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We perform a three-dimensional direct numerical simulation of flow over the Tacoma
Narrows Bridge to understand the vertical and torsional vibrations that occurred before its
collapse in 1940. Real-scale structural parameters of the bridge are used for the simulation.
The Reynolds number based on the free-stream velocity and height of the deck fence is
lower (Re = 10 000) than the actual one on the day of its collapse (Re = 3.06 × 106),
but the magnitude of a fluid property is modified to provide the real-scale aerodynamic
force and moment on the deck. The vertical and torsional vibrations are simulated through
two-way coupling of the fluid flow and structural motion. The vertical vibration occurs
from the frequency lock-in with the vortex shedding, and its wavelength and frequency
agree well with the recorded data in 1940. After saturation of the vertical vibration, a
torsional vibration resulting from the aeroelastic fluttering grows exponentially in time,
with its wavelength and frequency in excellent agreement with the recorded data of the
incident. The critical flutter wind speed for the growth of torsional vibration is obtained
as 3.56 < Uc/( fnatB) ≤ 4, where Uc is the critical flutter wind speed, fnat is the natural
frequency of the torsional vibration and B is the deck width. Finally, apart from the actual
vibration process in 1940, we perform more numerical simulations to investigate the roles
of the free-stream velocity and vertical vibration in the growth of the torsional vibration.

Key words: flow-structure interactions, separated flows

1. Introduction

On 7 November 1940, the Tacoma Narrows Bridge (TNB) collapsed only four months
after it was opened. In the early morning, the bridge deck showed a vertical vibration with
a wavelength of 2Lz/9 or Lz/5 at a frequency of 0.60–0.63 Hz, where Lz is the length of
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the bridge deck. The vertical vibration changed abruptly to a torsional one around 10:00,
and the bridge oscillated at 0.23 Hz with the angular amplitude reaching up to 45 degrees
right before the collapse at 11:00 (Ammann, von Kármán & Woodruff (1941); see also
Olson, Wolf & Hook (2015) for a brief summary of the incident).

The main cause of the collapse has been widely attributed to resonance; i.e. the natural
frequency of the bridge is connected to the frequency of the Kármán vortex shedding,
leading to the failure of the bridge. For example, an undergraduate fluid mechanics
textbook by White (2016) says ‘Resonance can occur if a vortex-shedding frequency is
near a body’s structural vibration frequency. . . . A striking example is the disastrous failure
of the Tacoma Narrows suspension bridge in 1940, when wind-excited vortex shedding
caused resonance with the natural torsional oscillations of the bridge’. Similar statements
can be found in other engineering and physics textbooks (Den Hartog 1985; Serway &
Jewett 2018). However, Scanlan (1982) indicated by referring to von Kármán & Edson
(1967) and Yakubovich & Starzhinskii (1975) that the torsional oscillatory behaviour of
the bridge did not match that of the naturally shed vortex street, and claimed that the TNB
underwent an aeroelastic separated-flow fluttering right before the collapse. Later, Billah
& Scanlan (1991) showed that the frequency of the torsional vibration was considerably
different from that of the vortex-shedding frequency (∼1 Hz), and indicated that the
torsional fluttering of the bridge, which led the bridge to its collapse, was the result of
an aerodynamically induced ‘self-excitation’, as opposed to an external excitation (see
also Zhang, Dou & Gao 2020). They affirmed that the vortex shedding is an essential
ingredient for the fluttering to occur. However, as pointed out by Larsen (2000), they were
unable to directly associate the vortex motion with the appearance of negative damping
(note that the onset of dynamic instability due to the accumulation of energy is referred to
as negative damping, as opposed to positive damping by which energy is dissipated away
from the system).

To reveal the contribution of vortex motion to the torsional instability, Larsen (2000)
studied the instability mechanism of the H section of the TNB deck. The procedure of
the deck receiving net work from the flow as vortices emerge at the leading edge and
drift toward the trailing edge according to the deck oscillation was provided in detail.
A critical wind speed obtained for the onset of the torsional instability was Uc ≈ 4fB,
where f is the prescribed frequency of the deck cross-section oscillation and B is the
deck cross-section width. For U(wind speed) < Uc, the net work done to the bridge by
the vortices was negative and thus the oscillatory motion was damped (positive damping),
but for U ≥ Uc, the damping switches to negative, leading to an increase in the torsional
amplitude and the onset of torsional instability. The wind speed during the vibration and
collapse of the TNB in 1940 (U ≈ 8fB) was higher than the critical wind speed, and thus
the bridge was torsionally unstable. Green & Unruh (2006) further improved this result by
considering the growth and reattachment of the vortices.

In contrast to the claim that the cause of the torsional vibration is aeroelastic, studies
based on nonlinear structure models (see Lacarbonara (2013) for general introduction to
the nonlinear structural mechanics) have shown that the torsional instability of the bridge
is mainly a structural phenomenon, and attributed the dynamic instability of the bridge to
large vertical oscillations. McKenna (1999) derived a simple nonlinear two-dimensional
model of a system with vertical and torsional oscillations and demonstrated a rapid
transition of a large vertical vibration to torsional vibration only under the condition where
a periodic torsional force was assigned. Berchio & Gazzola (2015) and Arioli & Gazzola
(2015) provided a nonlinear model of a system (without any aerodynamic effect) and
showed that, during a large vertical vibration, energy of the vertical mode is transferred to
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a torsional mode and torsional vibration suddenly appears. They showed the existence of
an energy threshold, over which the bridge became torsionally unstable. Later, Arioli &
Gazzola (2017) suggested a more refined nonlinear model for suspension bridges in which
the role of cables is also included into the nonlinearity of the system (again without any
aerodynamic effect) and obtained the energy threshold of instability according to each
vertical mode using the structural parameters and length scales of the TNB. They showed
that the failure of the TNB was neither due to the resonance of the structure by the Kármán
vortex street, nor due to pure aeroelasticity. However, their simulation did not consider the
aerodynamic effect of the wind, and thus an initial condition was required to initiate the
vertical vibration of the bridge.

So far, most of numerical studies have been limited to two-dimensional analyses
(Billah & Scanlan 1991; McKenna 1999; Larsen 2000; Green & Unruh 2006; Adekanye
& Washington 2018) or to purely structural simulations (McKenna 1999; Arioli &
Gazzola 2015, 2017; Berchio & Gazzola 2015; Adekanye & Washington 2018). In those
studies, how the vibration was initiated was not investigated but an initial vibration was
prescribed. Previous experimental studies (Ammann et al. 1941; Scanlan & Tomko 1971;
Hu, Zhao & Ge 2022) and numerical ones employing three-dimensional fluid–structure
interaction (Szabó, Györgyi & Kristóf 2020) also prescribed the initial motions of the
bridge models. Abbas, Kavrakov & Morgenthal (2017) summarized the aerodynamic
analysis techniques and numerical and experimental methods for flutter stability analysis
of long-span cable-supported bridges.

As the wind is essential to the initiation of the vibration from the wind–bridge
interaction and the vibration switches from vertical to torsional, an unsteady
three-dimensional numerical simulation together with fluid–structure interaction is
necessary to investigate the vibration mechanism. Therefore, in the present study, we
perform a direct numerical simulation of the flow over a vibrating TNB together with
solving the structure equations suggested by Arioli & Gazzola (2017), to describe the
vertical and torsional vibrations that occurred before the collapse of the TNB in 1940.
We start the simulation in the presence of the free-stream velocity with a static condition
of the TNB. Then, its vertical vibration and transition to torsional vibration occur. The
Reynolds number considered is Re = 10 000 based on the free-stream velocity and
height of the deck fence. This Reynolds number is much lower than the real one, Re =
3.06 × 106, but the realistic aerodynamic force and moment on the TNB are computed by
modifying the magnitude of a fluid property (see § 2). Modal analyses are also conducted
to identify the resonance modes of the vertical and torsional vibrations. A few more
numerical simulations are also conducted to find the critical flutter wind speed and to
examine the roles of the free-stream velocity and vertical vibration in the growth of the
torsional vibration. The numerical details are given in § 2, and the behaviours of the
vertical and torsional vibrations are discussed in detail in § 3, followed by conclusions
in § 4.

2. Numerical methods

The governing equations for unsteady three-dimensional incompressible flow with a
fluid–structure interface are solved in Eulerian coordinates, while the nonlinear dynamic
equations for the TNB (Arioli & Gazzola 2017) with the aerodynamic force and moment
at the interface are solved in Lagrangian coordinates. A weak-coupling approach for
the fluid–structure interaction (Kim, Lee & Choi 2018) is employed (see below for
details).
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(a) (b)∂u/∂y = ν = ∂w/∂y = 0

∂ui/∂t + uc (∂ui/∂x) = 0

Figure 1. Computational domain and deck geometry: (a) computational domain; (b) cross-section of the
deck.

2.1. Fluid flow
The governing equations for the fluid flow are the unsteady three-dimensional
incompressible Navier–Stokes and continuity equations, and their non-dimensional forms
are

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
+ fi, (2.1)

∂ui

∂xi
− q = 0, (2.2)

where xi(= x, y, z) is the Cartesian coordinates, ui(= u, v, w) is the corresponding
velocity, p is the pressure and fi and q are the momentum forcing and mass source/sink
used for the immersed-boundary method, respectively (see Kim, Kim & Choi (2001)
for details). The free-stream velocity (U) and deck-fence height (h) are used for the
non-dimensionalization (figure 1). The Reynolds number is defined as Re = ρf Uh/μf ,
where ρf and μf are the fluid density and viscosity, respectively. We perform direct
numerical simulation, i.e. without using any turbulence model. The wind speed during
the collapse of the TNB in 1940 was 18 m s−1, and thus the actual Reynolds number
was Re = 3.06 × 106. This Reynolds number is too high to handle using direct numerical
simulation because of very long TNB deck length (Lz = 853.44 m). Instead of handling
this actual Reynolds number, we rather perform a simulation at a much lower Reynolds
number of Re = 10 000 by modifying the magnitude of a fluid property. Justification
of using a lower Reynolds number is following: (i) as the flow separation is fixed at
the leading edge of the deck fence, the Strouhal number (St = fvsh/U, where fvs is
the vortex-shedding frequency) and drag coefficient (CD = D/(0.5ρf U2hLz), where D is
the drag force) vary little with the Reynolds number for a wide range of the Reynolds
number (Schew 2013); (ii) the aerodynamic force and moment on a bluff body are mostly
determined by the inertia of the flow (i.e. pressure distribution on the body) rather than
by the skin friction. Therefore, even though the computation is carried out at a lower
Reynolds number, we maintain the fluid density as that of air (ρf = 1.247 kg m−3) but
change the viscosity to be μf = 5.387 × 10−3 N s m−2 to match the Reynolds number
as 10 000. Then, the drag force can be reasonably computed by providing the actual air
density (D = CD × 0.5ρf U2hLz) and neglecting the effect of the viscosity.

An implicit fractional step method (Choi & Moin 1994) with linearization (Kim, Baek
& Sung 2002) is used for time advancement of (2.1) and (2.2). The second-order central
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Vibrations of the Tacoma Narrows Bridge in 1940

h height of the deck fence 2.4 m
Lz length of the deck 355.6h
l half width of the deck 2.5h
a thickness of the railings 0.05h
b thickness of the deck 0.2214h

Table 1. Deck parameters.

difference method is applied to all the spatial derivative terms in the framework of the
finite volume method. The computational domain for the fluid flow and the geometry
of the bridge deck are shown in figure 1. The hangers, cables and towers (see later in
figure 3) are neglected and only the deck is considered for the computation of the fluid
flow, because the deck is the main source of the vortex shedding which again produces the
force and moment on the deck. Here, the x-, y- and z-axes are the streamwise, transverse
and spanwise directions, respectively; z = 0 is located at one end of the deck, and x = 0
and y = 0 are the location of the static deck centre. The height of the deck fence is
h = 2.4 m. The length of the deck, Lz = 853.44 m, is equal to the spanwise length of the
computational domain, and the deck width is 2l = 12 m. The thicknesses of the railings
and deck are a = 0.12 m and b = 0.5313 m, respectively. The length scales of the deck
parameters with respect to h are given in table 1.

The number of grid points for the flow simulation is 4097 × 1601 × 2049 in the x, y and
z directions in the Cartesian mesh, and the computational domain size is [−20h, 40h] ×
[−20h, 20h] × [0, 355.6h]. The grids in the z direction are uniformly distributed by
�z = 0.1736h, and a periodic boundary condition is applied in this direction. On the other
hand, non-uniform grids are distributed in the x and y directions with minimum grid sizes
of �x = �y = 0.005h, and the grid distribution in the x–y plane is shown in figure 2,
in which uniform grids are distributed near the deck ([−2.7h, 4h] × [−2.5h, 2.5h]), and
non-uniform grids are given with contraction (upstream of the deck) and expansion
(downstream) factors of 0.9915 and 1.0008 in the x direction and with an expansion
factor of 1.013 (upward and downward) in the y direction. A Dirichlet boundary condition
of (U, 0, 0) is applied at the inflow boundary, while a Neumann boundary condition of
∂u/∂y = v = ∂w/∂y = 0 is applied at the top and bottom boundaries (see also Kim,
Lee & Choi (2016), Kim & Choi (2019) and Jin, Wu & Choi (2021) who used this
boundary condition). A convective boundary condition, ∂ui/∂t + uc∂ui/∂x = 0, is applied
at the outflow boundary to allow the vortices to exit the computational domain smoothly
(Pauley, Moin & Reynolds 1990), where uc is the instantaneous streamwise velocity
averaged over the outflow boundary. The initial condition for the simulation is given as
(u/U, v/U, w/U) = (1, 0, 0), and a constant CFL (Courant–Friedrichs–Lewy) number
of 2 is employed throughout the computation. We performed an additional simulation
using coarser grids with �x = �y = 0.007h, and obtained the same frequencies and
wavelengths of the vertical and torsional vibrations as those from the present grids,
although the small-scale flow structures were slightly different. We also conducted a
simulation with a larger computational time step size by fixing CFL= 3 during a torsional
vibration period, and obtained nearly the same sectional lift and moment coefficients and
the vertical and angular displacements as those from CFL= 2.

Owing to the large number of grids used for flow simulation, up to 2500 nodes of an Intel
Xeon Phi 7250, which corresponds to 160 000 MPI (message-passing interface) processes,
are used for the computation. Two-dimensional domain decomposition is applied to relieve
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Figure 2. Grid distribution in an x–y plane. Here, every eighth grid point is plotted in each direction.
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Figure 3. Description of the bridge structure: (a) cables, hangers, towers and deck of the TNB; (b) vertical
displacement Yc and rotational angle θc of a deck element.

the enormous computational load (Kwon et al. 2020), and a parallel TDMA (tridiagonal
matrix algorithm) method (Kim et al. 2021) is employed to accelerate the computation.

2.2. Structure vibration
The vertical and rotational movements of a suspension bridge follow a nonlinear model
proposed by Arioli & Gazzola (2017). In this model, the hangers are considered as a
continuum connecting the cables and deck and their elastic deformation is neglected, while
the tension by the cables is taken into account. The deck is divided into 2048 elements in
the z direction, the same as the computational grids used for fluid flow in § 2.1. Each
element of the deck is assumed to be rigid but to move in the y direction and rotate on the
x–y plane (Arioli & Gazzola 2017). Thus, the vertical displacement and rotational angle
are functions of z and t, i.e. Yc(z, t) and θc(z, t) (figure 3). In this figure, 2 cables, 110
hangers (which are treated as a continuous membrane on each side during simulation), 4
towers and a deck are shown.
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The governing equations for a deck element are as follows:

(M + 2mξ) Yctt = −EIYczzzz + H0

{
2Ycz

ξ2 − 3
s′(Y2

cz
+ l2θ2

cz
)

ξ4

}
z

+ AE
Lc

s′′

ξ3

∫ Lz

0

Y2
cz

+ l2θ2
cz

ξ3 dz − 2AE
Lc

(
s′

ξ
+ Ycz

ξ3

)
z

∫ Lz

0

s′′Yc

ξ3 dz

− 2AEl2

Lc

(
θcz

ξ3

)
z

∫ Lz

0

s′′θc

ξ3 dz + 1
2
ρf U2hCLs, (2.3)

(
M
3

+ 2mξ

)
θctt = GK

l2
θczz + 2H0

(
θcz

ξ2 − 3
s′Yczθcz

ξ4

)
z

+ 2AE
Lc

s′′

ξ3

∫ Lz

0

Yczθcz

ξ3 dz − 2AE
Lc

(
s′

ξ
+ Ycz

ξ3

)
z

∫ Lz

0

s′′θc

ξ3 dz

− 2AE
Lc

(
θcz

ξ3

)
z

∫ Lz

0

s′′Yc

ξ3 dz + 1
2
ρf U2h2 CMs

l2
, (2.4)

where the subscripts t and z indicate the time and spatial derivatives of the variables, s(z)
and ξ(z)(=

√
(1 + s′2)) are the location and local length of the cables at rest, respectively,

and A, E, G, H0, I, K, Lc, M and m are listed in table 2. Here, CLs(= 2Ls/(ρf U2h)) and
CMs(= 2Ms/(ρf U2h2)) are the sectional lift and moment coefficients, respectively, where
Ls and Ms are the sectional lift and moment, respectively. The structural damping is
neglected in (2.3) and (2.4). The locations of the cables at rest are obtained by the following
relation:

2H0s′′ =
(

M + 2m
√

1 + s′2
)

g at t = 0, (2.5)

where g is the gravitational acceleration. This equation shows the balance between the
tension of the cables and the gravitational force of the deck and cables, but neglects the
gravitational force of the hangers (Arioli & Gazzola 2017). The location of the cables at
their ends are fixed to the four towers, i.e. s(0) = s(Lz) = 30h. The bridge is initially at rest
(Yc = θc = 0) and the ends of the deck (z = 0 and Lz) are fixed at their original positions.
Note that the governing equations (2.3) and (2.4) are slightly different from those in Arioli
& Gazzola (2017), because in the latter the direction of the y coordinate is the opposite
to that in the present study. The generalized-α method by Chung & Hulbert (1993) is
used to solve (2.3) and (2.4) in time, and the second-order central difference method and
trapezoidal method are used for the spatial derivative and integral terms, respectively.

The kinetic (Ekin) and gravitational (Egrav) energies of the deck and cables, the elastic
energy of the deck (Eel), the energy required for each cable to deform under tension (Ec)
and the energy required to change the cable length (Etc) are given as follows (Arioli &
Gazzola 2017):

Ekin = M
2

∫ Lz

0

(
l2θc

2
t

3
+ Yc

2
t

)
dz + m

2

∫ Lz

0
(p1

2
t + p2

2
t )ξ dz, (2.6)

Egrav = Mg
∫ Lz

0
Yc dz + mg

∫ Lz

0
(p1 + p2)ξ dz, (2.7)
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A cross-sectional area of the cable 0.1228 m2

E Young’s modulus of the deck and cables 210 GPa
G shear modulus of the deck 81 GPa
H0 tension of the cables 58 300 kN
I linear density of the moment of inertia of the cross-section of the deck 0.15 m4

K torsional constant of the deck 6.44 × 10−6 m4

Lc length of each cable 868.62 m
M mass of the deck per unit length 7198 kg m−1

m mass of the cable per unit length 981 kg m−1

Table 2. Material properties of the TNB parameters (from Arioli & Gazzola 2017).

Eel = EI
2

∫ Lz

0
Yc

2
zz dz + GK

2

∫ Lz

0
θc

2
z dz, (2.8)

Ec( pi) = H0

∫ Lz

0
ξ

(√
1 + (s′ + piz)

2 −
√

1 + s′2
)

dz, (i = 1, 2), (2.9)

Etc( pi) = AE
2Lc

(∫ Lz

0

√
1 + (s′ + piz)

2 dz − Lc

)2

(i = 1, 2), (2.10)

where p1(z, t) = Yc + lθc and p2(z, t) = Yc − lθc are the displacements of two cables
sharing a deck element with respect to its static position.

2.3. Fluid–structure interaction
A weak-coupling method by Kim et al. (2018) is used for fluid–structure interaction, in
which the governing equations of the structure and fluid are solved alternatively in a
staggered manner. First, the provisional displacement and velocity of the fluid–structure
interface are obtained using the information obtained at the previous time step, and the
velocity and pressure of the fluid at the current time step are updated with the provisional
information. Then, the hydrodynamic force and moment on the interface are obtained from
the flow field at the current time step, with which the velocity and acceleration of the
structure are obtained. This method provides faster computation and easier implementation
than a strong-coupling method does, while keeping a second-order accuracy. The detailed
procedure is given in Kim et al. (2018). As we shall show below (§§ 3.2 and 3.3), with
the present numerical methods, the frequency and wavelength of the vertical and torsional
vibrations are in excellent agreement with those of the actual incident, and the critical
flutter wind speed obtained also agrees well with those of previous experimental and
numerical studies.

3. Results

In this section, the characteristics of the vertical and torsional vibrations are examined and
compared with the recorded data of the incident of the TNB in 1940, and the critical flutter
wind speed for the growth of the torsional vibration is obtained.
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Figure 4. Variations of the natural frequencies of the TNB for the (a) vertical and (b) torsional vibrations:
� (blue), Arioli & Gazzola (2017) (initial energy at the energy threshold); � (blue), Arioli & Gazzola
(2017) (initial energy close to 0); � (red), present (initial energy of 101.7 MJ for (a) and 1.90 GJ for (b));
� (red), present (initial energy of 6.98 J for (a) and 19.0 J for (b)).

3.1. Natural frequencies of the TNB
The vertical and torsional vibration modes are obtained by separately solving (2.3) and
(2.4) with θc = CLs ≡ 0 in (2.3) and Yc = CMs ≡ 0 in (2.4). The initial conditions are
given as Yct(z, t = 0)/U = Anm sin(nmπz/Lz) and Yc(z, t = 0) = 0 for the vertical modes,
and θct(z, t = 0)h/U = Bnm sin(nmπz/Lz) and θc(z, t = 0) = 0 for the torsional modes,
where nm = 1, 2, . . . , 11. To see if the vertical and torsional vibration modes depend on
the initial energy level E (sum of (2.6)–(2.10)), we provide two different Anm values and
Bnm values: for the vertical vibration, Anm = 0.0001 and 0.4, resulting in E = 6.98 J and
101.7 MJ, respectively; for the torsional vibration, Bnm = 0.0001 and 1, resulting in E =
19.0 J and 1.90 GJ, respectively. Note that the total energy (E) does not change in time
because there is no energy loss.

Figure 4 shows the variations of the natural frequencies fnat with the vertical and
torsional vibration wavenumbers nm, together with those for the vertical vibration obtained
by Arioli & Gazzola (2017). The natural frequency for the vertical vibration increases
almost linearly with the wavenumber nm and shows weak dependence on the initial energy,
agreeing well with the result by Arioli & Gazzola (2017). A notable difference is that no
natural frequency exists for nm = 1 (wavelength of 2Lz) from the present study, but Arioli
& Gazzola (2017) obtained its natural frequency. Currently, we do not know the reason
for this difference. The natural frequency for the torsional vibration also linearly increases
with the wavenumber nm but shows no dependence on the initial energy because (2.4)
becomes linear with Yc = 0. To obtain the vortex-shedding frequency of the flow over the
‘stationary’ deck, a separate three-dimensional numerical simulation with the periodic
boundary condition in the z direction is conducted at the same Reynolds number of
Re = 10 000. Figure 5 shows the contours of the instantaneous spanwise vorticity around
the stationary deck and energy spectra of the vertical velocity v at three different positions
behind the deck. With the stationary deck, the flow shows a periodic alternating vortex
shedding and the Strouhal number corresponding to the vortex-shedding frequency is
St = fvsh/U = 0.111. The same frequency is obtained for the fluctuating lift and moment
coefficients as well. This Strouhal number closely matches the non-dimensional natural
frequency of fnath/U = 0.1–0.105 at nm = 10 (figure 4a), indicating that the vortex
shedding behind a stationary deck triggers the natural frequency at nm = 10 (wavelength of
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Figure 5. Flow over the stationary deck: (a) contours of the instantaneous spanwise vorticity; (b) energy
spectra of the vertical velocity (vrms is the root-mean-square vertical velocity fluctuations). In (b), ———
(red), (x, y) = (3h, 0); ——— (black), (5h, 0); ——— (blue), (x, y) = (7h, 0). These locations are denoted as
× in (a).

λz = Lz/5). This wavelength is similar to what was observed during the vertical vibration
of the TNB (Ammann et al. 1941).

3.2. Fluid–structure interaction
Figure 6 shows the temporal behaviours of the vertical displacement and rotational
angle at the deck centre along the span. At early time instants (tU/h = 0 ∼ 150), the
dominant wavelengths of Yc and θc are nm = 1 and 3 (see also figure 7). The occurrence
of these wavelengths may be due to the abrupt start of the simulation (u = U, v = 0,

and w = 0) at t = 0. The vertical vibration starts at tU/h > 250, and changes into a
torsional vibration at tU/h ≈ 550 (see below for more details). We show in § 3.3 that these
early vibration patterns at tU/h < 250 are not required for the occurrence of the vertical
vibration. As shown in figure 6(c), both the vertical displacement and rotational angle grow
exponentially in time. However, unlike Yc, θc is mainly composed of low wavenumber
and frequency oscillations. For example, at tU/h ≤ 400, Yc contains both low and high
wavenumber/frequency components, but θc has only low ones. At tU/h = 500 ∼ 600,
the high wavenumber/frequency components of Yc disappear, and both Yc and θc show
very similar wavenumber/frequency characteristics at later time instants. To understand
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Figure 6. Temporal behaviours of the vertical displacement and rotational angle at the deck centre (x = 0): (a)
Yc; (b) θc; (c) Yc (———, red) and θc (———, blue) at z = Lz/4. Note that the contour levels of the left and
right figures in (a) and (b) are different. In (c), a zoom-in view of Yc(t) and θc(t) is given in 200 < tU/h < 300.

the wavenumber characteristics of Yc and θc, we perform their discrete sine transforms;
i.e. Ycj/h (or θcj) = ∑N

nm=0 anm sin(πnmj�z/Lz) for j = 0, 1, 2, . . . , N (N = 2048 and
�z = Lz/N), and the results are shown in figure 7. At tU/h ≈ 200, Yc contains the primary
peak at nm = 10, secondary peak at nm = 11 and tertiary peak at nm = 2, showing that the
vertical vibration at this time contains both high and low wavenumber components. On the
other hand, θc has the primary peak at nm = 1 (rotational vibration) and secondary peak at
nm = 7, and non-negligible peaks at nm = 2, 3 and 5, showing quite different wavenumber
characteristics from Yc. The primary peak of Yc at nm = 10 is closely associated with the
vortex-shedding frequency. That is, the non-dimensional natural frequency of the deck at
nm = 10 is 0.1–0.105 (figure 4a), and this frequency is very similar to the vortex-shedding
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Figure 7. Coefficients of the discrete sine series of (a) Yc and (b) θc at different time instants. Note that the
scales of the vertical axes at different time instants are different.

frequency (figure 5b). In other words, at early time, the vertical vibration occurs in
conjunction with the alternating vortex shedding. As time goes by, the contribution from
nm = 2 (torsional vibration) to Yc increases and becomes dominant at tU/h = 498 and
702, so does to θc. Thus, Yc and θc have the same dominant frequency with same phase
(see figure 6c). Note that the torsional vibration occurs at the wavelength of Lz (nm = 2),
and its frequency is fh/U = 0.025, which is same as the natural frequency of θc at nm = 2
(fnath/U = 0.025; figure 4b).

Figure 8 shows the temporal evolutions of the coefficients of the discrete sine series
(anm=2 and anm=10) of Yc and θc, respectively. Here, |anm=10| of Yc exponentially grows
until tU/h ≈ 400 and decreases afterwards. On the other hand, |anm=2| values of both
Yc and θc grow exponentially even after the decrease of |anm=10| of Yc. Note that, at
200 < tU/h < 400, |anm=10| of Yc is larger than |anm=2| of Yc, indicating that the dominant
wavelength of the vertical vibration at this time period is λz = Lz/5.

As both Yc and θc grow and the vibration changes from the vertical to the torsional
mode, it is interesting to know when the vibration mode changes. For this purpose, we
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Figure 8. Temporal evolutions of the coefficients of the discrete sine series: (a) Yc; (b) θc. Here, |anm=2|
(———, blue) and |anm=10| (———, red).

define a non-dimensional variable Δ such as

�(z, t) = (Yct(z, t) + lθct(z, t))(Yct(z, t) − lθct(z, t))/U2, (3.1)

where the quantities in the first and second parentheses are the velocities of the right and
left fences, respectively (see figure 3b). The vertical vibration dominates when Δ > 0, and
the torsional vibration is dominant otherwise. Although this criterion does not perfectly
describe the dominance of one vibration over the other, it at least qualitatively provides
an idea as to which of the two vibrations is dominant. The contours of �(z, t) and
span-averaged Δ, �̄(t), are shown in figure 9. Starting from small negative values (possibly
due to the abrupt start of the free-stream velocity at t = 0), �(z, t) is overall positive at
250 ≤ tU/h < 450, and then it is predominantly negative at tU/h > 550. Thus, this figure
clearly shows the vertical vibration, transition from the vertical to torsional vibration, and
torsional vibration.

Figure 10 shows the flow fields around the TNB at two different time instants
corresponding to vertical and torsional vibrations. The flow separates from the left fence
of the deck and vortices are shed alternately from the upper and lower sides, resulting
in positive and negative lifts on the plate. At tU/h = 354, the wavelength of the vertical
vibration is λz = Lz/5 (figures 6a and 10c) and the deck at the position of z = Lz/4 stays
nearly horizontal (θcmax 	 3.3◦ in figure 6b) and moves vertically (figures 10a and 10c). On
the other hand, at tU/h = 746, the deck at the same spanwise position is significantly tilted,
and a large leading edge vortex is formed on the lower side of the deck (figure 10b), causing
strong aerodynamic moment on the deck. The wavelength of the torsional vibration is
λz = Lz (figure 10c). The peak frequencies of these vertical and torsional vibrations
are fh/U = 0.103 (0.78 Hz) and 0.025 (0.19 Hz), respectively, which are similar to the
recorded data (0.60–0.63 and 0.18 Hz, respectively) of Ammann et al. (1941) considering
the uncertainty of the measurement at that time.

The temporal variations of the vertical displacement, rotational angle and sectional lift
and moment coefficients at z = Lz/4 during 300 < tU/h < 700 (including vertical and
torsional vibration periods) are shown in figure 11. As shown in figure 11(a), during the
vertical vibration (300 < tU/h < 400), the frequency of the rotational angle is noticeably
different from that of the vertical displacement, whereas the rotational angle and vertical
displacement are in phase during the torsional vibration (tU/h > 500). In figures 11(b)
and 11(c), Yc is in phase with CLs and CMs during the vertical vibration, but is 180 ◦
out of phase with CLs and 90◦ out of phase with CMs during the torsional vibration. On
the other hand, θc has a lower frequency than that of CMs during the vertical vibration,
but has the same frequency as that of CMs and is 90 ◦ out of phase with CMs during the
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Figure 9. Relative strength of the vertical to torsional vibrations in time: (a) contours of �(z, t); (b) �̄(t).

torsional vibration. This result indicates that the motion of the rotational angle, unlike the
vertical displacement, is relatively insensitive to the force and moment on the deck during
the vertical vibration, but both Yc and θc are strongly locked-in with the lift and moment
exerted on the deck resulting from the vortex formation behind the deck. These phase
relations among Yc, θc, CLs and CMs during the torsional vibration are closely related to the
vortex formation around the deck, as shown in figure 12. Note that this vortex-formation
frequency (fvf h/U = 0.025) is very different from the natural vortex-shedding frequency
around the stationary deck. As Yc and θc become negative (tU/h = 676), flow separates
from the upper edge of the left fence and a large vortex is formed there, creating low
pressure on the upper surface of the deck, resulting in positive lift and negative moment.
As Yc and θc are negatively maximum (tU/h = 685), the lift is maximum and the moment
is nearly zero. As the vortex formed above the upper surface travels toward the right
part of the upper surface, positive moment is generated. Accordingly, the deck rotates
counterclockwise (e.g. at tU/h = 688). When θc > 0, flow separation occurs at the lower
edge of the left fence and a large vortex forms there, creating low pressure on the lower
surface of the deck, resulting in negative lift and positive moment. Then, a process similar
to that described above proceeds. This result clearly indicates that the torsional vibration
is an aeroelastic fluttering (Scanlan 1982; Billah & Scanlan 1991).

The time traces of the total energy accumulated in the TNB are shown in figure 13,
together with those containing Yc and its derivatives (EYc) or θc and its derivatives (Eθc) in
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Figure 10. Instantaneous three-dimensional vortical structures (iso-surfaces of λ2 = −20; Jeong & Hussain
1995) coloured with the contours of the instantaneous pressure (left), and contours of the instantaneous
spanwise vorticity at z = Lz/4 (denoted as rectangular planes on the left) (right): (a) tU/h = 354
(vertical vibration); (b) tU/h = 746 (torsional vibration). (c) Yc vs z at tU/h = 354 (———, red) and
746 (– – – – –, blue). Note that the bridge is scaled by 1/5 in the z direction in (a,b).

(2.6)–(2.10), where
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t ξ dz + GK

2
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Figure 11. Time traces of the vertical displacement, rotational angle and sectional lift and moment coefficients
at z = Lz/4: (a) Yc (———, red) vs θc (———, blue); (b) Yc (———, red) vs CLs (– – – – –, red); (c) θc
(———, blue) vs CMs (– – – – –, blue). On the right figure of (c), Yc (———, red) is also added to show the
phase differences from θc and CMs . Note that the scales of the y-axes are different between the left and right
figures.
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Figure 12. Motion of the deck at z = Lz/4 during the torsional vibration and its relation with the sectional lift
and moment exerted on the deck, together with the contours of the instantaneous spanwise vorticity. Here,
the scarlet- and light-blue-coloured arrows indicate relative magnitudes of the sectional lift and moment,
respectively.
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Figure 13. Time traces of the energy accumulated in the TNB: ——— (black), total energy (sum of
(2.6)–(2.10)); ——— (red), EYc (energy containing Yc and its derivatives only); ——— (blue), Eθc (energy
containing θc and its derivatives only); – – – – – (SkyBlue), EL,Yc ; – – – – – (VioletRed), EM,θc .

+ H0

∫ Lz

0
ξ

(√
1 + (s′ + lθcz)

2 −
√

1 + s′2
)

dz

+ AE
2Lc

(∫ Lz

0

√
1 + (s′ + lθcz)

2 dz − Lc

)2

. (3.3)

At very early time (tU/h < 165), EYc is smaller than Eθc , and becomes larger than
Eθc at 165 < tU/h < 570. The growth rate of Eθc is much bigger than that of EYc at
tU/h > 350; Eθc becomes bigger than EYc at tU/h > 570, and the total energy in the
TNB is mainly determined by the torsional vibration at this time period. On the other
hand, the growth rate of EYc suddenly decreases at tU/h ≈ 350 and EYc shows a limited
amplitude growth unlike Eθc . This behaviour is very similar to that of |anm=10| of Yc
(figure 8(a); cases with Yc ≡ 0 or θc ≡ 0 are separately simulated and their results are
given in § 3.3, where further discussions are made). Note that, in the absence of the
free-stream velocity, the threshold energy level above which the vertical vibration changed
into the torsional vibration was 82.1 MJ for nm = 10 according to Arioli & Gazzola (2017).
However, as shown in figure 13, the torsional vibration starts even with a much lower
energy level (EYc = 846 kJ at tU/h = 350) in the presence of the free-stream velocity (or
with fluid–structure interaction).

In figure 13, we also compare EYc and Eθc with EL,Yc and EM,θc (energy accumulated in
the bridge by the aerodynamic lift and moment, respectively), where EL,Yc and EM,θc are
defined as

EL,Yc(t) =
∫ t

0

∫ Lz

0
Yct(z, t)Ls(z, t) dz dt, (3.4)

EM,θc(t) =
∫ t

0

∫ Lz

0
θct(z, t)Ms(z, t) dz dt. (3.5)

The energy accumulated in the TNB by the aerodynamic force and moment are very
similar to EYc and Eθc , respectively, verifying that the sources of the vertical and torsional
vibrations are indeed the aerodynamic lift and moment, respectively.

949 A11-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.748


D. Song, W. Kim, O.-K. Kwon and H. Choi

–45 45
θc (deg.)

–1 1
Yc/h

tU/h

tU/h = 400
1

0 100 200 300 400 500 600 700

z/Lz

(a)

1

0 100 200 300 400 500 600 700

z/Lz

(b)

Figure 14. Temporal behaviours of the vertical displacement and rotational angle when the fluid flow is
removed at tU/h ≥ 400: (a) Yc; (b) θc. Here, the maximum values of Yc/h and θc at tU/h = 750 are 0.13
and 3.6◦, respectively.

3.3. Further study of the vertical and torsional vibrations
In this section, we perform a few more numerical simulations to obtain the critical flutter
wind speed and investigate the roles of the free-stream velocity and vertical vibration
in the growth of the torsional vibration. Figure 14 shows the temporal behaviours of
Yc and θc when the fluid flow is removed at tU/h ≥ 400 (i.e. only (2.3) and (2.4)
without the aerodynamic terms containing CLs and CMs being solved). The amplitudes
and wavelengths of Yc and θc do not change in time, unlike those in figure 6. This result
indicates that the presence of fluid flow or fluid–structure interaction is required for the
transition to torsional vibration, when the energy of the vertical vibration is not sufficiently
high. To see if the existence of the vertical vibration is required for the initiation of
the torsional vibration even in the presence of fluid flow, we perform two additional
simulations with Yc ≡ 0 (i.e. no vertical displacement is allowed) or θc ≡ 0 (i.e. no angular
displacement is allowed) in the presence of the free-stream velocity, and their results are
shown in figure 15. Even without vertical vibration, the torsional vibration with λz = Lz
(nm = 2) occurs, and the energy growth rate is slightly lower than that of the natural
case (figure 13), suggesting that the vertical vibration is not a necessary condition for
the occurrence and rapid growth of the torsional vibration in the presence of fluid flow.
Meanwhile, we observed in figure 13 that the growth of the vertical displacement becomes
slow during the torsional vibration as compared with that of the angular displacement.
Whether this slow growth of Yc is due to the occurrence of the torsional vibration or
not, the growth of the vertical displacement with θc ≡ 0 (in the absence of the angular
displacement) is shown in figures 15(b) and 15(c). The vertical vibration with the same
wavelength (nm = 10) and frequency (fh/U = 0.103) as those of the natural case evolves
after an early transition period, and the energy of Yc is saturated at tU/h > 400 at a lower
magnitude than that of the natural case. In general, lock-in is not necessarily induced by
resonance, and can arise from instability of the structure (De Langre 2006; Zhang et al.
2015; Gao et al. 2017). However, the present result suggests that the slow growth of Yc
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Figure 15. Temporal behaviours of the angular and vertical displacements and energy (Yc ≡ 0 or θc ≡ 0):
(a) θc with Yc ≡ 0; (b) Yc with θc ≡ 0; (c) energy (——— (blue), Eθc (Yc ≡ 0); ——— (red), EYc (θc ≡ 0);
– – – – – (blue), Eθc (natural case); – – – – – (red), EYc (natural case)).

is not directly caused by the occurrence of torsional vibration, and the vertical vibration
itself does not evolve into fluttering even in the presence of fluid flow but only experiences
the resonance-induced lock-in.

So far, we have shown that the torsional vibration grows exponentially at U = 18 m s−1

(Re = 10 000) even if the vertical displacement is set to zero, but it does not grow in
the absence of the free-stream velocity when the energy of the vertical displacement
is not sufficiently high. On the other hand, it was shown by Arioli & Gazzola (2017)
that the torsional vibration suddenly increases in the absence of the free-stream velocity
when the initial vertical displacement is large enough. From these results, one can expect
that there must be a critical free-stream velocity from which the torsional vibration
rapidly grows under zero initial vertical displacement. To see if the torsional vibration
does not grow at a lower free-stream velocity, we perform a few more simulations at
U = 9, 8, 6 and 2.25 m s−1, respectively, corresponding to Re ≈ 5000, 4444, 3333 and
1250. The temporal evolutions of Eθc and EYc for different free-stream velocities are
shown in figure 16. At U ≥ 9 m s−1, Eθc grows exponentially and is bigger than EYc ,
indicating that the torsional vibration is dominant. On the other hand, at U ≤ 8 m s−1,
Eθc and EYc are saturated and Eθc is much smaller than EYc , indicating that the vertical
vibration is dominant (for example, the maximum angular displacement is less than 1
degree for U = 8 m s−1). Since the natural frequency of the torsional mode (nm = 2) is
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Figure 16. Comparison of Eθc and EYc for different free-stream velocities: black lines, U = 18 m s−1; green
lines, U = 9 m s−1; red lines, U = 8 m s−1; blue lines, U = 6 m s−1; purple lines, U = 2.25 m s−1. Here,
solid and dashed lines are for Eθc and EYc , respectively.

fnat = 0.025U/h = 0.1875 Hz (figure 4b) and B = 2l = 5h = 12 m in the present study,
the non-dimensional critical flutter wind speed obtained from the present study is 3.56 <

Uc/( fnatB) ≤ 4, where Uc/( fnatB) = 3.56 and 4 correspond to U = 8 and 9 m s−1,
respectively. This result agrees very well with the previous ones: i.e. Uc/( fnatB) = 4 by
Matsumoto, Shirato & Hirai (1992), 3.55 by Scanlan (1999), 3.6–4 (instability analysis)
and 4 (numerical simulation) by Larsen (2000), 4 by Szabó et al. (2020) and 3.5–4.4 by
Hu et al. (2022). It is also noteworthy that Ammann et al. (1941) obtained Uc/( fnatB) = 4
for a two-dimensional H-section (wind tunnel test), but failed to obtain a reasonable critical
wind speed for a 1 : 234 scale full model of the TNB.

The lowest Reynolds number at which vortex shedding occurs behind a stationary
deck cross-section is obtained as Recr = 89 by performing additional two-dimensional
simulations. It has been reported that a vortex-induced vibration (VIV) may occur even
in the sub-critical regime where no vortex shedding exists for stationary structures (Cossu
& Morino 2000; Mittal & Singh 2005; Kou et al. 2017). Whether a similar phenomenon
occurs for the present TNB, we perform two additional simulations at Re = 75 and 50. For
both Reynolds numbers, the maximum vertical and angular displacements, Yc/h and θc,
are less than 2 × 10−6 and 10−4◦, respectively, indicating that VIV does not occur at these
sub-critical Reynolds numbers for the TNB.

4. Conclusions

The vertical vibration and transition to torsional vibration of the TNB were examined by
large-scale three-dimensional direct numerical simulation using 13.4 billion grid points
and maximum 160 000 MPI processes. Real-scale structural parameters of the bridge were
used for the simulation, and the vertical (Yc) and rotational (θc) displacements of the deck
centre were observed to investigate the vertical and torsional motions of the bridge. The
Reynolds number based on the free-stream velocity and height of the deck fence was lower
(Re = 10 000) than the actual one on the day of the collapse (Re = 3.06 × 106), but the
magnitudes of fluid properties were adjusted to provide the real-scale aerodynamic force
and moment on the bridge deck. Fluid–structure interaction of the wind and bridge was
also employed. The wavelengths and frequencies of the vertical and torsional vibrations
showed good agreement with the recorded data of the incident.

The natural frequency of the vertical vibration (fnath/U = 0.1–0.105) with a wavelength
of λz = Lz/5 was very similar to the vortex-shedding frequency of the flow over a
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stationary deck (fvsh/U = 0.111), which indicated that the vertical vibration was induced
by the lock-in with the vortex shedding. After the saturation of the vertical vibration, a
torsional vibration started and grew exponentially in time. During the vertical vibration,
the vertical displacement was in phase with the sectional aerodynamic lift (but not with
the rotational angle). However, during the torsional vibration, the vertical displacement
and rotational angle of the deck were closely associated with the fluid flow, i.e. the
vertical displacement was in phase with the rotational angle, 180◦ out of phase with
the sectional aerodynamic lift and 90◦ out of phase with the sectional aerodynamic
moment. The transition from the vertical to torsional vibration was indicated by suggesting
a new non-dimensional variable Δ by comparing the relative strength of the vertical
to torsional vibrations. The magnitudes of the energy from the vertical and angular
displacements mostly consisted of the energy accumulated by the aerodynamic lift and
moment, respectively, indicating close interaction between the bridge and fluid flow.
Initially, the energy containing the vertical displacement exponentially grew in time and
then became saturated. After the saturation of the vertical displacement energy, the energy
of the angular displacement grew exponentially in time and became much larger than that
of the vertical displacement. By testing a few more free-stream velocities, we showed that
the critical flutter wind speed is 3.56 < Uc/( fnatB) ≤ 4, where fnat is the natural frequency
of the torsional vibration, and B is the deck cross-section width. This critical wind speed
agreed very well with those by previous studies (Ammann et al. 1941; Matsumoto et al.
1992; Scanlan 1999; Larsen 2000; Szabó et al. 2020; Hu et al. 2022).

We also showed that the presence of fluid flow is required for the development of
the torsional vibration, when the vertical vibration energy is not sufficiently high. For
example, the energy accumulated in Yc and θc (EYc and Eθc , respectively) revealed that
the torsional vibration sufficiently grows even with EYc = 846 kJ at tU/h = 350, which
is much lower than the energy threshold of instability (82.1 MJ) of the vertical mode
(nm = 10) in the absence of the free-stream velocity suggested by Arioli & Gazzola
(2017). The vortex-formation frequency during the torsional vibration was significantly
different from the natural vortex-shedding frequency behind the stationary TNB deck,
and the energy accumulated by the aerodynamic lift and moment matched well with EYc
and Eθc , respectively, meaning that the torsional instability occurs through the aeroelastic
fluttering. Apart from the real vibration process during the collapse of the TNB in 1940,
we conducted a simulation by setting a zero vertical displacement. The torsional vibration
still developed through a large-amplitude aerodynamic fluttering even in the absence of
the vertical vibration.

Finally, we would like to mention two approximations made in the present study. One is
that the structural damping effect was neglected in the present nonlinear structure model
(Arioli & Gazzola 2017), and thus the energy growth might be over-predicted. Introducing
the damping effect may reduce the natural frequencies of the vertical and torsional modes
and delay their growth, but the essential vibration patterns are not expected to change
significantly. The second is that we used a much lower Reynolds number than the real one
in 1940. Thus, there exist some effects from small-scale turbulence that was not resolved
in the present simulation, but we expect that the force and moment generated by those
small scales have no significant effect on the TNB vibration motion.
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