧ(0)‖F + O(ε)

‖A‖2 − 1
2 (1+

√
2)κ2(A)‖ Ȧ(0)‖F ε

,

‖Q̇(0)‖2 ≤
‖G‖2‖A−1

‖2 +
√

2( 1
2‖G‖2‖A−1

‖
2
2 ε + ‖A−1

‖2)κ2(A)‖ Ȧ(0)‖F + O(ε)

1− 1
2

√
2κ2(A)‖A−1‖2‖ Ȧ(0)‖F ε

.

PROOF. From the assumptions, we deduce from [9] that

A(t)= Q(t)R(t), (5.1)

where Q(t)H Q(t)= I and R(t) is an upper triangular matrix with positive diagonal
elements. Since Q(t) and R(t) are continuously differentiable for |t | ≤ ε by a standard
algorithm for QR factorization, it follows that

Q(t)= Q(0)+ Q̇(0)t + O(ε2), R(t)= R(0)+ Ṙ(0)t + O(ε2), (5.2)

where Q(0)= Q, R(0)= R, Q(ε)= Q +1Q and R(ε)= R +1R. Setting t = ε
and combining (5.1) with (5.2), we obtain

A + εG = (Q + Q̇(0)ε + O(ε2))(R + Ṙ(0)ε + O(ε2))

= Q R + Q Ṙ(0)ε + Q̇(0)Rε + Q̇(0)Ṙ(0)ε2
+ O(ε2).

Then

G = Q Ṙ(0)+ Q̇(0)R + Q̇(0)Ṙ(0)ε + O(ε)

= (Q + 1
2 Q̇(0)ε)Ṙ(0)+ Q̇(0)(R + 1

2 Ṙ(0)ε)+ O(ε).
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By setting Q̄ = Q + 1
2 Q̇(0)ε, R̄ = R + 1

2 Ṙ(0)ε and Ḡ = G + O(ε), we can write

Ḡ = Q̄ Ṙ(0)+ Q̇(0)R̄, (5.3)

and hence

Ṙ(0) = Q̄−1Ḡ − Q̄−1 Q̇(0)R̄

= (Q H
−

1
2 Q H Q̇(0)Q Hε + O(ε2))(G + O(ε))

− (Q H
−

1
2 Q H Q̇(0)Q Hε + O(ε2))Q̇(0)(R + 1

2 Ṙ(0)ε)

= Q H G − 1
2 Q H Q̇(0)Q H Gε − Q H Q̇(0)R − 1

2 Q H Q̇(0)Ṙ(0)ε + O(ε).

Taking the 2-norm gives

‖Ṙ(0)‖2 ≤ ‖G‖2 + 1
2‖Q̇(0)‖2‖G‖2ε + ‖Q̇(0)‖2‖R‖2

+
1
2‖Q̇(0)‖2‖Ṙ(0)‖2ε + O(ε). (5.4)

Rearranging (5.4) yields

‖Ṙ(0)‖2 ≤
‖G‖2 + ( 1

2‖G‖2ε + ‖R‖2)‖Q̇(0)‖2 + O(ε)

1− 1
2‖Q̇(0)‖2ε

. (5.5)

From [9, Theorem 1.5], we obtain

‖Q̇(0)‖2 ≤ ‖Q̇(0)‖F ≤ (1+
√

2)κ2(A)
‖ Ȧ(0)‖F

‖A‖2
. (5.6)

Combining (5.5) with (5.6) and using ‖R‖2 = ‖A‖2, we find that

‖Ṙ(0)‖2
‖R‖2

≤
‖G‖2 + (1+

√
2)( 1

2‖G‖2‖A−1
‖2ε + κ2(A))‖ Ȧ(0)‖F + O(ε)

‖A‖2 − ((1+
√

2)/2)κ2(A)‖ Ȧ(0)‖Fε
.

On the other hand, we have from (5.3) that

Q̇(0) = Ḡ R̄−1
− Q̄ Ṙ(0)R̄−1

= (G + O(ε))(R−1
−

1
2 R−1 Ṙ(0)R−1ε + O(ε2))

− (Q + 1
2 Q̇(0)ε)Ṙ(0)(R−1

−
1
2 R−1 Ṙ(0)R−1ε + O(ε2))

= G R−1
−

1
2 G R−1 Ṙ(0)R−1ε − Q Ṙ(0)R−1

−
1
2 Q̇(0)Ṙ(0)R−1ε + O(ε).

Taking the 2-norm and rearranging yields

‖Q̇(0)‖2 ≤
‖G‖2‖R−1

‖2 + (
1
2‖G‖2‖R

−1
‖

2
2ε + ‖R

−1
‖2)‖Ṙ(0)‖2 + O(ε)

1− 1
2‖Ṙ(0)‖2‖R

−1‖2ε
. (5.7)

Similarly,
‖Ṙ(0)‖2 ≤ ‖Ṙ(0)‖F ≤

√
2κ2(A)‖ Ȧ(0)‖F (5.8)
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from [9, Theorem 1.5]. Combining (5.7) with (5.8) and using ‖R−1
‖2 = ‖A−1

‖2, we
then obtain

‖Q̇(0)‖2

≤
‖G‖2‖A−1

‖2 +
√

2( 1
2‖G‖2‖A−1

‖
2
2ε + ‖A−1

‖2)κ2(A)‖ Ȧ(0)‖F + O(ε)

1− (
√

2/2)κ2(A)‖A−1‖2‖ Ȧ(0)‖Fε
. 2
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