ON REFLEXIVITY OF ALGEBRAS

MEHDI RADJABALIPOUR

For each natural number n we define \mathcal{R}_n to be the class of all weakly closed algebras \mathscr{A} of (bounded linear) operators on a separable Hilbert space H such that the lattice of invariant subspaces of $\mathcal{A}^{(n)}$ and (alg lat $\mathscr{A}^{(n)}$ are the same. (If A is an operator, $A^{(n)}$ denotes the direct sum of n copies of A; if \mathscr{A} is a collection of operators, $\mathscr{A}^{(n)} = \{A^{(n)} : A \in \mathscr{A}\}$. Also, alg lat \mathscr{A} denotes the algebra of all operators leaving all invariant subspaces of \mathscr{A} invariant.) In the first section we show that $\mathscr{R}_1 \setminus \mathscr{R}_2 \neq \emptyset$. In Section 2 we prove that every weakly closed algebra containing a maximal abelian self adjoint algebra (m.a.s.a.) is in \mathscr{R}_2 , and that $\mathscr{R}_2 \setminus \mathscr{R}_7$ $\neq \emptyset$. It is also shown that certain algebras containing a m.a.s.a. are necessarily reflexive. (Reflexive means $\mathscr{A} = alg lat \mathscr{A}$.) In Section 3 we study the invariant operator ranges of certain algebras. For instance, we show that if a weakly closed algebra \mathscr{A} contains a m.a.s.a. and if every invariant operator range of \mathscr{A} is either closed or the range of a compact operator, then \mathscr{A} is reflexive. A similar result is proved for reductive algebras. Also, it is shown that if \mathscr{A} is a weakly closed algebra containing a m.a.s.a., then $T \in alg \ lat \mathscr{A}$ if and only if T leaves every invariant operator range of \mathscr{A} invariant.

1. A classification of algebras. Throughout the paper by an algebra we mean an algebra of (bounded linear) operators defined on a separable Hilbert space H. All algebras contain the identity on H; the algebra of all operators on H is denoted by B(H).

The lattice of all invariant subspaces of a collection \mathscr{A} of operators is denoted by lat \mathscr{A} , and the same notation is used for the lattice of orthogonal projections whose ranges are elements of lat \mathscr{A} . If \mathscr{L} is any collection of subspaces (or projections), the algebra of all operators leaving all elements of \mathscr{L} invariant is denoted by alg \mathscr{L} . Obviously alg \mathscr{L} is weakly closed.

Definition 1. An algebra \mathscr{A} is called *reflexive* if $\mathscr{A} = alg lat \mathscr{A}$.

If *n* is a natural number and *A* is an operator on *H*, then $A^{(n)}$ and $H^{(n)}$ denote the direct sum of *n* copies of *A* and *H*, respectively. If \mathscr{A} is a set of operators, $\mathscr{A}^{(n)}$ denotes the set $\{A^{(n)}: A \in \mathscr{A}\}$.

LEMMA 1. ([20]) An operator A belongs to the weak closure of an algebra \mathscr{A} if and only if lat $A^{(n)} \supset \operatorname{lat} \mathscr{A}^{(n)}$ for all natural numbers n. Consequently,

Received January 15, 1980.

two weakly closed algebras \mathscr{A} and \mathscr{B} are equal if and only if $\operatorname{lat} \mathscr{A}^{(n)} = \operatorname{lat} \mathscr{B}^{(n)}$ for all n.

Let \mathscr{A} be a weakly closed algebra. In view of Lemma 1, \mathscr{A} is non-reflexive if there exists a natural number n such that $\operatorname{lat} \mathscr{A}^{(n)} \neq \operatorname{lat} \mathscr{B}^{(n)}$, where $\mathscr{B} = \operatorname{alg} \operatorname{lat} \mathscr{A}$.

Notation 1. For each positive integer n, let \mathscr{R}_n denote the class of all weakly closed algebras \mathscr{A} such that lat $\mathscr{A}^{(n)} = \operatorname{lat} \mathscr{B}^{(n)}$, where $\mathscr{B} = \operatorname{alg} \operatorname{lat} \mathscr{A}$.

Note that $\{\mathscr{R}_n\}$ is a decreasing chain, and an algebra \mathscr{A} is reflexive if and only if $\mathscr{A} \in \bigcap_n \mathscr{R}_n$.

Arveson [1] has asked whether lat $\mathscr{A}^{(2)} = \operatorname{lat} (B(H))^{(2)}$ implies $\mathscr{A} = B(H)$, where \mathscr{A} is assumed to be weakly closed. In our notation, this means that whether an operator algebra $\mathscr{A} \in \mathscr{R}_2$ with lat $\mathscr{A} = \{\{0\}, H\}$ is reflexive. The problem seems to be very difficult, and a negative answer to this problem would imply a negative answer to the transitive algebra problem. (We refer the reader to [1] or [18, page 196] for more detail.) However, with less restriction on lat \mathscr{A} , we are able to show that the answer is negative. In fact, we prove that every weakly closed algebra containing a maximal abelian self-adjoint algebra (m.a.s.a.) is of class \mathscr{R}_2 ; thus in view of [2, pages 504–509], \mathscr{R}_2 contains a non-reflexive algebra.

In the remainder of this section we show that $\mathscr{R}_1 \setminus \mathscr{R}_2 \neq \emptyset$, and in the next section we prove that $\mathscr{R}_2 \setminus \mathscr{R}_7 \neq \emptyset$. Note that \mathscr{R}_1 is the class of all weakly closed algebras.

Example 1. Let H be the direct sum of k copies of a Hilbert space K for some $k \ge 2$. Let \mathscr{B} be the algebra of all operators $((A_{ij}))$ such that $A_{ij} = 0$ for i > j and $A_{ij} \in B(K)$ for all i, j = 1, 2, ..., k. Let \mathscr{A} be the algebra consisting of all operators $((A_{ij})) \in \mathscr{B}$ such that $A_{11} = A_{22} = ... = A_{kk}$. Obviously $\mathscr{B} = alg lat \mathscr{A} \neq \mathscr{A}$. We show that $\mathscr{A} \notin \mathscr{R}_2$. Let \mathscr{M} be the set of all vectors of the form

$$\begin{pmatrix} x \\ 0 \\ 0 \\ \cdot \\ \cdot \\ 0 \\ 0 \end{pmatrix} \oplus \begin{pmatrix} y \\ x \\ 0 \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ 0 \end{pmatrix} \in H \oplus H \quad (x, y \in K).$$

It is easy to see that \mathscr{M} is an invariant subspace of $\mathscr{A}^{(2)}$ but not of $\mathscr{B}^{(2)}$.

A similar argument shows that the nonreflexive algebras of [18, Examples 9.27 and 9.28] are not in \mathcal{R}_2 .

Example 2. Let A be any operator on a finite-dimensional Hilbert space such that the algebra generated by A and I is not reflexive. Such algebras exist by a criterion due to [5], and we show that they are not in \mathscr{R}_2 . Assume the algebra \mathscr{A} generated by A and I is not reflexive and, if possible, $\mathscr{A} \in \mathscr{R}_2$. Let $B \in (\text{alg lat } \mathscr{A}) \setminus \mathscr{A}$. Then lat $(B \oplus B) \supset \text{lat}$ $(A \oplus A)$. By the Deddens-Fillmore criterion the algebra generated by $A \oplus A$ and $I \oplus I$ is reflexive and, therefore, contains $B \oplus B$. Hence \mathscr{A} contains B, a contradiction.

2. Algebras containing m.a.s.a. In this section we will show that every weakly closed algebra containing a m.a.s.a. is necessarily in \mathscr{R}_2 . Using this fact and an example of Arveson [2, page 504] we show that $\mathscr{R}_2 \setminus \mathscr{R}_7 \neq \emptyset$. We will also show that if a weakly closed algebra containing a m.a.s.a. is nonreflexive, then there exists a projection $P \in \operatorname{lat} \mathscr{A}$ such that (I - P) lat \mathscr{A} contains a nontrivial Boolean algebra.

Notation 2. Let $x \in H^{(n)}$ and $\mathscr{M} \subset H^{(n)}$. The vector x has a unique representation of the form $x_1 \oplus x_2 \oplus \ldots \oplus x_n$ with $x_i \in H$, $i = 1, 2, \ldots, n$. The vectors x_1, x_2, \ldots, x_n are called the first, the second, ..., the *n*th component of x, respectively. Similarly, the set of all *i*th components of vectors in \mathscr{M} is denoted by \mathscr{M}_i and is called the *i*th component of \mathscr{M} .

LEMMA 2. Let A be a self-adjoint operator of multiplicity 1. Let \mathscr{Q} be an invariant subspace of $A^{(n)}$ for some fixed integer $n \geq 2$. Let $i \leq n$ be a fixed positive integer. Assume the ith component of no nonzero vector of \mathscr{Q} is zero. Then $A^{(n)}|\mathscr{Q}$ and $A|\mathscr{Q}_i$ are unitarily equivalent. In particular, if \mathscr{Q}' and \mathscr{Q}'' are complementary invariant subspaces of $A^{(n)}|\mathscr{Q}$, then the closures of \mathscr{Q}_i' and \mathscr{Q}_i'' are complementary invariant subspaces of $A|\mathscr{Q}_i$. Conversely, if L and M are complementary invariant subspaces of $A|\mathscr{Q}_i$, then there exist complementary invariant subspaces \mathscr{Q}' and \mathscr{Q}'' of $A^{(n)}|\mathscr{Q}$ such that L and M are the closures of \mathscr{Q}_i' and \mathscr{Q}_i'' , respectively.

Proof. Define $C_i: \mathcal{Q} \to \overline{\mathcal{Q}}_i$ by $C_i x = x_i$. Obviously $C_i(A^{(n)}|\mathcal{Q}) = (A|\overline{\mathcal{Q}}_i)C_i.$

Since C_i is injective and has dense range, it follows that $C_i = K_i U_i$, where $U_i: \mathcal{Q} \to \overline{\mathcal{Q}}_i$ is unitary and $K_i: \overline{\mathcal{Q}}_i \to \overline{\mathcal{Q}}_i$ is a positive injective operator. Thus

$$K_i[U_i(A^{(n)}|\mathscr{Q})U_i^*] = (A|\overline{\mathscr{Q}}_i)K_i$$

and hence

 $A|\bar{\mathcal{Q}}_{i} = U_{i}(A^{(n)}|\mathcal{Q})U_{i}^{*}$ [11, page 306].

In particular, $C_i F(\delta) = E(\delta) C_i$ for all Borel sets δ , where F and E are the resolutions of the identity for $A^{(n)} | \mathcal{Q}$ and $A | \overline{\mathcal{Q}}_i$, respectively. There-

fore, $A^{(n)}|\mathcal{Q}$ is a self-adjoint operator of multiplicity 1. Now the rest of the lemma follows from the fact that C_i maps each $F(\delta)\mathcal{Q}$ densely into $E(\delta)\mathcal{Q}_i$, and that every invariant subspace of a self-adjoint operator of multiplicity 1 is the range of some spectral projection.

LEMMA 3. Let $A \in B(H)$ be a self-adjoint operator of multiplicity 1. For a fixed integer $n \geq 2$, let \mathscr{P} be an invariant subspace of $A^{(n)}$ such that no nonzero vector of \mathscr{P} has some zero component. Then $\overline{\mathscr{P}}_1 = \ldots = \overline{\mathscr{P}}_n$, and there exist closable operators G_i from \mathscr{P}_1 onto \mathscr{P}_{i+1} $(i = 1, 2, \ldots, n-1)$ such that

$$\mathscr{P} = \{ x \oplus G_1 x \oplus \ldots \oplus G_{n-1} x : x \in \mathscr{P}_1 \},\$$

the closures of G_1, \ldots, G_{n-1} are normal, and

$$\mathscr{P}_1 = \bigcap \{ \text{Domain} (\overline{G}_i) : i = 1, \ldots, n-1 \}.$$

Proof. Since $A^{(n)}|\mathscr{P}$ and $A|\overline{\mathscr{P}}_i$ are unitarily equivalent (Lemma 2), it follows that $\overline{\mathscr{P}}_1 = \ldots = \overline{\mathscr{P}}_n$, and there exists a unitary operator $V: \overline{\mathscr{P}}_1 \to \mathscr{P}$ such that

 $(A^{(n)}|\mathscr{P})V = V(A|\bar{\mathscr{P}}_1).$

Define $C_i: \mathscr{P} \to \overline{\mathscr{P}}_1$ by $C_i x = x_i (i = 1, \ldots, n)$. Observe that

 $C_i V(A|\overline{\mathscr{P}}_1) = C_i (A^{(n)}|\mathscr{P}) V = (A|\overline{\mathscr{P}}_1) C_i V.$

This implies that $C_i V$ belongs to the commutant of $A|\overline{\mathscr{P}}_1$, and thus

 $C_i V = f_i(A|\overline{\mathscr{P}}_1)$ and $(C_i V)^{-1} = g_i(A|\overline{\mathscr{P}}_1),$

where f_i and g_i are Baire functions for i = 1, 2, ..., n - 1. Thus

$$C_i(C_1)^{-1} = C_i V(C_1 V)^{-1} = f_i(A|\overline{\mathscr{P}}_1) g_1(A|\overline{\mathscr{P}}_1) \subset (f_i g_1)(A|\overline{\mathscr{P}}_1)$$

and hence $C_i(C_1)^{-1}$ has a normal closure $(f_ig_1)(A|\overline{\mathscr{P}}_1), i = 1, \ldots, n-1$. (See [7, pages 1196–1200 and Problem 3 (page 1257)].) Let

 $G_i = C_{i+1}C_1^{-1}, i = 1, 2, \dots, n-1.$

It is easy to see that

$$\mathcal{P} = \{ C_1 x \oplus \ldots \oplus C_n x : x \in \mathcal{P} \}$$
$$= \{ y \oplus G_1 y \oplus \ldots \oplus G_{n-1} y : y \in \mathcal{P}_1 \}$$

It remains to show that $\mathscr{P}_1 = \bigcap_i \text{Domain } (\bar{G}_i)$. Let

$$\mathscr{M} = \{ x \oplus \overline{G}_1 x \oplus \ldots \oplus \overline{G}_{n-1} x : x \in \bigcap_i \text{ Domain } (\overline{G}_i) \}.$$

Obviously \mathcal{M} is closed, and \mathcal{P}_1 and \mathcal{M}_1 have the same closures. Let $\mathcal{Q} = \mathcal{M} \ominus \mathcal{P}$. In view of Lemma 2, the closures of \mathcal{Q}_1 and \mathcal{P}_1 are complementary orthogonal subspaces of $\overline{\mathcal{M}}_1$, from which it follows that $\mathcal{Q}_1 = \{0\}$. Thus $\mathcal{Q} = \{0\}$ and $\mathcal{M} = \overline{\mathcal{P}}$.

The following is the key theorem.

THEOREM 1. Let $\mathscr{A} \subset B(H)$ be a weakly closed algebra containing a m.a.s.a. Let \mathscr{M} be an invariant subspace of $\mathscr{A}^{(n)}$ for some fixed integer $n \geq 2$. Let \mathscr{N} be the span of all vectors in \mathscr{M} having at least one zero component, and assume \mathscr{M} is the smallest invariant subspace of $\mathscr{A}^{(n)}$ containing $\mathscr{P} = \mathscr{M} \odot \mathscr{N}$. Let $T \in B(H)$ be such that lat $T^{(n-1)} \supset \operatorname{lat} \mathscr{A}^{(n-1)}$. Then \mathscr{N} is an invariant subspace of $\mathscr{A}^{(n)}$ and $T^{(n)}$, and

(a)
$$\overline{\mathcal{M}}_i = \overline{\mathcal{P}}_i \oplus \overline{\mathcal{N}}_i, i = 1, 2, \dots, n,$$

(b) $\overline{\mathcal{P}}_1 = \dots = \overline{\mathcal{P}}_n \text{ and } \overline{\mathcal{N}}_1 = \dots = \overline{\mathcal{N}}_n$

Moreover, for every vector $x \in \mathscr{P}$, the vector $T^{(n)}x$ is the direct sum of a vector $y \in \mathscr{P}$ and a vector z of the form

$$z = z_1 \oplus z_2 \oplus \ldots \oplus z_n \in \overline{\mathcal{N}}_1 \oplus \overline{\mathcal{N}}_2 \oplus \ldots \oplus \overline{\mathcal{N}}_n.$$

Proof. Let \mathcal{N}' be the set of all vectors $x \in \mathcal{M}$ whose first components are zero and let

$$\mathcal{N}^{\prime\prime} = \{ x \in H^{(n-1)} : 0 \oplus x \in \overline{\mathcal{N}}^{\prime} \}.$$

Obviously $\mathcal{N}' \in \operatorname{lat} \mathscr{A}^{(n)}$ and hence

$$\mathcal{N}^{\prime\prime} \in \operatorname{lat} \mathscr{A}^{(n-1)} \subset \operatorname{lat} T^{(n-1)}.$$

Thus

 $\mathcal{N}' \in \operatorname{lat} T^{(n)} \cap \operatorname{lat} \mathscr{A}^{(n)}.$

Similar arguments for other components show that

 $\mathcal{N} \in \operatorname{lat} T^{(n)} \cap \operatorname{lat} \mathscr{A}^{(n)}.$

In particular, \mathscr{P} is an invariant subspace of $A^{(n)}$, where A is a selfadjoint operator of multiplicity 1 which generates a m.a.s.a. in \mathscr{A} . Note that no nonzero vector of \mathscr{P} has some zero component. Thus, by Lemma $3, \overline{\mathscr{P}}_1 = \ldots = \overline{\mathscr{P}}_n$ and, in view of the minimality of $\mathscr{M}, \widetilde{\mathscr{M}}_1 = \ldots = \overline{\mathscr{M}}_n$.

Let $\mathcal{Q} = \mathcal{M} \ominus \mathcal{N}'$ and $\mathcal{Q}' = \mathcal{N} \ominus \mathcal{N}'$. The sets \mathcal{Q} and \mathcal{Q}' are invariant subspaces of $A^{(n)}$. Moreover, $\mathcal{Q}_1 = \mathcal{M}_1$ and $\mathcal{Q}_1' = \mathcal{N}_1$. Considering the operators $A^{(n)}|\mathcal{Q}$ and $A|\overline{\mathcal{Q}}_1$, and the orthogonal subspaces \mathcal{Q}' and \mathcal{P} , one can apply Lemma 2 to see that $\overline{\mathcal{N}}_1$ and $\overline{\mathcal{P}}_1$ are orthogonal and span $\overline{\mathcal{M}}_1$. Similar results hold for other components of \mathcal{M}, \mathcal{N} , and \mathcal{P} .

Let $x = x_1 \oplus \ldots \oplus x_n \in \mathscr{P}$. Since $\overline{\mathscr{M}}_i$ is an invariant subspace of T, it follows that $Tx_i = y_i \oplus z_i$, where $y_i \in \overline{\mathscr{P}}_i$ and $z_i \in \overline{\mathscr{N}}_i$ $(i = 1, 2, \ldots, n)$. It remains to show that $y_1 \oplus \ldots \oplus y_n \in \mathscr{P}$.

For each $B \in \text{alg lat} \mathscr{A}$, define $B^{\#} : \overline{\mathscr{P}}_1 \to \overline{\mathscr{P}}_1$ by $B^{\#}u = (I - P)Bu$, where P is the orthogonal projection from H onto $\overline{\mathcal{N}}_1$. Let $\mathscr{A}^{\#}$ be the weakly closed algebra generated by $\{B^{\#} : B \in \mathscr{A}\}$. The algebra $\mathscr{A}^{\#}$ contains the m.a.s.a. generated by the self-adjoint operator $A^{\#} = A | \mathscr{P}_1$, and $\mathscr{A}^{\#(n)}$ leaves \mathscr{P} invariant. In view of Lemma 3, \mathscr{P} is of the form

 $\{u \oplus G_1 u \oplus \ldots \oplus G_{n-1} u : u \in \mathscr{P}_1 = \bigcap_i \text{Domain } (\bar{G}_i)\}.$

Fix $0 < i \leq n - 1$ and consider the closed subspace

 $\mathcal{Q} = \{ u \oplus \overline{G}_{i}u : u \in \text{Domain } (\overline{G}_{i}) \}$

of $H^{(2)}$. Obviously \mathscr{Q} is an invariant subspace of $\mathscr{A}^{\#(2)}$. Hence $B^{\#}\bar{G}_{i}u = \bar{G}_{i}B^{\#}u$ for all $u \in \text{Domain}(\bar{G}_{i})$, and $B^{\#}$ leaves Domain (\bar{G}_{i}) invariant. In particular, every spectral subspace of the normal operator \bar{G}_{i} is an invariant subspace of $\mathscr{A}^{\#}$.

We claim T^{\sharp} commutes with \bar{G}_i . Let D be an arbitrary invariant subspace of \mathscr{A}^{\sharp} . Obviously $D \oplus \bar{\mathcal{N}}_i$ is an invariant subspace of \mathscr{A} and hence that of T. Thus D is an invariant subspace of T^{\sharp} and, therefore, lat $T^{\sharp} \supset$ lat \mathscr{A}^{\sharp} . Thus every spectral subspace of \bar{G}_i is left invariant by T^{\sharp} , and hence T^{\sharp} leaves Domain (\bar{G}_i) invariant and $T^{\sharp}\bar{G}_i u = \bar{G}_i T^{\sharp} u$ for all $u \in$ Domain (\bar{G}_i) . (See [7, pages 1258–1259].) Now since i is arbitrary, it follows that T^{\sharp} leaves \mathscr{P}_1 invariant and $T^{\sharp}G_i = G_i T^{\sharp}$, $i = 1, 2, \ldots, n - 1$. We conclude that $T^{\sharp(n)}$ leaves \mathscr{P} invariant and hence $y_1 \oplus \ldots \oplus y_n = (T^{\sharp}x_1) \oplus \ldots \oplus (T^{\sharp}x_n) \in \mathscr{P}$.

THEOREM 2. Every weakly closed algebra containing a m.a.s.a. is of class \mathscr{R}_2 .

Proof. Let \mathscr{A} be an algebra containing a m.a.s.a., and let $T \in \operatorname{alg} \operatorname{lat} \mathscr{A}$. Let \mathscr{M} be an arbitrary invariant subspace of $\mathscr{A}^{(n)}$ and let \mathscr{N} be the span of all vectors in \mathscr{M} having some zero component. Let $\mathscr{P} = \mathscr{M} \ominus \mathscr{N}$. To show that \mathscr{M} is an invariant subspace of $T^{(2)}$ it is enough, in view of Theorem 1 and its proof, to show that $T^{(2)}x \in \mathscr{M}$ for all $x \in \mathscr{P}$. Therefore, we can assume without loss of generality that \mathscr{M} is the smallest invariant subspace of $\mathscr{A}^{(2)}$ containing \mathscr{P} .

Since \mathcal{N} is the span of vectors of the form $u \oplus 0$ and $0 \oplus v$, \mathcal{N}_1 and \mathcal{N}_2 are closed and $\mathcal{N} = \mathcal{N}_1 \oplus \mathcal{N}_2$. Now, if x is an arbitrary vector in \mathcal{P} , it follows from Theorem 1 that $T^{(2)}x$ is the direct sum of vectors in \mathcal{P} and $\mathcal{N}_1 \oplus \mathcal{N}_2$. Thus $T^{(2)}x \in \mathcal{M}$ and the proof is complete.

The following example shows that $\mathscr{R}_2 \setminus \mathscr{R}_7 \neq \emptyset$.

Example 3. We show that the nonreflexive algebra containing a m.a.s.a. given by Arveson [2, pages 504-509] is in $\mathscr{R}_2 \setminus \mathscr{R}_7$. We first review the example.

Fix a function $u \in C_0^{\infty}(\mathbf{R}^3)$ such that

$$\int_{\mathbf{R}^3} u(t) \overline{u(t-x)} dt > 0$$

for all $x \in S^2$. For $x = (x_1, x_2, x_3) \in \mathbf{R}^3$, define

$$a_{1}(x) = u(x), \quad b_{1}(x) = (x_{1}^{2} + x_{2}^{2} + x_{3}^{2} - 1)u(x),$$

$$a_{2}(x) = x_{1}u(x), \quad b_{2}(x) = -2x_{1}u(x),$$

$$a_{3}(x) = x_{2}u(x), \quad b_{3}(x) = -2x_{2}u(x),$$

$$a_{4}(x) = x_{3}u(x), \quad b_{4}(x) = -2x_{3}u(x),$$

$$a_{5}(x) = x_{1}^{2}u(x), \quad b_{5}(x) = u(x),$$

$$a_{6}(x) = x_{2}^{2}u(x), \quad b_{6}(x) = u(x),$$

$$a_{7}(x) = x_{3}^{2}u(x), \quad b_{7}(x) = u(x).$$

Note that $a_1, \ldots, a_7, b_1, \ldots, b_7$ are elements of $L^2(\mathbf{R}^3)$. In [2, Proposition 2.5.5] it is shown that there exists a linear space of operators on $L^2(\mathbf{R}^3)$ denoted by $\mathscr{A}_{\min}(\Sigma)$, and an operator T such that if the elements of $L(\mathbf{R}^3)$ are viewed as multiplications, then

- (i) $L^{\infty}(\mathbf{R}^{3})\mathscr{A}_{\min}(\Sigma)L^{\infty}(\mathbf{R}^{3}) \subset \mathscr{A}_{\min}(\Sigma)$ [2, page 488],
- (ii) $b_1 \oplus \ldots \oplus b_7$ is perpendicular to $Sa_1 \oplus \ldots \oplus Sa_7$ for all $S \in \mathscr{A}_{\min}(\Sigma)$,

(iii) lat
$$T \supset \operatorname{lat} \mathscr{A}_{\min}(\Sigma)$$
,

(iv) $b_1 \oplus \ldots \oplus b_7$ is not perpendicular to $Ta_1 \oplus \ldots \oplus Ta_7$.

Let \mathscr{A} be the algebra of all operators on $L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3)$ which admit a 2 by 2 matrix representation

$$\begin{pmatrix} A & S \\ 0 & B \end{pmatrix}$$
,

where A, B belong to $L^{\infty}(\mathbb{R}^3)$ and S is in the weak closure of $\mathscr{A}_{\min}(\Sigma)$. In view of (i), \mathscr{A} is a weakly closed algebra containing the m.a.s.a. $L^{\infty}(\mathbb{R}^3) \oplus L^{\infty}(\mathbb{R}^3)$. Therefore, by Theorem 2, $\mathscr{A} \in \mathscr{R}_2$. Let

$$\widetilde{T} = \begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix}.$$

By (iii), $\tilde{T} \in \text{alg lat} \mathscr{A}$; by (ii) and (iv) the smallest invariant subspace \mathscr{M} of $\mathscr{A}^{(7)}$ containing the vector

$$\begin{pmatrix} 0\\a_1 \end{pmatrix} \oplus \ldots \oplus \begin{pmatrix} 0\\a_7 \end{pmatrix} \in [L^2(\mathbf{R}^3) \oplus L^2(\mathbf{R}^3)]^{(7)}$$

is not left invariant by $T^{(7)}$. Hence $\mathscr{A} \notin \mathscr{R}_7$.

Question 1. Does the algebra \mathscr{A} in Example 3 belong to \mathscr{R}_3 ?

Question 2. Is $\mathscr{R}_2 \neq \mathscr{R}_3$? What about \mathscr{R}_n and \mathscr{R}_{n+1} in general? Note that we have so far shown that $\mathscr{R}_1 \neq \mathscr{R}_2$ and $\mathscr{R}_2 \neq \mathscr{R}_7$.

In [18, page 197] it is asked whether the algebra generated by $A \oplus A$

is reflexive for every $A \in B(H)$. The following proposition shows that this is not true for a general algebra.

PROPOSITION 1. Let \mathscr{A} be a nonreflexive algebra in \mathscr{R}_n . Then $\mathscr{A}^{(n)}$ is not reflexive. In particular, there exists an algebra $\mathscr{A} \in \mathscr{R}_2$ such that $\mathscr{A}^{(2)}$ is not reflexive.

Proof. Assume $\mathscr{A} \in \mathscr{R}_n$ is not reflexive. Let $A \in (\text{alg lat } \mathscr{A}) \setminus \mathscr{A}$. Obviously $A^{(n)} \notin \mathscr{A}^{(n)}$. Since $\mathscr{A} \in \mathscr{R}_n$, $A^{(n)} \in \text{alg lat } \mathscr{A}^{(n)}$, which implies that $\mathscr{A}^{(n)}$ is nonreflexive. Now the algebra \mathscr{A} of Example 3 is an element of \mathscr{R}_2 and $\mathscr{A}^{(2)}$ is nonreflexive.

The following theorem is a generalization of a result of Radjavi-Rosenthal [16], [18, Theorem 9.24].

THEOREM 3. Let $\mathscr{A} \subset B(H)$ be a weakly closed algebra containing a m.a.s.a. Assume for no projection $P \in \operatorname{lat} \mathscr{A}$ the lattice

$$(I - P)$$
 lat $\mathscr{A} = \{(I - P)Q: Q \in lat \mathscr{A}\}$

contains a nontrivial Boolean algebra. Then every invariant subspace \mathcal{M} of $\mathcal{A}^{(n)}$ is spanned by invariant subspaces of the form

(*) $\{x_1 \oplus x_2 \oplus \ldots \oplus x_n : x_j \in M_j \text{ for } j \in J \text{ and } x_i = \sum_{j \in J} a_{ij} x_j \text{ for } i \notin J\},\$

where $J \subset \{1, 2, ..., n\}, \{M_j : j \in J\} \subset \text{lat} \mathcal{A}$ and the complex numbers a_{ij} are independent of $x_1, ..., x_n$. In particular, \mathcal{A} is reflexive.

Proof. We prove the theorem by induction on n. The case n = 1 is trivial. Assume every invariant subspace of $\mathscr{A}^{(k)}$ is spanned by invariant subspaces of the form (*) for all $k \leq n-1$. Let \mathscr{M} be an invariant subspace of $\mathscr{A}^{(n)}$ and let $\mathscr{Q} \subset \mathscr{M}$ be the orthogonal complement of all invariant subspaces of the form (*) included in \mathscr{M} . Assume without loss of generality that \mathscr{M} is the smallest invariant subspace of $\mathscr{A}^{(n)}$ containing \mathscr{Q} . We have to show that $\mathscr{M} = \{0\}$. Let \mathscr{N} be the span of all vectors in \mathscr{M} having some zero component. By induction assumption, \mathscr{N} is spanned by invariant subspaces of the form (*) and hence $\mathscr{Q} \subset \mathscr{P} = \mathscr{M} \ominus \mathscr{N}$. In particular, \mathscr{M} is the smallest invariant subspace of $\mathscr{A}^{(n)}$ containing \mathscr{P} . Let P be the projection from H onto $\widetilde{\mathcal{N}}_1$ and let $\mathscr{A}^{\#}$ be as in the proof of Theorem 1. Let

$$\mathscr{P} = \{ x \oplus G_1 x \oplus \ldots \oplus G_{n-1} x : x \in \mathscr{P}_1 \}$$

as in Lemma 3. We observed in the proof of Theorem 1 that $\mathscr{A}^{\#}$ leaves the spectral subspaces of each \overline{G}_i invariant, and that $D \in \operatorname{lat} \mathscr{A}^{\#}$ if and only if $D \oplus P \in \operatorname{lat} \mathscr{A}$ and $D \subset \overline{\mathscr{P}}_1$. (Note that the same notation is used for a projection and its range.) Therefore, if \mathscr{B}_i is the Boolean algebra of all spectral projections of \overline{G}_i , then

$$\mathscr{B}_i \subset (I-P)$$
 lat \mathscr{A} .

Thus \mathscr{B}_i is trivial, which implies that $G_i = \overline{G}_i$ is a multiple b_i of the identity on $\mathscr{P}_1 = \overline{\mathscr{P}}_1$. Hence

 $\mathscr{P} = \{x \oplus b_1 x \oplus \ldots \oplus b_{n-1} x : x \in \mathscr{P}_1\}.$

Since $\mathscr{Q} \subset \mathscr{P}$, it follows from the definition of \mathscr{Q} that $\mathscr{Q} = \{0\}$ and thus $\mathscr{M} = \{0\}$.

To show that \mathscr{A} is reflexive, let $T \in \text{alg lat } \mathscr{A}$. Since every invariant subspace of the form (*) is invariant under $T^{(n)}$, it follows that lat $T^{(n)} \supset \text{lat } \mathscr{A}^{(n)}$ for all *n*. Thus \mathscr{A} is reflexive and the proof is complete.

COROLLARY 1. ([16], [18]) Let \mathscr{A} be a weakly closed algebra containing a m.a.s.a. Assume lat \mathscr{A} is a chain. Then \mathscr{A} is reflexive.

Proof. If $P \in \text{lat} \mathscr{A}$, then (I - P) lat \mathscr{A} is a chain and cannot contain any nontrivial Boolean algebra.

An algebra \mathscr{A} is called *pre-reflexive* if $\mathscr{A} \cap \mathscr{A}^* = (\operatorname{lat} \mathscr{A})'$. In [2, Theorem 2.1.8] it is shown that every ultraweakly closed algebra containing a m.a.s.a. is pre-reflexive. Here we include an operator-theoretic proof of this fact for weakly closed algebras.

COROLLARY 2. Every weakly closed algebra containing a m.a.s.a. is pre-reflexive.

Proof. Let \mathscr{A} be a weakly closed algebra which contains a m.a.s.a. Obviously $\mathscr{A} \cap \mathscr{A}^* \subset (\operatorname{lat} \mathscr{A})'$. For the converse inclusion assume $T \in (\operatorname{lat} \mathscr{A})'$. Every invariant subspace of \mathscr{A} is reduced by T. We show by induction on n that lat $T^{(n)} \supset \operatorname{lat} \mathscr{A}^{(n)}$. The statement is trivially true for n = 1. Assume the statement is true for all $k \leq n - 1$. Let \mathscr{M} be an invariant subspace of $\mathscr{A}^{(n)}$. Let \mathscr{P} and \mathscr{N} be as in Theorem 1, and assume without loss of generality that \mathscr{M} is the smallest invariant subspace of $\mathscr{A}^{(n)}$ containing \mathscr{P} . (Note that $\mathscr{N} \in \operatorname{lat} T^{(n)}$ by the induction assumption.) Let $x \in \mathscr{P}$ be arbitrary. In view of Theorem 1, $Tx_i = y_i \oplus z_i, y_i \in \mathscr{P}_i$, $z_i \in \mathscr{N}_i$ $(i = 1, 2, \ldots, n)$ and $y = y_1 \oplus y_2 \oplus \ldots \oplus y_n \in \mathscr{P}$. Since \mathscr{N}_i is a reducing invariant subspace of T and $\mathscr{N}_i \perp \mathscr{P}_i$, it follows that $z_i = 0$ (for all i). Thus

 $T^{(n)}x = y \in \mathscr{P} \subset \mathscr{M}$

and hence \mathcal{M} is an invariant subspace of $T^{(n)}$.

Therefore, $T \in \mathscr{A}$ and by a similar argument $T^* \in \mathscr{A}$. The proof is complete.

COROLLARY 3. ([1]) Let $\mathscr{A} \subset B(H)$ be a weakly closed transitive algebra containing a m.a.s.a. Then $\mathscr{A} = B(H)$. (This is also a special case of Corollary 1.)

The proof follows from the following stronger corollary.

COROLLARY 4. ([17], [21]) Let \mathscr{A} be a weakly closed reductive algebra containing a m.a.s.a. Then \mathscr{A} is self-adjoint. (Note that \mathscr{A} being reductive means that every invariant subspace of \mathscr{A} is reducing.)

Proof. Observe that

 $\mathscr{A}^* \subset (\operatorname{lat} \mathscr{A})' = \mathscr{A} \cap \mathscr{A}^* \subset \mathscr{A}$

which implies that \mathscr{A} is self-adjoint.

3. Invariant operator ranges of algebras.

Definition 2. By an operator range we mean a linear manifold which is the range of a Hilbert-space operator. An *invariant* operator range of a collection \mathscr{A} of operators in an operator range which is an invariant linear manifold of \mathscr{A} .

THEOREM 4. Let $\mathscr{A} \subset B(H)$ be a weakly closed algebra of operators containing a m.a.s.a., and let $T \in B(H)$. Then $T \in alg$ lat \mathscr{A} if and only if T leaves every invariant operator range of \mathscr{A} invariant.

Proof. Let KH be an invariant operator range of \mathscr{A} , where K is an operator. Using polar decomposition, assume without loss of generality $0 \leq K \leq I$. By a result of Foias [10, page 892] there exists a positive number $\lambda < 1$ such that $\mathscr{A}E[t, 1]H \subset E[\lambda t, 1]H$ for all $t \in [0, 1]$, where E is the resolution of the identity for K. Let $T \in$ alg lat \mathscr{A} . Since the closure of $\mathscr{A}E[t, 1]H$ is an invariant subspace of \mathscr{A} and $E[t, 1]H \subset \mathscr{A}E[t, 1]H$, it follows that

 $TE[t, 1]H \subset E[\lambda t, 1]H$ for all $t \in [0, 1]$.

Let $H_i = E(\lambda^i, \lambda^{i-1}]H$, $i = 1, 2, 3, \ldots$ Then $\overline{KH} = H_1 \oplus H_2 \oplus \ldots$, and the operators $T^{\#} = T | \overline{KH} \text{ and } K^{\#} = K | \overline{KH} \text{ are respectively of the forms } ((T_{ij})), ((K_{ij}))$, where T_{ij} and K_{ij} have H_j as their domains and H_i as their ranges. Moreover, $T_{ij} = 0$ for $i \ge j + 3$ and $K_{ij} = 0$ for $i \ne j$. (Note that $\overline{KH} \in \text{lat } \mathscr{A}$ and that some H_i may be trivial.) Let $J = \{j : H_j \ne \{0\}\}$; then $\lambda^j \le K_{jj} \le \lambda^{j-1}$ for $j \in J$. Therefore,

$$\|K_{ii}^{-1}T_{ij}K_{jj}\| \leq \lambda^{-i+j-1}\|T\|$$
 for $i, j \in J, i < j+3$,

and hence $(K^{\#})^{-1}T^{\#}K^{\#}$ has a matrix representation $((K_{ii}^{-1}T_{ij}K_{jj}))$ whose entries are majorized by the entries of the numerical matrix $((c_{ij}))$, where

$$c_{ij} = \begin{cases} \lambda^{j-i-1} \|T\| & \text{if } i < j+3, \\ 0 & \text{if } i \ge j+3. \end{cases}$$

Since $((c_{ij}))$ defines a bounded operator, it follows from [13, Lemma 1] that $(K^{\#})^{-1}T^{\#}K^{\#}$ is bounded and hence $T^{\#}$ leaves the range of $K^{\#}$ invariant. This completes the proof of the theorem.

THEOREM 5. Let $\mathscr{A} \in \mathscr{R}_{n-1} \setminus \mathscr{R}_n$ for some integer $n \geq 2$. Then there exists an invariant subspace \mathscr{M} of $\mathscr{A}^{(n)}$ such that $\mathscr{M} = \mathscr{P} \oplus \mathscr{N}$, where \mathscr{N} is the span of all vectors in \mathscr{M} having some zero components, and \mathscr{M} is the smallest invariant subspace of $\mathscr{A}^{(n)}$ containing \mathscr{P} . Moreover, $\mathscr{M} \notin \text{lat } T^{(n)}$ for some $T \in \text{alg lat } \mathscr{A}$. Also, the following statements are true.

(a) The linear manifolds \mathcal{M}_i and \mathcal{N}_i are invariant operator ranges of \mathcal{A} , $i = 1, 2, \ldots, n$.

(b) If \mathscr{I} is the maximal invariant subspace of $(\text{alg lat } \mathscr{A})^{(n)}$ contained in \mathscr{M} and if $\mathscr{Q} = \mathscr{M} \ominus \mathscr{I}$, then $\mathscr{Q} \neq \{0\}$ and for all nonzero vectors $x \in \mathscr{Q}$ the components x_1, \ldots, x_n are linearly independent.

(c) If \mathscr{A} contains a m.a.s.a., then no \mathscr{M}_i is the range of a compact operator.

Proof. The existence of \mathcal{M}, \mathcal{N} and \mathcal{P} with the required properties is easy and follows from an argument similar to the one used in the proof of Theorems 1, 2 and 3.

For (a) observe that each \mathcal{M}_i (respectively \mathcal{N}_i) is the range of the operator $x \mapsto x_i$ from \mathcal{M} (resp. \mathcal{N}) onto \mathcal{M}_i (resp. \mathcal{N}_i).

Let \mathscr{I} and \mathscr{Q} be as in (b). Since $\mathscr{M} \neq \mathscr{I}$, $\mathscr{Q} \neq \{0\}$. Let $\bar{x} \in \mathscr{M}$ be such that $\sum a_i \bar{x}_i = 0$, where a_1, \ldots, a_n are complex numbers and $a_i = 1$ for some *i* which can be assumed without loss of generality to be 1. Let

$$\mathscr{S} = \{x \in \mathscr{M} : \sum a_i x_i = 0\} \text{ and}$$

 $\mathscr{S}' = \{x_2 \oplus \ldots \oplus x_n : x_1 \oplus x_2 \oplus \ldots \oplus x_n \in \mathscr{S}\}.$

It is easy to see that \mathscr{S}' is a (closed) invariant subspace of $\mathscr{A}^{(n-1)}$ and, consequently, that of (alg lat $\mathscr{A})^{(n-1)}$. So \mathscr{S} is an invariant subspace of (alg lat $\mathscr{A})^{(n)}$ which implies that $\bar{x} \in \mathscr{S} \subset \mathscr{I}$.

Finally we prove (c). Let \mathscr{I} and \mathscr{Q} be as in (b), and let $A \in \mathscr{A}$ be a self-adjoint operator of multiplicity 1. It is easy to see that $\mathscr{N} \subset \mathscr{I}$, $\mathscr{Q} \subset \mathscr{P}$ and \mathscr{Q} is a reducing invariant subspace of $A^{(n)}$. Thus, in view of Lemma 2 and its proof, $\overline{\mathscr{Q}}_1, \ldots, \overline{\mathscr{Q}}_n$ are equal spectral subspaces of A, and reduce the normal operators $C_i V : \overline{\mathscr{P}}_1 \to \overline{\mathscr{P}}_1$ of the proof of Lemma 3. Assume, if possible, that some \mathscr{M}_i is the range of a compact operator. By a reordering of the copies of $H^{(n)}$, one can assume without loss of generality that i = 1. The operator $x \mapsto x_1$ from \mathscr{M} onto \mathscr{M}_1 is compact. In particular, $C_1 V | \overline{\mathscr{Q}}_1$ is a compact normal operator. Hence the bounded normal operators $C_1 V | \overline{\mathscr{Q}}_1$ and $C_2 V | \overline{\mathscr{Q}}_1$ have a common reducing finitedimensional invariant subspace and thus the linear transformation $G_1 = (C_2 V) (C_1 V)^{-1}$ has an eigenvector in \mathscr{Q}_1 . It follows that \mathscr{Q} contains a nonzero vector x such that x_1, x_2, \ldots, x_n are not linearly independent, a contradiction.

COROLLARY 5. Let \mathscr{A} be a weakly closed algebra containing a m.a.s.a. Assume every invariant operator range of \mathscr{A} is either closed or the range of a compact operator. Then \mathscr{A} is reflexive. **Proof.** Assume, if possible, that $\mathscr{A} \in \mathscr{R}_{n-1} \setminus \mathscr{R}_n$ for some $n \geq 2$. Let \mathscr{M}, \mathscr{N} and \mathscr{P} be as in Theorem 5. Since no \mathscr{M}_i is the range of a compact operator, each \mathscr{M}_i is closed and hence, in view of Lemma 2, each \mathscr{P}_i is closed. Thus the linear transformations $G_1, G_2, \ldots, G_{n-1}$ of Lemma 3 are bounded normal operators and $G_i B^{\#} = B^{\#} G_i$ for all i and all $B \in \mathscr{A}$, where $B^{\#} = (I - P)B|\overline{\mathscr{P}}_1$ and P is the orthogonal projection with range $\overline{\mathscr{N}}_1$. Let $\lambda \in \sigma(G_1)$. Since $B^{\#}$ commutes with $G_1 - \lambda$ for all $B \in \mathscr{A}$, it follows from Lemma 2 that the operator range

 $R = \{u \oplus v : u \in \text{Range } (G_1 - \lambda) \text{ and } v \in \overline{\mathcal{N}}_1\}$

is an invariant operator range of \mathscr{A} and, hence, either Range $(G_1 - \lambda)$ is closed or $G_1 - \lambda$ is compact. Let \mathscr{Q} be as in Theorem 5. We saw in the proof of Theorem 5(c) that $\mathscr{Q}_1 (= \overline{\mathscr{Q}}_1)$ is a reducing invariant subspace of G_1 and hence $(G_1 - \lambda)|\mathscr{Q}_1$ is either compact or has a closed range for all $\lambda \in \sigma(G_1|\mathscr{Q}_1)$. In any case, G_1 has an eigenvector in \mathscr{Q}_1 which implies that \mathscr{Q} contains a nonzero vector x such that x_1, x_2, \ldots, x_n are not linearly independent, a contradiction.

Remark 1. Corollary 5 is not true for a general algebra \mathscr{A} . In Examples 1 and 2 we saw that nonreflexive algebras exist on finite-dimensional Hilbert spaces; for such algebras all invariant operator ranges are closed ranges of compact operators.

Remark 2. In view of Corollary 5, on finite-dimensional Hilbert spaces every algebra containing a m.a.s.a. is reflexive [**2**, page 484].

Definition 3. A weakly closed algebra $\mathscr{A} \subset B(H)$ is called *k*-reductive if

 $\operatorname{lat} \mathscr{A}^{(k)} = \operatorname{lat} \mathscr{A}^{*(k)};$

and is called k-transitive if

 $\operatorname{lat} \mathscr{A}^{(k)} = \operatorname{lat} [B(H)]^{(k)}.$

The definition of a k-transitive algebra first appeared in [6].

THEOREM 6. A reductive (transitive) algebra \mathscr{A} is k-reductive (k-transitive) if and only if $\mathscr{A} \in \mathscr{R}_k$. Moreover, if $\mathscr{A} \in \mathscr{R}_{n-1} \setminus \mathscr{R}_n$ is reductive and if \mathscr{M} is an invariant subspace of $\mathscr{A}^{(n)}$ not invariant under (alg lat \mathscr{A})⁽ⁿ⁾, then \mathscr{M} contains an invariant subspace \mathscr{P} of $\mathscr{A}^{(n)}$ with the following properties.

(a) \mathscr{P} contains no nontrivial reducing invariant subspace of $\mathscr{A}^{(n)}$ and the components x_1, \ldots, x_n of any nonzero vector $x \in \mathscr{P}$ are linearly independent.

(b) If $n \geq 3$, no \mathcal{P}_i is closed.

(c) If \mathscr{A} is transitive and if $\{i(1), \ldots, i(k)\}$ is a set of integers such that $1 \leq i(1) < i(2) < \ldots < i(k) \leq n$ for some positive integer k < n, then

the linear manifold

$$\mathscr{Q} = \{x_{i(1)} \oplus \ldots \oplus x_{i(k)} : x_1 \oplus \ldots \oplus x_n \in \mathscr{P}\}$$

is dense in $H^{(k)}$. In particular, if $n \ge 3$, then \mathscr{Q} is not closed. (d) If \mathscr{A} is transitive, no \mathscr{P}_{4} is the range of a compact operator.

Proof. Assume \mathscr{A} is reductive (transitive). Since every von-Neumann algebra is reflexive (Double Commutant Theorem), alg lat \mathscr{A} is the von-Neumann algebra generated by $\mathscr{A} \cup \mathscr{A}^*$. (If \mathscr{A} is transitive, then alg lat $\mathscr{A} = B(H)$). This shows that \mathscr{A} is *k*-reductive (*k*-transitive) if and only if $\mathscr{A} \in \mathscr{R}_k$. Now assume $\mathscr{A} \in \mathscr{R}_{n-1} \setminus \mathscr{R}_n$ is reductive. Note that \mathscr{M} is a non-reducing invariant subspace of $\mathscr{A}^{(n)}$ if and only if \mathscr{M} is not left invariant by (alg lat \mathscr{A})⁽ⁿ⁾.

To prove (a), let \mathscr{M} be an arbitrary non-reducing invariant subspace of $\mathscr{A}^{(n)}$. Let \mathscr{P} be the orthogonal complement of the maximal reducing invariant subspace of $\mathscr{A}^{(n)}$ contained in \mathscr{M} . In view of Theorem 5(b), \mathscr{P} is the required subspace.

For part (b) assume, if possible, that \mathscr{P}_i is closed for some *i*, which can be assumed to be 1. It follows that the operator $C_1: \mathscr{P} \to \mathscr{P}_1$ is invertible and

$$\mathscr{P} = \{ u \oplus G_1 u \oplus \ldots \oplus G_{n-1} u : u \in \mathscr{P}_1 \},\$$

where $G_i = C_{i+1}C_1^{-1}$ (i = 1, ..., n-1) are bounded linear transformations. Since each $\{u \oplus G_i u : u \in \mathscr{P}_1\}$ is a closed invariant subspace of $\mathscr{A}^{*(2)}$, $G_i T^* = T^*G_i$ (on \mathscr{P}_1) for all $T \in \mathscr{A}$ and hence \mathscr{P} is an invariant subspace of $\mathscr{A}^{*(n)}$, a contradiction.

Next let \mathscr{A} and $i(1), \ldots, i(k)$ be as in (c), and assume without loss of generality that $i(j) = j, j = 1, 2, \ldots, k$. Let

$$\mathscr{Q} = \{x_1 \oplus x_2 \oplus \ldots \oplus x_k : x_1 \oplus x_2 \oplus \ldots \oplus x_k \oplus \ldots \oplus x_n \in \mathscr{P}\}.$$

The set \mathscr{Q} is an invariant linear manifold of $\mathscr{A}^{(k)}$ and hence \mathscr{Q} is an invariant subspace of $[B(H)]^{(k)}$. Let $y_1 \oplus \ldots \oplus y_k \in H^{(k)}$ be arbitrary. Take $0 \neq x \in \mathscr{P}$. Since x_1, \ldots, x_n are linearly independent, we can define an operator B such that $Bx_i = y_i, i = 1, \ldots, k$. It follows that

$$y_1 \oplus \ldots \oplus y_k = B^{(k)}(x_1 \oplus \ldots \oplus x_k) \in \mathscr{Q}.$$

This shows that \mathscr{Q} is dense in $H^{(k)}$.

Let $n \ge 3$. If k = 1, it follows from (b) that $\mathcal{Q} = \mathcal{P}_1$ is not closed. If $k \ge 2$, it follows from (a) that $\mathcal{Q} \ne H^{(k)}$.

Finally assume \mathscr{A} is as in (d) and, if possible, \mathscr{P}_i is the range of a compact operator. Assume without loss of generality that i = n. If n = 2 and \mathscr{P}_1 is closed, then

$$\mathscr{P} = \{x \oplus Kx : x \in H\},\$$

where K is a compact operator commuting with \mathcal{A} , a contradiction [12]. Otherwise, in view of (c), the manifold

 $\mathscr{Q} = \{C_1 x \oplus \ldots \oplus C_{n-1} x : x \in \mathscr{P}\}$

is not closed, where $C_i: \mathscr{P} \to \mathscr{P}_i$ is defined by $C_i x = x_i$ (i = 1, ..., n). Let $y_1 \oplus \ldots \oplus y_{n-1} \notin \mathscr{Q}$. Let $\{x(k)\}$ be a sequence in \mathscr{P} such that $y_i = \lim C_i x(k), i = 1, 2, ..., n-1$. We claim $||C_n x(k)||$ diverges to ∞ . If not, then $\{x(k)\}$ has a subsequence converging weakly to a vector of the form $y_1 \oplus \ldots \oplus y_{n-1} \oplus y_n \in \mathscr{P}$, a contradiction.

Consider the bounded sequence

 $z(k) = x(k)/||C_n x(k)||, k = 1, 2, \ldots$

Obviously, $\lim C_t z(k) = 0$ for i = 1, 2, ..., n - 1, and there exists a subsequence $\{z(k_m)\}$ such that the sequence $\{C_n z(k_m)\}$ is (strongly) convergent (note that C_n is a compact linear transformation). But $||C_n z(k_m)|| = 1$, which implies that a nonzero vector of the form $0 \oplus \ldots \oplus 0 \oplus u$ belongs to \mathcal{P} , again a contradiction.

COROLLARY 6. ([14]) Let \mathscr{A} be a weakly closed transitive algebra. If every invariant operator range of \mathscr{A} is either closed or the range of a compact operator, then $\mathscr{A} = B(H)$.

The proof follows easily from Theorem 6. However, in Corollary 9 below, we prove a similar result for reductive algebras.

LEMMA 4. Let $\mathscr{A} \in \mathscr{R}_1 \setminus \mathscr{R}_2$ be a reductive algebra. Let \mathscr{P} be an invariant subspace of $\mathscr{A}^{(2)}$ which contains no nontrivial reducing invariant subspace of $\mathscr{A}^{(2)}$. Assume \mathscr{P}_1 is closed and let P be the projection from H onto \mathscr{P}_1 . Then the set $\{x_1 \oplus Px_2 : x_1 \oplus x_2 \in \mathscr{P}\}$ is an invariant subspace of $\mathscr{A}^{(2)}$ which contains no nontrivial reducing invariant subspace of $\mathscr{A}^{(2)}$.

Proof. Since x_1 and x_2 are linearly independent for all nonzero $x_1 \oplus x_2 \in \mathscr{P}$, it follows that $\mathscr{P} = \{x \oplus Kx : x \in \mathscr{P}_1\}$, where $K : \mathscr{P}_1 \to \mathscr{P}_2$ is a bounded operator commuting with \mathscr{A} (on \mathscr{P}_1). Thus B(I - P)K = (I - P)KB and B(PK) = (PK)B for all $B \in \mathscr{A}$ (on \mathscr{P}_1). Hence the set

 ${x + (I - P)Kx : x \in \mathscr{P}_1} \subset H$

is an invariant subspace of \mathscr{A} and consequently of \mathscr{A}^* . So

 $B^*(I-P)K = (I-P)KB^*$

(on \mathscr{P}_1) for all $B \in \mathscr{A}$. Also, the set

$$\mathscr{Q} = \{ x \oplus PKx : x \in \mathscr{P}_1 \}$$

is an invariant subspace of $\mathscr{A}^{(2)}$.

It remains to show that \mathscr{Q} contains no nontrivial reducing invariant subspace of $\mathscr{A}^{(2)}$. Let $\mathscr{S} \subset \mathscr{Q}$ be a reducing invariant subspace of $\mathscr{A}^{(2)}$.

Then

 $\mathscr{S} = \{ x \oplus PKx : x \in \mathscr{S}_1 \},\$

 $\mathscr{S}_1 \subset \mathscr{P}_1$ is closed, and

 $B^*(PK|\mathscr{S}_1) = (PK|\mathscr{S}_1)B^*$

(on \mathscr{S}_1) for all $B \in \mathscr{A}$. Hence the set $\{x \oplus Kx : x \in \mathscr{S}_1\}$ is a reducing invariant subspace of $\mathscr{A}^{(2)}$, which implies that \mathscr{S}_1 is zero. (Note that K = PK + (I - P)K.) Thus $\mathscr{S} = \{0\}$ and the proof is complete.

COROLLARY 7. Let $\mathscr{A} \in \mathscr{R}_{n-1} \setminus \mathscr{R}_n$ be a reductive algebra, and let \mathscr{P} be an invariant subspace of $\mathscr{A}^{(n)}$ which contains no nontrivial reducing invariant subspace of $\mathscr{A}^{(n)}$. Then not all \mathscr{P}_i are the ranges of compact operators. (In particular, every reductive algebra in a finite-dimensional Hilbert space is self-adjoint [4].)

Proof. Assume, if possible, that all \mathscr{P}_i are the ranges of compact operators which implies that \mathscr{P} itself is the range of a compact operator. Hence \mathscr{P} is finite-dimensional and all \mathscr{P}_i are closed. Thus n = 2 and

$$\mathscr{P} = \{x \oplus Kx : x \in \mathscr{P}_1\}.$$

In view of Lemma 4, we can assume without loss of generality that $\mathscr{P}_1 = \mathscr{P}_2$. So K has an eigenvector (in \mathscr{P}_1) and, therefore, \mathscr{P} has a nonzero vector x such that x_1 and x_2 are not linearly independent, a contradiction.

The following corollary is known for transitive algebras [18, page 146]. In the following by a graph transformation of an algebra \mathscr{A} we mean any linear transformation T for which there exist an integer n and an invariant subspace \mathscr{M} of $\mathscr{A}^{(n)}$ such that C_1, \ldots, C_n are injective and $T = C_i C_j^{-1}$ for some distinct pair i and j, where $C_i : \mathscr{M} \to \mathscr{M}_i$ is defined by $C_i x = x_i$ $(i = 1, \ldots, n)$. The range of a graph transformation of \mathscr{A} is called a graph operator range of \mathscr{A} . Note that any graph operator range of \mathscr{A} is an invariant operator range of \mathscr{A} .

COROLLARY 8. Let \mathcal{A} be a weakly closed reductive algebra. Assume every graph transformation of \mathcal{A} has an eigenvalue. Then \mathcal{A} is self-adjoint.

Proof. If $\mathscr{A} \neq \mathscr{A}^*$, then $\mathscr{A} \in \mathscr{R}_{n-1} \setminus \mathscr{R}_n$ for some integer $n \geq 2$. Let \mathscr{P} be an invariant subspace of $\mathscr{A}^{(n)}$ which contains no nontrivial reducing invariant subspace of $\mathscr{A}^{(n)}$. Define $C_i : \mathscr{P} \to \mathscr{P}_i$ by $C_i x = x_i$. Since $C_1 x, \ldots, C_n x$ are linearly independent for all nonzero $x \in \mathscr{P}$, it follows that no $C_i C_j^{-1}$ has an eigenvalue $(i \neq j)$, a contradiction.

COROLLARY 9. Let \mathscr{A} be a weakly closed reductive algebra such that every graph operator range of \mathscr{A} is of the form $\{u \oplus v : u \in M, v \in R\}$, where

M is an invariant subspace of \mathcal{A} , R is an invariant compact-operater range of \mathcal{A} , and M, \overline{R} are perpendicular. Then \mathcal{A} is self-adjoint. In particular, if every invariant operator range of a weakly closed reductive algebra is either closed or the range of a compact operator, then it is self-adjoint.

Proof. Assume that $\mathscr{A} \neq \mathscr{A}^*$. Then $\mathscr{A} \in \mathscr{R}_{n-1} \setminus \mathscr{R}_n$ for some $n \geq 2$. Let \mathscr{P} be a nontrivial invariant subspace of $\mathscr{A}^{(n)}$ which contains no nontrivial reducing invariant subspace of $\mathscr{A}^{(n)}$. Each \mathscr{P}_i is of the form $\{u \oplus v : u \in M_i, v \in R_i\}$ as in the statement of the theorem. Since not all \mathscr{P}_i are the ranges of compact operators, $M_i \neq \{0\}$ for some i which can be assumed without loss of generality that i = 1 and $\mathscr{P}_1 = M_1$. Therefore, in view of Theorem 6(b), n = 2. Using Lemma 4, if necessary, we can modify \mathscr{P} such that

$$\mathscr{P}_2 \subset \mathscr{P}_1 = \overline{\mathscr{P}}_1 \quad \text{and} \quad \mathscr{P} = \{x \oplus Kx \colon x \in \mathscr{P}_1\}.$$

The operator $K: \mathscr{P}_1 \to \mathscr{P}_1$ has no eigenvalue and hence Range $(K - \lambda)$ is nonclosed for some $\lambda \in \sigma(K)$. Since $\{x \oplus (K - \lambda)x : x \in \mathscr{P}_1\}$ is an invariant subspace of $\mathscr{A}^{(2)}$, it follows that

Range $(K - \lambda) = M \oplus R$,

where M is an invariant subspace of \mathscr{A} and $R \neq \{0\}$ is an invariant compact-operator range of \mathscr{A} . Let

$$\mathscr{Q} = \{x \oplus (K - \lambda)x \colon x \in \mathscr{P}_1 \ \text{ and } \ (K - \lambda)x \in R\}.$$

It is easy to see that $\mathscr{Q} \in \operatorname{lat} \mathscr{A}^{(2)}$, \mathscr{Q}_1 is closed, and $\mathscr{Q}_2 = R$. Define $S: H \to H$ by $Sx = (K - \lambda)x$ for $x \in \mathscr{Q}_1$ and Sx = 0 for $x \perp \mathscr{Q}_1$. The operator S is compact and SB = BS for all $B \in \mathscr{A}$. Hence $SB^* = B^*S$ for all $B \in \mathscr{A}$, [19], which implies that

 $(K - \lambda)B^*x = B^*(K - \lambda)x$ for all $x \in \mathcal{Q}_1$.

Thus the set $\{x \oplus Kx \colon x \in \mathcal{Q}_1\} \subset \mathscr{P}$ is a reducing invariant subspace of $\mathscr{A}^{(2)}$, a contradiction.

COROLLARY 10. ([9]) If \mathscr{A} is a weakly closed reductive algebra such that every operator range invariant under \mathscr{A} is closed, then \mathscr{A} is self-adjoint.

COROLLARY 11. ([9]) If \mathscr{A} is a weakly closed reductive algebra and if every graph transformation of \mathscr{A} is bounded, then \mathscr{A} is self-adjoint.

Proof. Let R be an arbitrary graph operator range of \mathscr{A} and let $\mathscr{M} \in$ lat $\mathscr{A}^{(n)}$ be such that $R = \mathscr{M}_1$ and the mappings $C_i: \mathscr{M} \to \mathscr{M}_i$ $(i = 1, 2, \ldots, n)$ are injective. We show that R is closed. Let $\{x(k)\}$ be a sequence in \mathscr{M} such that $\{C_1x(k)\}$ converges to y_1 . Since each $C_iC_1^{-1}$ is bounded, it follows that $\{C_ix(k)\}$ converges to a vector $y_i, i = 1, 2, \ldots, n$. Hence the sequence $\{x(k)\}$ converges to $y_1 \oplus \ldots \oplus y_n$ which implies that $y_1 \in \mathscr{M}_1 = R$. This shows that R is closed and hence \mathscr{A} is self-adjoint.

Added in proof. We thank Professor Peter Rosenthal who informed us of some known results which led to the following remarks.

(a) Let k be a natural number. An algebra \mathscr{A} is called k-reflexive if $\mathscr{A}^{(k)}$ is reflexive. Let $n \geq 3$ be a natural number. Let \mathscr{A} be an arbitrary algebra on an n-dimensional Hilbert space H_n . Azoff [3, Theorem 3.1] has shown that \mathscr{A} is (n-1)-reflexive. In view of Proposition 1, if \mathscr{A} is nonreflexive, then $\mathscr{A} \notin \mathscr{R}_{n-1}$. Azoff [3, Example 3.2] also gives an example of an algebra \mathscr{A} on H_n which is not (n-2)-reflexive. By an argument similar to the one given in our Example 1, one can show that the algebra \mathscr{A} of [3, Example 3.2] belongs to $\mathscr{R}_1 \setminus \mathscr{R}_2$. Therefore, Proposition 1 is the most that can be said about the relation between the class \mathscr{R}_k and the class of k-reflexive operators. For $n \geq 4$, in view of [3, Theorem 4.1], every non-reflexive commutative algebra on H_n does not belong to $\mathscr{R}_{n/2}$, where n/2 is to be interpreted as the greatest integer in n/2.

(b) The existence of a nonreflexive $\mathscr{A}^{(2)}$ in Proposition 1 is due to Feintuch [8].

(c) An operator-theoretic proof of Corollary 2 is also given by Nordgren-Radjavi-Rosenthal [15]. There are similarities between our techniques and those of [8] and [15].

References

- 1. W. B. Arveson, A density theorem for operator algebras, Duke Math. J. 34 (1976), 635-647.
- 2. —— Operator algebras and invariant subspaces, Annals Math. 100 (1974), 433-532.
- 3. E. A. Azoff, K-reflexivity in finite dimensional spaces, Duke Math. J. 40 (1973), 821-830.
- 4. F. S. Cater, Lectures on real and complex vector spaces (W. B. Saunders, Philadelphia, 1966).
- 5. J. Deddens and P. Fillmore, *Reflexive linear transformations*, Lin. Alg. Appl. 10 (1975), 89–93.
- 6. R. G. Douglas and C. Pearcy, Hyperinvariant subspaces and transitive algebras, Michigan Math. J. 19 (1972), 1-12.
- 7. N. Dunford and J. Schwartz, *Linear operators. Part II: Spectral theory* (Interscience, New York, 1963).
- 8. A. Feintuch, There exist nonreflexive inflations, Michigan Math. J. 21 (1974), 13-17.
- 9. A. Feintuch and P. Rosenthal, Remarks on reductive operator algebras, Israel J. Math. 15 (1973), 130-136.
- 10. C. Foias, Invariant para-closed subspaces, Indiana Univ. Math. J. 21 (1972), 887-906.
- 11. P. R. Halmos, A Hilbert space problem book (D. Van Nostrand, Princeton, New Jersey, 1967).
- V. J. Lomonosov, Invariant subspaces for operators commuting with compact operators, Functional Anal. Appl. γ (1973), 55-56.
- E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, On invariant operator ranges, Trans. Amer. Math. Soc. 251 (1979), 389-398.
- 14. E. Nordgren, H. Radjavi and P. Rosenthal, Operator algebras leaving compact operator ranges invariant, Mich. Math. J. 23 (1976), 375-377.
- 15. On Arveson's characterization of hyperreducible triangular algebras, Indiana Univ. Math. J. 26 (1977), 179–182.

- H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math. 91 (1969), 683-692.
- 17. A sufficient condition that an operator algebra be self-adjoint, Can. J. Math. 23 (1971), 588–597.
- 18. Invariant subspaces (Springer-Verlag, Berlin-Heidelberg-New York, 1973).
- 19. P. Rosenthal, On commutants of reductive operator algebras, Duke Math. J. 41 (1974), 829-834.
- 20. D. E. Sarason, Invariant subspaces and unstarred operator algebras, Pac. J. Math. 17 (1966), 511-517.
- 21. V. S. Sul'man, On reflexive operator algebras, Math. USSR-Sb. 16 (1972), 181-189.

University of Mazandaran, Babolsar, Iran