
Canad. Math. Bull. Vol. 51 (3), 2008 pp. 337–347

Differences between Perfect Powers

Michael A. Bennett

Abstract. We apply the hypergeometric method of Thue and Siegel to prove that if a and b are positive

integers, then the inequality 0 < |ax − by | < 1
4

max{ax/2, by/2} has at most a single solution in

positive integers x and y. This essentially sharpens a classic result of LeVeque.

1 Introduction

In 1950, LeVeque [10] proved, given fixed positive integers a and b, that the Dio-
phantine equation ax − by

= 1 has at most a single solution in positive integers x

and y, unless (a, b) = (3, 2), in which case two such solutions accrue. Nowadays, this

might be regarded as a very special case of the profound work of Mihailescu [11] on
Catalan’s conjecture, but, in fairness, one should note that [10] inspired the work of
Cassels [4, 5] which, in turn, proved crucial to Mihailescu.

If one considers more general equations of the shape

(1.1) ax − by
= c

where c > 1 is fixed, then no conclusion of even remotely comparable strength to
those in [11] is available to us. If, in analogy to LeVeque [10], we assume that a and b

are fixed, however, then equation (1.1) has at most two solutions in positive integers
(x, y) (see [2] and earlier work of Herschfeld [7] and Pillai [12–15]). Recently, this
result has been extended to equations of the shape |ax ± by | = c by Scott and Styer
[17].

The goal of this paper is a broad generalization of the main theorem of [10], where,
instead of a Diophantine equation, we consider a corresponding Diophantine in-
equality.

Theorem 1.1 Let a and b be positive integers. Then there exists at most one pair of

positive integers (x, y) for which

(1.2) 0 < |ax − by| <
1

4
max{ax/2, by/2}.

It should be noted that lower bounds for linear forms in logarithms may be used
to show that there are in fact no solutions whatsoever to (1.2), provided x ≥ x0(a, b)
(see Ellison [6]; more recent work of Laurent, Mignotte and Nesterenko [9] may be

used to sharpen this result), which leads to an alternative proof of Theorem 1.1, for
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sufficiently large a and b. Our proof, in contrast, will rely upon the hypergeometric
method of Thue–Siegel which, to our knowledge, has not been applied previously in

this context.

Theorem 1.1 leads rather easily to a sharpening of the results of [2,17]; we will not
undertake this here.

2 Elementary Preliminaries

We will suppose, here and henceforth, that a and b are positive integers, and that
(x1, y1) and (x2, y2) are two solutions in positive integers to inequality (1.2) with,

say, x2 > x1. Without loss of generality, we may assume that neither a nor b is a
perfect power. Let us write

(2.1) axi − byi
= ci,

where, by symmetry, we may assume that c1 > 0. For future use, it will prove conve-
nient to note that

(2.2) min{axi , byi} >
15

16
max{axi , byi}.

To see this, observe that the inequality min{axi , byi} ≤ 15
16

max{axi , byi} implies

|ci | ≥
1

16
max{axi , byi},

whence from (1.2), 1
16

max{axi , byi} < 1
4

max{axi , byi}1/2, and so max{axi , byi} <
16, contradicting (1.2) and the fact that |ci | ≥ 1.

Next, let us show that necessarily xi and yi are coprime. If we suppose

gcd(xi , yi) = d > 1

and write xi = x0 d, yi = y0 d, then, from (2.1) and the fact that axi 6= byi (whereby
|ax0 − by0 | ≥ 1), we have

|ci | ≥ d min{ax0(d−1), by0(d−1)} = d min{axi , byi}(d−1)/d,

and so d min{axi , byi}(d−1)/d < 1
4

max{axi , byi}1/2. Applying inequality (2.2), it fol-

lows that d min{axi , byi}(d−1)/d < 1/
√

15 min{axi , byi}1/2, whereby

min{axi , byi} 1
2
− 1

d <
1

d
√

15
,

contradicting d ≥ 2.
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3 A Gap Principle

As is rather standard when counting solutions to Diophantine equations or inequali-
ties, we will require a result which guarantees that the putative solutions (x1, y1) and
(x2, y2) to (1.2) are of very different size. To derive this, we will begin with equation

(2.1) which, after dividing by byi becomes axi b−yi − 1 = cib
−yi . Examination of the

Maclaurin series for ez thus shows that

t|x1 log a − y1 log b| < c1 b−y1 and |x2 log a − y2 log b| < 2 |c2| b−y2

(recall that c1 > 0). Thus

(3.1)

∣

∣

∣

∣

log b

log a
− xi

yi

∣

∣

∣

∣

<
2i−1|ci|

yibyi log a
,

whereby we may conclude that xi/yi is a convergent in the simple continued fraction

expansion to log b/log a, provided, say,

(3.2)
byi log a

|ci| yi

> 4 ≥ 2i.

Now, from (1.2) and (2.2), we have that

byi log a

|ci| yi

>

√
15 byi/2 log a

yi

.

If a = 2, then b ≥ 3 and hence byi/2/yi ≥ 3/2, while, if a ≥ 3, byi/2/yi ≥ 2
√

2/3. In
both cases inequality (3.2) holds.

It follows, therefore, that xi/yi is a convergent in the simple continued fraction

expansion to log b/log a for both i = 1 and i = 2. On the other hand, if pn/qn is the
n-th such convergent, then

(3.3)

∣

∣

∣

∣

log b

log a
− pn

qn

∣

∣

∣

∣

>
1

(an+1 + 2) q2
n

,

where an+1 is the (n + 1)-st partial quotient to log b/log a (see [8]). Since

gcd(x1, y1) = gcd(x2, y2) = 1,

it follows, if x1/y1 = pr/qr and x2/y2 = ps/qs, that x1 = pr, y1 = qr, x2 = ps, and
y2 = qs. Combining (3.1) and (3.3) thus yields

ar+1 >
by1 log a

c1 y1
− 2,

and, since ps ≥ pr+1 > ar+1 pr,

(3.4) x2 >

(

by1 log a

c1 y1
− 2

)

x1.
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From (1.2) and (2.2), we thus have that

(3.5) x2 >
(

√
15 by1/2 log a

y1
− 2

)

x1.

Similarly, we obtain the inequality

(3.6) as+1 >
by2 log a

2|c2|y2
− 2 >

√
15bqs/2 log a

2qs
− 2.

4 Some Useful Polynomials

Our main tool in proving Theorem 1.1 will be (off-diagonal) Padé approximants to
binomial functions of the shape (1 − z)k. We will generate these as in [1] (see also
[3]). Let A, B and C be positive integers and define

PA,B,C (z) =

(A + B + C + 1)!

A! B! C!

∫ 1

0

uA(1 − u)B(z − u)C du,(4.1)

QA,B,C (z) =

(−1)C (A + B + C + 1)!

A! B! C!

∫ 1

0

uB(1 − u)C (1 − u + zu)A du,

EA,B,C (z) =

(A + B + C + 1)!

A! B! C!

∫ 1

0

uA(1 − u)C (1 − zu)B du.

Arguing as in [1, §2], we find that

(4.2) PA,B,C (z) − (1 − z)B+C+1QA,B,C (z) = zA+C+1EA,B,C (z).

It is worth observing that if A = C , then PA,B,C (z) and QA,B,C (z) correspond to the
diagonal Padé approximants to (1− z)B+C+1 with error term EA,B,C (z). The following
results are given in [1, 3].

Lemma 4.1 The expressions PA,B,C (z), QA,B,C (z), and EA,B,C (z) satisfy

PA,B,C (z) =

C
∑

r=0

(

A + B + C + 1

r

)(

A + C − r

A

)

(−z)r ,

QA,B,C (z) = (−1)C

A
∑

r=0

(

A + C − r

C

)(

B + r

r

)

zr,

EA,B,C (z) =

B
∑

r=0

(

A + r

r

)(

A + B + C + 1

A + C + r + 1

)

(−z)r .

Lemma 4.2 There is a non-zero integer D = D(A, B) for which

PA,B,A(z)QA+1,B−1,A+1(z) − QA,B,A(z)PA+1,B−1,A+1(z) = Dz2A+1.

In summary, Lemma 4.1 implies that PA,B,C (z), QA,B,C (z) and EA,B,C (z) are poly-
nomials in z with integer coefficients, while Lemma 4.2 ensures that

(PA,B,A(z), PA+1,B−1,A+1(z)) and (QA,B,A(z), QA+1,B−1,A+1(z))

are pairs of relatively prime polynomials.
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5 Bounding the Approximants

For our purposes, we will need to find reasonably sharp upper bounds on the ap-
proximating polynomials defined in the previous section.

Lemma 5.1 If n = m − δ for δ ∈ {0, 1} and 0 < z < 1/2, then

|Pn(z)| <
4
√

2

3π
· 4m and |En(z)| <

4

3
√

2π
· 16m.

Proof We take A = C = n = m − δ and B = 3m − n − 1 = 2m + δ − 1 and begin
by noting that a routine application of Stirling’s formula yields the inequality

(4m)!

(m!)2(2m)!
<

1√
2πm

· 64m,

valid for all positive integers m. It follows from (4.1), if we define

u1 =

1

8

(

3z + 2 +
√

4 − 4z + 9z2
)

and P(z) = u1 (1 − u1)2 (z − u1),

that

|Pn(z)| <

√
2

8δ π
· 64m|P(z)|m−1

∣

∣

∣

∫ 1

0

u1−δ(1 − u)1+δ(z − u)1−δdu
∣

∣

∣
.

Via calculus, it is easy to show that |P(z)| < 1/16, for 0 < z < 1/2. Also

∣

∣

∣

∫ 1

0

u(1 − u)(z − u) du
∣

∣

∣
=

1

12
− z

6
<

1

12
and

∫ 1

0

(1 − u)2 du =

1

3
,

and hence the bound for |Pn(z)| follows.
Similarly, if we define

u2 =

1

8z

(

3z + 2 −
√

4 − 4z + 9z2
)

and E(z) = u2(1 − u2)(1 − zu2)2,

then

|En(z)| <

√
2

8δ π
· 64m|E(z)|m−1

∣

∣

∣

∫ 1

0

u1−δ(1 − u)1−δ(1 − zu)1+δdu
∣

∣

∣
.

Once again, it is easy to show that |E(z)| < 1/4, for 0 < z < 1/2, and that

∣

∣

∣

∫ 1

0

u(1 − u)(1 − zu) du
∣

∣

∣
=

1

6
− z

12
<

1

6

and
∫ 1

0

(1 − zu)2 du = 1 − z +
z2

3
< 1,

which leads to the desired result.
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Lemma 5.1 provides us with archimedean bounds for our approximants. Regard-
ing non-archimedean information, let us define

G(n) = gcd
r∈{0,1,...,n}

((

2n − r

n

)(

3m − n − 1 + r

r

))

.

If we take n = m or m − 1, it follows from [1, Lemma 7] that

lim
m→∞

1

m
log G(n) =

π

2
− 3 log 2,

and hence there exists a constant c such that, for n = m or m − 1, and m ≥ 1,

G(n) > c · 1.663m.

For our purposes, we will have need of a completely explicit result along these lines;
the proof of this follows arguments sketched in [1, p. 200] and relies upon Chebyshev-
type estimates for primes in intervals.

Proposition 5.2 If m is a positive integer and n = m or m − 1, then

G(n) > 0.00279 · 1.5498m.

We note that we could avoid use of this proposition if we were prepared to treat

certain “small” cases of Theorem 1.1 via lower bounds for linear forms in logarithms.

6 The Proof of Theorem 1.1

To proceed with the proof of Theorem 1.1, let us begin by writing x2 = 3x1m +α and
y2 = 3y1m ′ + β, where 0 ≤ α < 3x1 and 0 ≤ β < 3y1, so that c2 = a3x1mM1 −
b3y1m ′

M2, with M1 = aα and M2 = bβ . We claim that m ′ ≥ m. If not, then

ax2 − by2 ≥ a3x1m2 · a3x1+α − b3y1m ′ · bβ > a3x1m ′ · a3x1 − b3y1m ′ · b3y1

and so
ax2 − by2 > b3y1

(

(ax1 )3m ′ − (by1 )3m ′)

.

It follows that either m ′
= 0 (so that 0 ≤ y2 < 3y1, contradicting the combination

of (2.2) and (3.5)) or that 3m ′ ≥ 3. In the latter case, we have

(ax1 )3m ′ − (by1 )3m ′

> c1 · 3m ′ · (by1 )3m ′−1

whence c2 = ax2 − by2 > c1 · 3m ′ · (by1 )3m ′+1 > by2 , a contradiction. It follows that
we may write

(6.1) a3x1mM1 − b3y1mM3 = c2,

with M3 = bβ+3y1(m ′−m).
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We take n = m or m − 1. Here and subsequently, let A = C = n, B = 3m − n − 1
and write, suppressing various dependencies,

Pn(z) = Pn,3m−n−1,n(z), Qn(z) = Qn,3m−n−1,n(z), En(z) = En,3m−n−1,n(z).

Fixing once and for all z = z0 = c1/ax1 and substituting this into (4.2), we find

that

(6.2) a3x1mP − b3y1mQ = E,

where

P =

1

G(n)
ax1nPn(z0), Q =

1

G(n)
ax1nQn(z0), E =

1

G(n)
(ax1 )3m−n−1c2n+1

1 En(z0).

It follows that P, Q and E are all integers. Multiplying (6.1) by P and (6.2) by M1, we

deduce the inequality b3y1m|M3P−M1Q| ≤ |c2||P|+ |E|M1. We claim that for at least
one of n = m or n = m − 1, say n = m − δ, we have M3P 6= M1Q. Indeed, if this
fails to be the case, then M3Pm−1(z0) = M1Qm−1(z0) and M3Pm(z0) = M1Qm(z0),
whereby Pm−1(z0)Qm(z0) = Qm−1(z0)Pm(z0), contradicting Lemma 4.2. For this

n = m − δ, we therefore have

(6.3) b3y1m ≤ |c2||P| + |E|M1.

To proceed, we will show that each of |P| and |E| is not too large, whereby we may
employ (6.3) to obtain a (typically contradictory) lower bound on M1.

Let us begin by showing that

(6.4) b3y1m > 31|c2||P|.

We will first assume by1 ≥ 86. From (3.4) and (3.5), this enables us to suppose that

(6.5) x2 ≥ 43x1.

Applying Lemma 5.1 and the trivial inequality G(n) ≥ 1, we have

|P| < ax1(m−δ) 4
√

2

3π
· 4m

and hence
b3y1m

|c2||P|
>

3π√
2

( b3y1

4ax1

)m

max{ax2 , by2}−1/2.

Since

m =

x2 − α

3x1
,

it follows that

(6.6) m >
x2

3x1
− 1,
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and so, together with by1 > 15
16

ax1 , we have

b3y1m

|c2||P|
>

3π√
2

(

1532−14a2x1
)

x2
3x1

−1
max{ax2 , by2}−1/2,

whence

b3y1m

|c2||P|
>

8192

1125
π
√

2
(

1532−14
)

x2
3x1 a2x2/3−2x1 max{ax2 , by2}−1/2.

From (2.2) and the fact that 1532−14 > 1
5
, we thus have

b3y1m

|c2||P|
>

2048

1125
π
√

30 ·
(

a
1
2
−

6x1
x2

51/x1

) x2/3

.

Inequality (6.5) and the fact that by1 ≥ 86 (whereby ax1 ≥ 87) thus imply

(6.7) a
1
2
−

6x1
x2 < 51/x1 ,

and so
b3y1m

|c2||P|
>

2048

1125
π
√

30

which yields (6.4).
To treat the cases where by1 ≤ 85, we note that inequality (6.7) (and hence (6.4))

follows as before, from (3.4), unless we have either 16 ≤ by1 ≤ 36 and ax1
= by1 + 1,

or
(a, x1, b, y1) = (2, 6, 63, 1), (65, 1, 2, 6), (66, 1, 2, 6), (83, 1, 3, 4).

If by1 ≥ 25, then we have in each case (6.7) and hence (6.4), unless x2 ≤ 996. For
each (a, b) under consideration, we compute the initial terms in the simple continued

fraction expansion to
log a
log b

and check that in each case convergents ps/qs with x1 <

ps ≤ 996 have corresponding partial quotients as+1 violating (3.6).
To treat the cases 16 ≤ by1 ≤ 24, we argue as previously only with the trivial lower

bound upon G(n) replaced by that of Proposition 5.2. After a little work, we deduce
the inequality

b3y1m

|c2||P|
> 0.087 (0.319)

x2
3x1 ax2/6−2x1 .

In every case, this implies (6.4), unless x2 ≤ 158. Again, examining the simple con-

tinued fraction expansions to
log a
log b

for a = b + 1 and 17 ≤ b ≤ 23, and (a, b) =

(17, 2), (5, 24), we find that all convergents ps/qs with x1 < ps ≤ 158 have corre-
sponding partial quotients as+1 which contradict (3.6).

From inequalities (6.3) and (6.4), we thus have

30 b3y1m

31 |E| < M1 = aα ≤ a3x1−1.
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Since

|E| <
4

3
√

2π
G(n)−1c1−2δ

1 ax1(δ−1)(16c2
1a2x1 )m,

it follows from Proposition 5.2 that

( 1.5498b3y1

16c2
1a2x1

)m

< 112a(2+δ)x1−1c1−2δ
1 .

Now c1 =
1
4
aθx1 where 0 < θ < 1/2 and hence we have

( 1.5498 b3y1

a(2+2θ)x1

)m

< 112 · 24δ−2 a(2+δ+θ−2θδ)x1−1 < 448 a(3−θ)x1−1.

Again the fact that by1 > 15
16

ax1 yields (1.2769 a(1−2θ)x1)m < 448 a(3−θ)x1−1 and so,
since 0 < θ < 1/2 and ax1 < 16

15
by1 ,

(6.8) m < 4.1 · log(448 a3x1−1) < 25.9 + 12.3 log(by1 ) − 4.1 log a.

On the other hand, from (3.5) and (6.6),

m >

√
15 by1/2 log a

3y1
− 5

3
,

whence, with (6.8),

(6.9)
by1/2 log a

y1
< 21.4 + 9.6 log(by1 ) − 3.1 log a.

This inequality provides an immediate contradiction for suitably large by1 (and

hence for all but finitely many quadruples (a, x1, b, y1)). We will treat these excep-
tions in the next section, completing the proof of Theorem 1.1.

7 Computations

Let us first dispense with the possibility that min{x1, y1} > 1. A short computation
reveals that there are exactly 122 quadruples (a, x1, b, y1) with min{x1, y1} ≥ 2 and

(7.1) by1 < ax1 ≤ 108,

satisfying (1.2).
From inequality (6.9), since a ≥ 2, we may check that if y1 = 2, then necessarily

b ≤ 385, and, more generally

y1 = 2 b ≤ 385 y1 = 7 b ≤ 7
y1 = 3 b ≤ 72 y1 = 8 b ≤ 6

y1 = 4 b ≤ 29 y1 = 9 b ≤ 5
y1 = 5 b ≤ 16 10 ≤ y1 ≤ 15 b ≤ 3
y1 = 6 b ≤ 11 16 ≤ y1 ≤ 25 b = 2
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while, if y1 ≥ 26, we have b < 2, a contradiction. From (1.2), the inequalities in
(7.1) thus hold and it is therefore easy to check that the only quadruples satisfying

the above bounds upon y1 and b, together with (1.2), are

(a, x1, b, y1) = (13, 3, 3, 7), (56, 2, 5, 5), (15, 3, 58, 2), (2, 15, 181, 2), (2, 17, 362, 2).

To treat these remaining quadruples, in each case we begin by noting that from (6.8)
m ≤ 167. Inequality (6.6) and the fact that x1 ≤ 17 thus imply that x2 ≤ 8567.

For each of our five cases, as in the preceding section, we compute some initial terms

in the infinite simple continued fraction expansion to
log b
log a

via Maple 9.5. Since x2

and y2 are coprime, x2 is the numerator of a convergent in such an expansion, say
x2 = ps. In each case, there are fewer than 5 convergents for which x1 < ps ≤ 8567;

in no case does as+1 satisfy (3.6).
We may thus suppose min{x1, y1} = 1. Let us begin by assuming that x1 = 1. It

follows that a > by1 and hence we may replace (6.9) with the simpler

by1/2 log b < 21.4 + 96.5 log(by1 ),

which implies the inequalities

y1 = 1 b ≤ 120 y1 = 4 b ≤ 6
y1 = 2 b ≤ 20 5 ≤ y1 ≤ 7 b ≤ 3
y1 = 3 b ≤ 7 8 ≤ y1 ≤ 13 b = 2

We consider a = by1 + t where, from (1.2),

1 ≤ t <

√
1 + 64by1 + 1

32
.

Since we omit perfect powers for a and b, this leaves us with precisely 306 triples
(a, b, y1). Combining (6.8) and (6.6), we thus have that x2 = ps, y2 = qs for a

convergent ps/qs in the simple continued fraction expansion to
log b
log a

, satisfying

1 < ps < 77.1 + 24.6 log a.

A simple calculation reveals that none of these convergents have corresponding as+1

satisfying (3.6).
Finally, let us suppose that y1 = 1 (and, from the preceding work, that x1 ≥ 2). If

a = 2, then from (6.9), we have b ≤ 28913 and so, via (1.2), x1 ≤ 14. Similarly, for
larger values of a, we may conclude as follows:

a = 2 x1 ≤ 14 a = 6 x1 ≤ 4
a = 3 x1 ≤ 8 a = 7, 10 x1 ≤ 3
a = 5 x1 ≤ 5 11 ≤ a ≤ 22 x1 = 2

If a ≥ 23, we contradict x1 ≥ 2. For each pair (a, x1), we consider b = ax1 − t ,
where

1 ≤ t <
1

4
ax1/2.
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Once again, (6.8) and (6.6) imply the existence of a convergent ps/qs in the simple

continued fraction expansion to log b
log a

with x1 < ps < 12.3 · log(a3x1−1) + 3x1 − 1 and,

via (3.6), corresponding partial quotient as+1 satisfying

as+1 >

√
15 bqs/2 log a

2qs

− 2.

A short calculation with Maple 9.5 verifies that this does not occur, completing the
proof of Theorem 1.1.
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