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Machine Learning (ML) is becoming increasingly popular in fluid dynamics. Powerful
ML algorithms such as neural networks or ensemble methods are notoriously difficult
to interpret. Here, we introduce the novel Shapley additive explanations (SHAP)
algorithm (Lundberg & Lee, Advances in Neural Information Processing Systems, 2017,
pp. 4765–4774), a game-theoretic approach that explains the output of a given ML model
in the fluid dynamics context. We give a proof of concept concerning SHAP as an
explainable artificial intelligence method providing useful and human-interpretable insight
for fluid dynamics. To show that the feature importance ranking provided by SHAP can
be interpreted physically, we first consider data from an established low-dimensional
model based on the self-sustaining process (SSP) in wall-bounded shear flows, where
each data feature has a clear physical and dynamical interpretation in terms of known
representative features of the near-wall dynamics, i.e. streamwise vortices, streaks and
linear streak instabilities. SHAP determines consistently that only the laminar profile, the
streamwise vortex and a specific streak instability play a major role in the prediction. We
demonstrate that the method can be applied to larger fluid dynamics datasets by a SHAP
evaluation on plane Couette flow in a minimal flow unit focussing on the relevance of
streaks and their instabilities for the prediction of relaminarisation events. Here, we find
that the prediction is based on proxies for streak modulations corresponding to linear streak
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instabilities within the SSP. That is, the SHAP analysis suggests that the break-up of the
self-sustaining cycle is connected with a suppression of streak instabilities.

Key words: turbulent transition, machine learning, low-dimensional models

1. Introduction

Recent successes in the application of artificial intelligence (AI) methods to fluid dynamics
cover a wide range of topics. These include model building such as a data-driven
identification of suitable Reynolds-averaged Navier–Stokes models (Duraisamy, Iaccarino
& Xiao 2019; Rosofsky & Huerta 2020), subgrid-scale parametrisations (Rosofsky &
Huerta 2020; Xie et al. 2020), state estimation by neural networks based on reduced-order
models (Nair & Goza 2020), data assimilation for rotating turbulence (Buzzicotti et al.
2021) through generative adversarial networks (Goodfellow et al. 2014), dynamical and
statistical prediction tasks (Srinivasan et al. 2019; Boullé et al. 2020; Lellep et al.
2020; Pandey & Schumacher 2020; Pandey, Schumacher & Sreenivasan 2020) or pattern
extraction in thermal convection (Schneide et al. 2018; Fonda et al. 2019). Open questions
remain as to how AI can be used to increase our knowledge of the physics of a
turbulent flow, which in turn requires knowledge as to what data features a given
machine learning (ML) method bases its decisions upon. This is related to the question
of representativeness vs significance introduced and discussed by Jiménez (2018) in the
context of two-dimensional homogeneous turbulence and motivates the application of
explainable AI.

Lately, advances in model agnostic explanation techniques have been made by Lundberg
& Lee (2017) in the form of the introduction of Shapley additive explanations (SHAP)
values. These techniques have proven themselves useful in a wide range of applications,
such as decreasing the risk of hypoxaemia during surgery (Lundberg et al. 2018b) by
indicating the risk factors on a per-case basis. Subsequently, these methods have been
adapted and optimised for tree ensemble methods (Lundberg, Erion & Lee 2018a).
Here, we use boosted trees as well as deep neural networks in conjunction with SHAP
values to provide a first conceptual step towards a machine-assisted understanding of
relaminarisation events in wall-bounded shear flows.

Relaminarisation describes the collapse of turbulent transients onto a linearly stable
laminar flow profile. It is intrinsically connected with the transition to sustained turbulence
in wall-bounded shear flows. Localised turbulent patches such as puffs in pipe flow
either relaminarise or split in two (Wygnanski & Champagne 1973; Nishi et al. 2008;
Avila et al. 2011). Transient turbulence is explained in dynamical systems terms through
a boundary crisis between a turbulent attractor and a lower branch of certain exact
solutions of the Navier–Stokes equations (Kawahara & Kida 2001; Kreilos & Eckhardt
2012; Lustro et al. 2019). In consequence, the boundary of the basin of attraction of the
laminar fixed point becomes fractal, and the turbulent attractor transforms into a chaotic
saddle. Relaminarisation events correspond to state-space trajectories originating within
this complex basin of attraction of the laminar state, eventually leaving the chaotic saddle
in favour of the laminar fixed point. For an ensemble of state-space trajectories, the
hallmark of escape from a chaotic saddle – a memoryless process – is an exponential
sojourn time distribution P(t) ∝ exp (t/τ), with P(t) denoting the probability of residing
within the strange saddle after time t and τ the characteristic time scale of the escape (Ott
2002). Exponentially distributed sojourn times, or turbulent lifetimes, are a salient feature
of wall-bounded turbulence close to onset, for instance in pipe flow (Hof et al. 2006;
Eckhardt et al. 2007; Hof et al. 2008; Avila, Willis & Hof 2010; Avila et al. 2011)
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or plane Couette flow (Schmiegel & Eckhardt 1997; Bottin et al. 1998; Eckhardt
et al. 2007; Schneider et al. 2010; Shi, Avila & Hof 2013), and they occur
in box turbulence with periodic boundary conditions provided the forcing allows
relaminarisation (Linkmann & Morozov 2015). The associated time scale τ usually
increases super-exponentially with Reynolds number (Eckhardt & Schneider 2008; Hof
et al. 2008; Avila et al. 2011; Linkmann & Morozov 2015). The puff splitting process also
has a characteristic Reynolds-number-dependent time scale, and the transition to sustained
and eventually space-filling turbulence occurs when the puff splitting time scale exceeds
the relaminarisation time scale (Avila et al. 2011). In the language of critical phenomena,
the subcritical transition to turbulence belongs to the directed percolation universality class
(Pomeau 1986; Lemoult et al. 2016).

In order to facilitate the physical interpretation and to save computational effort, in this
first step we consider a nine-dimensional shear flow model (Moehlis, Faisst & Eckhardt
2004) that reproduces the aforementioned turbulence lifetime distribution (Moehlis et al.
2004) of a wall-bounded parallel shear flow. Subsequently, and in order to demonstrate that
the method can be upscaled to larger datasets relevant to fluid dynamics applications, we
provide an example, where the same classification task is carried out on data obtained by
direct numerical simulation (DNS) of plane Couette flow in a minimal flow unit. Here, we
focus on the structure of high- and low-speed streaks characteristic of near-wall turbulence.

The low-dimensional model is obtained from the Navier–Stokes equations by Galerkin
truncation and the basis functions are chosen to incorporate the self-sustaining process
(SSP) (Waleffe 1997), which describes the basic nonlinear near-wall dynamics of
wall-bounded parallel shear flows close to the onset of turbulence. According to the SSP,
a streak is generated by advection of the laminar flow by a streamwise vortex, this streak is
linearly unstable to spanwise and wall-normal perturbations, which couple to re-generate
the streamwise vortex and the process starts anew. The nine-dimensional model assigns
suitably constructed basis functions to the laminar profile, the streamwise vortex, the
streak and its instabilities and includes a few more degrees of freedom to allow for mode
couplings. Each basis function, that is, each feature for the subsequent ML steps, has a
clear physical interpretation. Hence, the model lends itself well for a first application of
explainable AI methods to determine which flow features are significant for the prediction
of relaminarisation events.

The nine-mode model by Moehlis et al. (2004) and similar low-dimensional models
have been considered in a number of contributions addressing fundamental questions in
the dynamics of parallel shear flows. Variants of the nine-mode model have been used,
for instance, to introduce the concept of the edge of chaos to fluid dynamics and its
connection with relaminarisation events (Skufca, Yorke & Eckhardt 2006), to understand
drag reduction in viscoelastic fluids (Roy et al. 2006) or to develop data-driven approaches
to identify extreme fluctuations in turbulent flows (Schmid, García-Gutierrez & Jiménez
2018). In the context of AI, Srinivasan et al. (2019) used different types of neural
networks (NNs) to predict the turbulent dynamics of the nine-dimensional model. There,
the focus was on the ability of NNs to reproduce the shear flow dynamics and statistics
with a view towards the development of machine-assisted subgrid-scale models. Good
predictions of the mean streamwise velocity and Reynolds stresses were also obtained
with echo state networks (ESNs) (Pandey et al. 2020). Doan, Polifke & Magri (2019)
used physics-informed ESNs, where the equations of motion are incorporated as an
additional term in the loss function, for dynamical prediction of chaotic bursts related
to relaminarisation attempts.

The key contribution in our work is to identify the significant features within a
data-driven prediction of relaminarisation events, that is, the features a classifier needs
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to see in order to perform well. For the nine-mode model (NMM), apart from the
laminar profile, we find that SHAP identifies some of the main constituents of the SSP,
the streamwise vortex and a single sinusoidal streak instability, as important for the
prediction of relaminarisation events. Other features, such as the streak mode or certain
streak instabilities, which are certainly of relevance for the dynamics, are not identified.
These strongly correlate with the features that have been identified as important for the
classification, hence they carry little additional information for the classifier. There is no
a priori reason for choosing, say, the streamwise vortex instead of the streak as a feature
relevant for the prediction. In fact, if predictions are run using only subsets consisting of
features that have not been identified as important but correlate with important features,
the prediction accuracy drops significantly. Finally, the information provided by SHAP is
discussed in conjunction with the model equations to provide physical insights into the
inner workings of the SSP within the remit of the NMM. For the DNS data, SHAP values
indicate that the classifier bases its decisions on regions in the flow that can be associated
with streak instabilities. This suggests SHAP as a method to inform the practitioner as to
which flow features carry information relevant to the prediction of relaminarisation events,
information that cannot be extracted by established means.

The remainder of this article is organised as follows. We begin with an introduction of
the NMM, its mathematical structure and dynamical phenomenology in § 2. Subsequently,
§ 3 summarises the technical details of the ML approach, that is, boosted trees for the
classification and SHAP values for the interpretation. The results of the main investigation
are presented in § 4. First, we summarise the prediction of relaminarisation events.
Second, the most important features, here the physically interpretable basis functions
of the aforementioned NMM, are identified by ranking according to the mean absolute
SHAP values for a number of prediction time horizons. Short prediction times, where
the nonlinear dynamics is already substantially weakened, serve as validation cases. As
expected, the laminar mode is the only relevant feature in the prediction in such cases. For
longer prediction times the laminar mode remains important, and the modes corresponding
to the streamwise vortex and the sinusoidal streak instability become relevant. Therein,
§ 4.3 contains a critical discussion and interpretation of the results described in the
previous sections. Here, we connect the significant features identified by SHAP to
important human-observed characteristics of wall-bounded shear flows such as streaks and
streamwise vortices in the SSP. Section 5 provides an example SHAP calculation on DNS
data of plane Couette flow in a minimal flow unit. We summarise our results and provide
suggestions for further research in § 6 with a view towards the application and extension
of the methods presented here to higher-dimensional data obtained from experiments or
high-resolution numerical simulations.

2. The NMM

We begin with a brief description of the NMM (Moehlis et al. 2004) and its main features.
The model is obtained by Galerkin truncation of a variation of plane Couette flow with
free-slip boundary conditions at the confining walls, the sinusoidal shear flow. Sinusoidal
shear flows show qualitatively similar behaviour compared with canonical shear flows such
as pipe and plane Couette flow, in the sense that (i) the dynamics is governed by the SSP
(Waleffe 1997), and (ii) the laminar profile is linearly stable for all Reynolds numbers
(Drazin & Reid 2004). Most importantly, the sinusoidal shear flow we use subcritically
transitions to turbulence and shows relaminarisation events, it is thus a prototypical
example of a wall-bounded shear flow.
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More precisely, we consider an incompressible flow of a Newtonian fluid between
two – in principle – infinitely extended parallel plates a distance d apart, with free-slip
boundary conditions in the wall-normal x2-direction. Periodic boundary conditions in the
homogeneous streamwise (x1) and spanwise (x3) directions model the infinite extent of the
plates. The sinusoidal shear flow is thus described by the incompressible Navier–Stokes
equations in a rectangular domain Ω = [0, L1] × [−d/2, d/2] × [0, L3]. These read in
non-dimensionalised form

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

�u +
√

2π2

4Re
sin(πx2/2)êx1, (2.1)

∇ · u = 0, (2.2)

where u(x = (x1, x2, x3)) = (u1, u2, u3) is the fluid velocity, p is the pressure divided by
the density and Re = U0d/(2ν) the Reynolds number based on the kinematic viscosity
ν, the velocity of the laminar flow U0 and the distance d between the confining plates,
and êx1 the unit vector in the streamwise direction. The last term on the right-hand
side of (2.1) corresponds to an external volume force, which is required to maintain the
flow owing to the free-slip boundary conditions. It sustains the laminar profile U(x2) =√

2 sin(πx2/2)êx1 and determines thereby the velocity scale U0, which is given by U(x2)
evaluated at a distance x2 = d/4 from the top plate. The non-dimensionalisation with
respect to U0 and d/2 results in time being given in units of d/(2U0).

The NMM of Moehlis et al. (2004) is a low-dimensional representation of the sinusoidal
shear flow obtained by Galerkin projection onto a subspace spanned by nine specifically
chosen orthonormal basis functions ui(x) for i = 1, . . . , 9 with 〈ui(x), uj(x)〉 = δij, where
〈·〉 denotes the L2-inner product on Ω . The NMM extends previous models by Waleffe
with 4 and 8 modes (Waleffe 1995, 1997) based on the SSP. Each mode has a clear
interpretation

u1(x) = U(x2) – the laminar profile,
u2(x) – the streak,
u3(x) – the downstream vortex,
u4(x) and u5(x) – streak instabilities: spanwise flows,
u6(x) and u7(x) – streak instabilities: normal vortex modes,
u8(x) – a three-dimensional interaction mode,
u9(x) – a model for the modification to the laminar profile by Reynolds stresses.

The basis functions, or modes, are divergence free and satisfy the aforementioned
boundary conditions. We refer to (7) to (16) of Moehlis et al. (2004) for the explicit
mathematical expressions. The Galerkin projection results in the following expansion:

u(x, t) =
9∑

i=1

ai(t)ui(x), (2.3)

for the velocity field with nine corresponding time-dependent coefficients ai(t).
Equation (2.1) then gives rise to a system of nine ordinary differential equations for
a1(t), . . . , a9(t) – the NMM – given by (21) to (29) of Moehlis et al. (2004). Despite
its simplicity, the dynamics of the NMM resembles that of wall-bounded shear flows close
to the onset of turbulence which transition subcritically. First, it is based on the near-wall
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Figure 1. Time series of the nine spectral coefficients ai in (2.3), with the laminar coefficient a1 shown in
black and modes a2 to a9 are shown in red to yellow. The dashed green line represents the threshold between
turbulent and laminar dynamics as defined by an energy threshold on the deviations of the laminar profile
El = 5 × 10−3, see (4.1). The number of snapshots per training sample is set to Ns = 5, which are �t apart. The
temporal spacing is set to �t = 100 in this example for visual purposes only, �t = 3 is used in all calculations
with Ns > 1. The short orange vertical lines mark prediction time horizons of tp = {200, 300, 350} for visual
guidance, see § 4 for further details.

cycle, the SSP, by construction. Secondly, its transient chaotic dynamics collapses onto the
laminar fixed point with exponentially distributed lifetimes (Moehlis et al. 2004, figure 7),
that is, it shows relaminarisation events with qualitatively similar statistics as wall-bounded
parallel shear flows. Hence, the model is suitable for a study concerned with the prediction
of relaminarisation events of turbulent shear flows.

The nine ordinary differential equations that comprise the NMM are solved with an
explicit Runge–Kutta method of order 5 (Dormand & Prince 1980) with a fixed time step,
using Scipy (Virtanen et al. 2020) with Python. The time step for the integrator is set to
dt = 0.25 for all simulations and we use a simulation domain of size [0, 4π] × [−1, 1] ×
[0, 2π] in units of d/2. Since we later train ML models to predict the relaminarisation
events, a Reynolds number of Re = 250 is chosen in order to reduce waiting times
for relaminarisation events, as the mean turbulent lifetime increases very rapidly with
Reynolds number. Figure 1 presents a time series of a1(t), . . . , a9(t) representative of a
relaminarisation event in the NMM. After irregular fluctuations, eventually the coefficients
a2(t), . . . , a9(t), pertaining to all but the laminar mode, decay. In contrast, the coefficient
a1(t) of the laminar mode, shown in red, asymptotes to unity. The chaotic regions of the
dynamics of the NMM are characterised by a Lyapunov time of tL ≈ 60. The Lyapunov
time is the inverse of the largest Lyapunov exponent (Ott 2002) and corresponds to the
time after which initially infinitesimally close phase-space trajectories become separated
by an L2-distance of e, Euler’s number.

3. ML and SHAP values

3.1. XGBoost
A gradient boosted tree model is used as ML model for making the relaminarisation
predictions. Specifically, the XGBoost (Chen & Guestrin 2016) implementation of a
boosted tree model in Python is utilised to benefit from its fast implementation for very
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large datasets. XGBoost is known for its high performances on ML tasks such as high
energy physics event classification, massive online course dropout rate predictions and
other dedicated real-life ML competition tasks (Chen & Guestrin 2016). Additionally,
XGBoost-based classifiers benefit from fast implementations of SHAP value computations
(Lundberg et al. 2018a) that will be used in § 4.2 to explain the trained ML model.

Boosting methods belong to the class of ensemble methods (Hastie, Tibshirani &
Friedman 2009). These methods use an ensemble of weak learners, i.e. models that
by themselves are not very powerful, to make predictions. The mathematical details of
boosted trees and XGBoost can be found in Appendix A.1.

3.2. SHAP values
While ML models might show good prediction performances given a task, it is not
per se clear which relations have been learned and led to this good performance.
Complex and well-performing ML models come at the cost of being difficult to be
interpreted and inspected. Hence, traditionally less performing methods, such as linear
models, were deployed for the sake of being easier to interpret. Recent advances in
explainable AI attempt to work on the understanding of well-performing and complex ML
models – including model agnostic explanation techniques and model-specific explanation
techniques – to benefit from high prediction performances as well as explainable models.

One recent method that enables complex models to be interpreted are SHAP values.
SHAP values unify recently developed explainable AI methods such as the LIME
(Ribeiro, Singh & Guestrin 2016), DeepLIFT (Shrikumar, Greenside & Kundaje 2017) and
layer-wise relevance propagation (Bach et al. 2015) algorithms while also demonstrating
theoretically that SHAP values provide multiple desirable properties. Additionally, SHAP
values can be evaluated efficiently when using model-specific implementations such as for
XGBoost. We briefly introduce SHAP values in the following.

SHAP values belong to the class of additive feature explanation models that explain the
ML model output g at sample z ∈ R

M in terms of effects assigned to each of the features

g(z) = Φ0 +
M∑

m=1

Φm, (3.1)

with M as number of features. Lundberg & Lee (2017) define a specific choice of Φm
which they coined as SHAP values. These are based on the game-theoretic Shapley values
(Shapley 1953) and adhere to three desirable properties that make their explanations
locally accurate and consistent. The SHAP value for feature m of sample z for model g
are computed as

Φm(g, z) =
∑

S⊆SF\{m}

|S|!(M − |S| − 1)!
M!

(g(S ∪ {m}) − g(S)) (3.2)

with S a subset of features that does not contain the feature m to be explained, SF the set
of all M features and g(S) as model output of feature subset S; Φ0 is determined separately
as the average model output by Φ0 = g(S = ∅).

Intuitively, SHAP values thereby measure the difference between the trained model
evaluated including a particular target feature and evaluated excluding it, averaged over
all feature set combinations that do not include the target feature. The prefactor is a
symmetric weighting factor and puts emphasis on model output differences for feature
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subsets S with either a small number of features or a number close to M. Hence, the model
output difference that stems from removing the target feature is considered particularly
relevant when there is either a small or a large number of features in the feature set S that
is considered.

The model g evaluated on a feature subset S, g(S), is technically challenging as a model
is trained on a fixed number of features; g(S) is realised by a conditional expectation value
that conditions on the feature values of z that are present in feature subset S

g(S) = E[g(ẑ) | ẑ = zS]. (3.3)

This avoids the technical difficulty of evaluating a readily trained model on a subset of
features.

The SHAP value property of local accuracy ensures that the sum of the SHAP values
for the explained sample z corresponds to the difference between the model output for that
sample, g(z), and the mean prediction of the model, 〈g(z̃)〉z̃

M∑
m=1

Φm(g, z) = g(z) − 〈g(z̃)〉z̃. (3.4)

Hence, the sum over all SHAP values is equal to the difference between model output and
mean model prediction.

We use a fast implementation of SHAP values for tree ensemble models by Lundberg
et al. (2018a). While (3.3) is typically evaluated by an integration over a background
dataset, the fast tree-specific algorithm incorporates the tree structure by omitting all paths
that are not compatible with the conditional values zS.

While SHAP values provide per-sample contributions for each feature, a typical task is
to assign each feature m = 1, . . . , M an importance for the model predictions. A common
approach is to average the absolute SHAP values over all samples in the dataset (Molnar
2020). The average ensures a statistical statement about the SHAP values and removing
the sign from the SHAP values ensures that positive and negative contributions to the ML
model output are accounted for equally.

Additionally to the classical SHAP values presented above, there exist SHAP interaction
values (Lundberg et al. 2020) that capture the contributions of feature interactions to the
ML model output by generalising the classical SHAP values to combinations of features.
Consequently, each sample is assigned a matrix of SHAP interaction values that are
computed as

Φm,n(g, z) =
∑

S⊆SF\{m,n}

|S|!(M − |S| − 2)!
2(M − 1)!

(g(S ∪ {m, n}) − g(S ∪ {n})

−[g(S ∪ {m}) − g(S)]) , (3.5)

for m /= n and

Φm,m(g, z) = Φm(g, z) −
∑

n /= m

Φm,n(g, z). (3.6)

Setting Φ0,0(g, z) to the average output of g, one obtains a similar property as for the
classical SHAP values in (3.4), namely the additivity property

M∑
m=0

M∑
n=0

Φm,n(g, z) = g(z). (3.7)
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Also for these SHAP interaction values we use a fast implementation for tree ensembles
(Lundberg et al. 2020).

4. Results

Before studying the inner workings of the ML model, a well-performing model needs to be
trained on relaminarisation events. This section defines the fluid dynamical classification
task and presents the achieved results with a XGBoost tree followed by their explanation
with SHAP values.

The prediction of the relaminarisation events a time tp ahead is considered a supervised
binary classification problem in ML (Bishop 2006). Supervised tasks require the training
data to consist of pairs of input and target outputs, commonly called z and y, respectively.
Here, the input data consist of a number Ns of nine-dimensional vectors of spectral
coefficients a = (a1, . . . , a9) from the flow model introduced in § 2. The output is a binary
variable encoded as 1 and 0 that contains information on whether the flow corresponding
to the input spectral coefficients relaminarised a time tp ahead or not, respectively.

The training data are acquired by forward simulation of the flow model. A single fluid
simulation is initialised with a random nine-dimensional initial condition, with initial
amplitudes uniformly distributed according to U(−0.25, 0.25), and integrated for 4000
time units. After removing a transient period of 200 time units to ensure that the dynamics
has reached the attracting phase-space region, training samples for each of the two classes
are extracted from the trajectory. This process of starting forward simulations of the fluid
model and the subsequent extraction of training data is repeated until enough training
samples have been obtained.

The training data comprise Nt = 106 training samples, half of which belong to the class
of samples that relaminarise and the other half belong to the class of samples that do not
relaminarise. The balanced test dataset is separate from the training dataset and consists
of Nv = 105 samples that have not been used for training purposes.

The extraction of training samples from a trajectory is based on the classification of the
trajectory in turbulent and laminar regions. For that, the energy of the deviation from the
laminar flow of each of the velocity fields u(x, t) in the trajectory is computed as

E(t) = 〈u(x, t) − U(x2), u(x, t) − U(x2)〉 =
9∑

i=1

(
ai(t) − δ1,i

)2
, (4.1)

using the spectral expansion coefficients ai(t) at each time step and the orthonormality of
the basis functions in the last equality. To classify the trajectory in turbulent and laminar
sections, an energy threshold El = 5 × 10−3 is set. Hence, a velocity field u is classified
according to the binary variable

c(u) =
{

1, if E(u) ≤ El

0, otherwise
(4.2)

with c = 0 denoting the class of samples that do not relaminarise tp time steps ahead and
class 1 denoting those that do relaminarise. The value for El is chosen based on empirical
tests that have shown no return to chaotic dynamics after a trajectory reached a velocity
field with energy El.

Using the classification c(u(t)) of a trajectory u(t), the training data acquisition is
characterised by the prediction horizon tp and the number of flow fields Ns that make
up one sample. To construct a single training sample from a trajectory, a random point tr
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in the trajectory is chosen to serve as target point. Its classification label c(u(tr)) is used
as training data target output y. The input data z is obtained by using Ns equally spaced
spectral coefficients preceding the chosen time point about tp, i.e. at tr − tp. Hence, a single
training sample is extracted as

(z, y) = ([
a(tr − tp − (Ns − 1)�t), . . . , a(tr − tp − 0�t)

]
, c(u(tr))

)
, (4.3)

with the temporal spacing between subsequent snapshots for one training sample �t. We
gauged �t = 3 to the dynamics of the flow model in order to capture sufficient dynamical
detail. Finally, the temporal positions tr are spread randomly in turbulent regions to obtain
samples for class 0 and specifically placed at the laminar transition to obtain samples for
class 1.

Figure 1 shows the training data acquisition process based on an example trajectory with
one randomly chosen time tr,1 to obtain a sample for class 0, coloured in blue, and another
time tr,2 set at the laminar transition to obtain a sample for class 1, coloured in green.
The short orange vertical lines mark the prediction time horizons of tp = {200, 300, 350}
for visual guidance. The large value of a1 for tp = 200 demonstrates why this prediction
horizon serves as validation case. After training, the ML classifier can be given a set of Ns
points equally spaced with �t and predict whether the flow described by these data will
relaminarise after a time integration of tp time units.

It is good practice to analyse the training data prior to training classifiers on it. We
pick Ns = 1 and visualise the training data distributions of the nine spectral expansion
coefficients for tp ∈ {200, 300}, see figure 2. The distributions for the two classes 0 and 1
become statistically less distinguishable for increasing tp, requiring the ML model to learn
per-sample correlations to perform well. It is observed that the classes for tp = 200 can
be distinguished from a statistical point of view already. This is because the prediction
horizon is not large enough to move the samples off the slope of the laminar transition as
indicated by the rightmost orange bar in figure 1. The prediction horizon of tp = 300, on
the other hand, is large enough to forbid sample classification through simple statistical
properties because the histograms of both classes mostly overlap. Hence, tp = 200 is
considered a benchmark case as the prediction performance is expected to be high because
the large laminar mode is sufficient for the classification.

4.1. Prediction of relaminarisation events
The hyperparameters of the gradient boosted tree are optimised using a randomised
hyperparameter search strategy. The strategy chooses the hyperparameters from predefined
continuous (discrete) uniform distributions Uc(a, b) (Ud(a, b)) between values a and b and
samples a fixed number of draws. We draw 100 hyperparameter combinations according
to the distributions

hNE ∼ Ud(500, 1500),

hMD ∼ Ud(1, 50),

hMCW ∼ Ud(1, 15),

hGA ∼ Uc(0, 5),

hSS ∼ Uc(0.5, 1),

hCBT ∼ Uc(0.5, 1),

hLR ∼ Uc(0.001, 0.4).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)
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Figure 2. Normalised training data distributions of modes 1 to 9. Here, tp = 300 is shifted upwards for visual
purposes. Class 1 (0) corresponds to samples that do (not) relaminarise after tp time steps.

We verified for tp = 300 that 100 draws cover the hyperparameter phase space sufficiently
well by drawing 200 hyperparameter combinations to show that this leads to similar
prediction performances as for 100. The hyperparameters that are found by the randomised
hyperparameter search are listed in Appendix A.2.

The prediction performance, measured on a test dataset, for Ns = 1 decays with
increasing tp, as expected on account of the intrinsic chaotic dynamics of the flow model
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Figure 3. Prediction performance of the trained classifier against temporal prediction horizon tp. The error bar
for tp = 300 shows 100 standard deviations σ for visualisation purposes and demonstrates the robustness of
the results. It has been obtained by training the classifier on training datasets based on different initial random
number generator seeds.

(Moehlis et al. 2002; Moehlis, Faisst & Eckhardt 2005; Lellep et al. 2020), see figure 3.
Nevertheless, the prediction performance is approximately 90 % for 5 Lyapunov times
(Bezruchko & Smirnov 2010) in the future and is, thereby, sufficiently good for the
subsequent model explanations by SHAP values. Calculations for different values of Ns
verify that the prediction performance only varies marginally for one exemplary set of
hyperparameters. This is to be expected based on the deterministic nature of the dynamical
system and its full observability. Hence, we here focus on Ns = 1, which means that the
classifier does not get dynamical information but only a single spectral snapshot of the
flow field. This reduces the computational cost for the subsequent model explanation by
SHAP values.

The prediction horizon tp = 200, indeed, corresponds to the benchmark case where the
laminar mode is supposed to be the only relevant indicator for relaminarisation and 450
corresponds to the case beyond which the ML model cannot predict reliably due to the
chaotic nature of the system (Moehlis et al. 2002, 2005; Lellep et al. 2020).

Lastly, to demonstrate the performance of the ML model also for applied tasks, the
model is applied in parallel to a running fluid simulation. Figure 4(a) shows the on-line
prediction of one simulated trajectory. The horizontal bottom bar indicates whether the
prediction of the classifier has been correct (green) or incorrect (red). We collected
statistics over 1000 trajectories to quantify how well the model performs on an applied
task instead of the test dataset. As shown in figure 4(b), the model performance for the
on-line live prediction is with approximately 90 % true positives and true negatives as well
as approximately 10 % false positives and false negatives, comparable to the performance
on the test dataset in terms of the normalised confusion matrices of the predictions.
The normalisation of the confusion matrices is necessary to account for the substantial
class imbalance in the data pertaining to the live prediction and to, thereby, make the
performances on the two tasks comparable.

The results demonstrate that the ML model performs sufficiently well despite
the intrinsic difficulty of predicting chaotic dynamics. Next, we turn towards the
main contribution of this work. There, we use the trained XGBoost ML model as

942 A2-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

30
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.307


Interpreted machine learning in fluid dynamics

0 1000 2000

−0.5

0

0.5

1.0
(a

i) i=
1,

...
,9

Laminar mode
Correct prediction
Incorrect prediction

0

1

89.7 %

10.3 %

6.9 %

93.1 %

Testing

0 1
Predicted class

0

1T
ru

e 
cl

as
s

T
ru

e 
cl

as
s

88.0 %

12.0 %

12.0 %

88.0 %

Live prediction

(b)(a)

t/(d/(2U0))

Figure 4. Classifier applied in parallel to fluid simulation. (a) Time series with indicated prediction output.
The mode corresponding to the laminar profile, a1, is shown in black and modes a2 to a9 are shown in red
to yellow. (b) Compared normalised confusion matrices of the model evaluated on the test dataset (top) and
during the live prediction (bottom). The normalisation is required to compare both confusion matrices because
of the class imbalance between model testing and live prediction. See main text for more details.

high-performing state-of-the-art ML model together with SHAP values to identify the
most relevant physical processes for the relaminarisation prediction in shear flows in a
purely data-driven manner.

4.2. Explanation of relaminarisation predictions
Since SHAP values offer explanations per sample and there are many samples to explain
using the test dataset, two approaches may be taken: first, a statistical statement can be
obtained by evaluating the histograms of SHAP values of all explained samples. Second,
live explanations of single samples can be calculated, similar to what we demonstrated
previously in § 4.1 with live predictions of relaminarisation events. This work focuses on
the former of the two perspectives and notes the potential of the latter approach for future
work in § 6.

The statistical evaluation shows bi-modal SHAP value distributions, see figure 5. Each
class corresponds to one of the modes, emphasising that the model learned to distinguish
between the two classes internally as the two classes are explained differently.

From (3.4) follows that the model output g(z) is made up of the SHAP values Φm(g, z).
The multi-modality of the SHAP values conditional on the class means therefore that the
feature contributions to the final output differ for both classes. Figure 6 shows the average
absolute SHAP values per class over all explained samples for tp = 300 and thereby
quantifies the differences in mode importance for the prediction of the two classes (Molnar
2020). Hence, the figure demonstrates that modes 1, 3 and 5 are the three most important
modes. Feature importances are evaluated by computing the absolute SHAP value mean
for different prediction times. This is shown in figure 7 for a range of tp.

The robustness of these results has been validated by two means: first, the SHAP values
of tp = 300 are recomputed for a second set of randomly acquired training data by using
a different initial training data seed, which is neither a trivial prediction task nor suffers
from bad prediction performance at a prediction performance of 91 %. Not only do the
minute fluctuations in figure 3 indicate the close similarities between the results but also
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Figure 5. Normalised SHAP value distributions of modes 1 to 9 for the 105 test samples; tp = 300 is shifted
upwards for visual purposes. Class 1 (0) corresponds to samples that do (not) relaminarise after tp time steps.

the SHAP value histograms are similar (data not shown). Second, the XGBoost model with
the optimal hyperparameters is retrained on a subset of features that are chosen according
to the feature importances derived from the SHAP values. The computations confirm that
the basis functions – which here have a clear correspondence to physical features and
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Figure 6. The mean absolute SHAP values as distinguished by the underlying class for tp = 300. Class 1 (0)
corresponds to samples that do (not) relaminarise after tp time steps.
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Figure 7. Feature importances as measured by mean absolute SHAP values. (a) The feature importances
normalised separately for each tp along its row to show the hierarchy of mode importance. (b) Normalisation
constants used in (a). To convert the normalised values shown in (a) to their absolute counterparts, each row
would need to be multiplied by the corresponding normalisation shown in (b).

dynamical mechanisms – identified as most important features by the SHAP values lead to
the largest training performance of all subsets tested. Also, the least important modes lead
to the lowest training performance. Lastly, the baseline of all modes consistently achieves
the best prediction performance. Additional to the few tested feature subset combinations,
all

(9
3

) = 84 combinations to pick 3 out of the 9 features have been evaluated for tp =
300. For these subsets, the prediction accuracy varies between 65 % and 80 %, with the
combination of the features with the largest SHAP values, (1, 3, 5), leading to the maximal
prediction accuracy (not shown).

To appreciate the concept of SHAP values, it is instructive to consider correlation
matrices of the training data as shown in figure 8(a,b) for classes 0 and 1, respectively.
A few observations can be made from the data. First, the correlation matrices belonging to
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Figure 8. (a,b) Correlation matrices of training data for classes 0 and 1, respectively. Class 1 (0) corresponds
to samples that do (not) relaminarise after tp time steps. (c,d) Mean absolute SHAP interaction values of the
first Nv/10 = 10 000 validation samples for classes 0 and 1, respectively. As self-correlations encoded in the
diagonal elements do not convey useful information, the diagonal elements have been set to zero for all panels
for presentational purposes.

two classes are remarkably similar, demonstrating that correlations alone are not sufficient
to distinguish between the classes. Here, we note that correlations only capture linear
relations between random variables. The only difference is that modes 4 and 5 positively
correlate in class 0, while they correlate negatively in class 1, and similarly for modes 7
and 8. When comparing the correlation matrices with the mode coupling table or with the
amplitude equations in Moehlis et al. (2004) we observe that strongly correlating modes
couple via either the laminar profile (mode 1) or its deviation in streamwise direction
(mode 9). The strong negative correlations between modes 2 and 3, and strong positive
correlations between modes 6 and 7, which occur for both classes, can be made plausible
by inspection of the evolution equation of the laminar profile. The nonlinear coupling only
extract energy from the laminar flow if the amplitudes of modes 2 and 3 have the opposite
sign, and those of modes 6 and 8 are of the same sign as products of these mode pairs
occur in the evolution equation of the laminar profile. In other words, in order to obtain
an unsteady dynamics, modes 2 and 3 must be mostly of opposite sign while 6 and 8 must
mostly have the same sign. In this context we note that the amplitude of the laminar mode
is always positive, as can be seen from figure 2(a).

Secondly, we consistently find correlations between modes identified as significant for
the prediction and irrelevant modes. For instance, modes one and nine correlate, and
so do mode two and three, four and five. Thirdly, modes that are considered significant
do not correlate. The latter two points highlight the game-theoretic structure of SHAP.
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For example, as the fluctuations of the coefficients pertaining to modes two and three are
strongly correlated, it is sufficient for the classifier to know about one of them. We will
return to this point in § 4.3.

To elucidate second-order interaction effects further, the SHAP interaction values
(Lundberg et al. 2020) are computed, see figure 8(c,d). The overall bar heights denote
the mode importance across both classes, the coloured bars distinguish between both
classes. Interactions between modes 3 and 5 are found to be strongest for samples
from both prediction classes. In particular modes 7 and 8 differ in their importances
for the two classes: both are more important in cases where relaminarisation does not
occur. Interaction effects between modes 4 and 5 are present for both classes, but more
pronounced for samples of class 0. Generally, interaction effects of samples of class 1 are
stronger than for those of class 0.

The feature importances presented in figure 7 show that the laminar mode is consistently
identified as a relevant feature. The shortest prediction time tp = 200 not only comes
with a prediction accuracy of ≈98 %, but the feature importance of the laminar mode
is also significantly stronger than for the other tested prediction horizons. This indicates
that this prediction case can, indeed, be considered a validation case. Within that scope,
the validation succeeded as the statistically significant laminar mode is detected as most
relevant mode.

Increasing the prediction horizons leads to a decrease in the importance metric for
all features, as can be inferred from the observed decrease in normalisation factors
shown in figure 7(b). The normalisation constants shown in figure 7(b) are computed
as Ni = ∑9

j=1 Φi,j, where Φi,j ∈ R denotes the SHAP value of mode j ∈ {1, . . . , 9}
for a prediction time t(i)p , the superscript i enumerating the sampled prediction times
tp ∈ {200, 225, . . . , 450}. Figure 7(a) thus presents Φi,j/Ni. The observed decrease in
normalisation factors with increasing tp indicates, together with declining prediction
performance, that sufficiently well-performing classifiers are required to enable the
subsequent explanation step.

4.3. Interpretation
Throughout the prediction horizons, u1, u3 and u5 are consistently considered important.
These modes represent the laminar profile, the streamwise vortex and a spanwise
sinusoidal linear instability of the streak mode u2, respectively. Streamwise vortices and
streaks are a characteristic feature of wall-bounded shear flows (Hamilton, Kim & Waleffe
1995; Bottin et al. 1998; Schmid, Henningson & Jankowski 2002; Holmes et al. 2012).
Alongside the laminar profile its linear instabilities u4–u7, they play a central role in
the self-sustaining process, the basic mechanism sustaining turbulence in wall-bounded
shear flows. The importance of the streamwise vortex u3 increases with prediction horizon
and decreases from tp ≈ 300 onwards, where the prediction accuracy begins to fall below
90 %.

The streak mode itself appears to be irrelevant for any of the predictions, which is
remarkable as it is, like the streamwise vortex, a representative feature of near-wall
turbulence. Similarly, its instabilities, except mode u5, are not of importance for the
classification. For the shortest prediction time, that is, for the validation case tp = 200,
mode u5 does not play a decisive role either, which is plausibly related to the SSP being
significantly weakened close to a relaminarisation event. This rationale, of course, only
applies to data samples in class 1, where relaminarisation occurs. Like the vortex mode
u3, the spanwise instability mode u5 increases in importance with prediction horizon
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except for the longest prediction horizon, which again can be plausibly explained by
a more vigorous SSP further away from a relaminarisation event. Since u1 and u3 are
translation invariant in the streamwise direction, a mode with x-dependence should always
be recognised, as the SSP cannot be maintained in two dimensions. The dominance of u5
over any of the other instabilities may be related to its geometry resulting in a stronger
shearing and thus a faster instability of the streak.

Apart from modes directly connected with the SSP, the deviation of the mean profile
from the laminar flow, u9, is also recognised as important for tp = 200 and tp = 250.
Turbulent velocity field fluctuations are known to alter the mean profile. In extended
domains, where turbulence close to its onset occurs in a localised manner, localisation
occurs through turbulence interacting with and changing the mean profile. The mean
profile of a puff in pipe flow, for instance, is flatter than the Hagen–Poiseuille profile
towards the middle of the domain, which decreases turbulence production (van Doorne &
Westerweel 2009; Hof et al. 2010; Barkley 2016).

Now the question arises as to if and how the information SHAP provides concerning the
mode importance ranking can be connected to the equations of motion and what can be
learned from this. In particular, concerning strongly correlated modes, it is instructive to
understand why a particular mode is favoured. For modes two and three, the mode coupling
table of Moehlis et al. (2004) again gives some indications. Mode three (the streamwise
vortex) generates mode two (the streak) by advection of mode one (the laminar profile) –
this is the first step of the SSP – or mode 9 (the deviation of the laminar profile). However,
the coupling table is not symmetric, that is, u2 cannot generate u3, and u3 can only be
re-generated through nonlinear interactions involving either u5 and u6 or modes u4 and
u7 or u8 – this is known as the third and last step in the SSP, where instabilities couple
nonlinearly to re-generate the streamwise vortex. Hence, out of the strongly correlated
mode pair u2 and u3, the latter should be physically more significant in the SSP than
the former, in the sense that u2 will become active if u1 and u3 are, but not vice versa.
SHAP indeed identifies u3 as significant while u2 plays no decisive role in the prediction.
A similar conclusion has recently been obtain for the transition to turbulence in flow
through a vertically heated pipe (Marensi, He & Willis 2021), where relaminarisation due
to buoyancy forces has been connected with a suppression of streamwise vortices rather
than streaks.

For modes 4 and 5 the situation is more subtle, as both modes can be converted into
each other through advection by the laminar profile. Again considering the mode coupling
table (or the amplitude equations), two points distinguish mode 5 from mode 4: (a) mode
5 is odd in x2 while mode 4 is even in x2, (b) in interactions with mode 2, mode 5 couples
to the only fully 3d mode, mode 8 (which is also odd in x2), while mode 4 does not. A
fully fledged SSP should involve three-dimensional dynamics, and the data distribution
of mode 8 shows this clearly for the validation case (tp = 200) as mode 8 is significantly
weakened in class 1 compared with class 0. Considering the training data distributions of
modes 4, 5 and 8, we observe that the probability density functions (p.d.f.s) of mode 5
differ considerably between class 0 and class 1, and again mode 5 is suppressed in class 1.
In contrast, mode 4 is active in both classes. Mode 5 thus provides a more direct route to a
three-dimensional dynamics from streak instabilities than mode 4 does.

In summary, the picture that emerges is as follows. For a sustained SSP, the streamwise
vortex must be remain active as only it can generate the streak. Further to this, supplying
spanwise flow perturbations of odd parity in wall-normal direction should help to
prevent relaminarisation events, while spanwise flow fluctuations connected with streak
instabilities of even parity in wall-normal direction play a minor role in sustaining the
SSP.
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5. Example – SHAP on data obtained by DNS

In order to demonstrate that the method can be leveraged to larger fluid dynamics datasets,
we now discuss an example where SHAP values corresponding to the prediction of
relaminarisation events are calculated on a dataset obtained by DNS of minimal plane
Couette flow at transitional Reynolds number. For this particular example, features are not
tied to physical processes or any modal representation of the flow. Instead, the analysis is
carried out on flow-field samples, and SHAP is used in conjunction with a now NN-based
classifier to provide (a) an indication as to which flow features need to be observed to allow
an accurate prediction of relaminarisation events, and (b) an interpretation thereof in terms
of the SSP. Specifically to address the latter and to connect to the results obtained for the
SSP within the NMM, we ask the classifier to predict relaminarisation events based on the
structure of the streaks characteristic for the SSP, and we use SHAP to demonstrate that the
classifier bases its decisions on data features indicating the presence of streak instabilities.
To do so, we focus on the streamwise component of the velocity field evaluated at a
particular point in streamwise direction, that is, the classifier works with two-dimensional
data slices showing cross-sections of high- and low-speed streaks.

5.1. Numerical experiments
In order to keep the computational effort to a manageable level commensurate with
an example calculation, we consider simulations of plane Couette flow at a Reynolds
number of 400 in the minimal flow unit, a domain of size L1 × L2 × L3 = 1.755π ×
2 × 1.2π with periodic boundary conditions in the streamwise and spanwise directions
and no-slip boundary conditions in the wall-normal direction, the smallest domain that
sustains turbulence (Jiménez & Moin 1991; Hamilton et al. 1995; Kawahara & Kida
2001). The calculations have been carried out with a pseudospectral solver provided by
channelflow2.0 (Gibson 2014; Gibson et al. 2022) using n1 × n2 × n3 = 16 × 33 × 16
points in the streamwise, wall-normal and spanwise directions, respectively, with full
dealiasing in the streamwise and spanwise directions, a resolution similar to other,
including recent, studies of minimal plane Couette flow (Kawahara & Kida 2001; van Veen
& Kawahara 2011; Lustro et al. 2019). We generate velocity field data for 5000 trajectories
running for 5000 advective time units and take data samples at an interval of 10 advective
time units. The simulations are initialised with randomly perturbed velocity-field samples
taken at intervals of one advective time unit from a turbulent master trajectory and the
training data acquisition process is started after a transient of 100 advective time units. The
criterion for the observation of a relaminarisation event is a cross-flow energy threshold of
10−5, and we verify that the turbulent lifetime distribution is still exponential for this grid
size (not shown).

As indicated earlier, a convolutional NN is trained on the streamwise slice at x1 = 0 of
the streamwise u1 component with around 5000 samples, yielding a spatial sample size of
10 × 33, taking into account truncation to remove aliasing effects. Two two-dimensional
convolutional layers with subsequent two-dimensional max pooling layers are followed
by a flattening layer with a dropout layer and a fully connected softmax layer with two
neurons, one for each output class (Chollet 2021), to establish the NN graph. The size of
the snapshots is well within the capabilities of NNs, that is, the method can certainly be
applied to higher-resolved data. The main reason for the choice of resolution here is that
the exponential lifetime distribution results in having to discard a significant number of
trajectories, essentially all those where relaminarisation occurred very quickly, in order to
ensure that the transient from the initial data has passed. After training the NN, the SHAP
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Figure 9. Two representative velocity-field samples (top) and corresponding SHAP values (bottom) for (a)
class 0 and (b) class 1. For the velocity field, streak cross-sections, that is the deviation of the streamwise
velocity component from the laminar profile evaluated at x1 = 0 is shown. As can be seen by comparison of
the top and bottom panels, SHAP uses streak tails, that is regions where the streaks are spatially decaying, for
classification towards class 1 and streak cores, where the velocity is nearly uniform, for classification towards
class 0.

values for samples from the test dataset are calculated. We can focus on the SHAP values
for class 1 only, as the SHAP values for the two classes differ only by a minus sign.

5.2. Results
First, the prediction time tp is varied between 10 and 200 advective time units to obtain
the performance of the convolutional network for tasks of different difficulties (Lellep
et al. 2020). The performance decreases from approximately 99 % prediction accuracy
for tp < 60 to approximately 60 % at tp = 200 with a performance > 90 % for tp ≤ 130
(not shown). In what follows, we discuss results obtained for tp = 90, however, results are
consistent with larger prediction horizons with a prediction accuracy of >90 %. In figure 9
we present one representative sample for each of the two classes together with the spatial
distribution of SHAP values to illustrate general observations that can be obtained from
the data.

The streamwise component u1 of velocity-field samples evaluated at x1 = 0 always
consists of localised regions in the velocity field of alternating small and large magnitudes,
corresponding to cross-sections of low- and high-speed streaks. Samples corresponding to
class 0 feature less uniform streak cross-sections than those of class 1. More precisely,
the spatial decay of a streak in the wall-normal and spanwise directions is less regular
for samples of class 0 than for those of class 1. This can be seen by comparison of the
representative visualisations shown in figure 9(a) for class 0 and figure 9(b) for class 1. In
what follows, we refer to regions of spatial decay as streak tails.

For samples of class 0, i.e. those that do not relaminarise, the SHAP values are mostly
negative while the SHAP values for samples of class 1 are mostly positive. Furthermore,
for samples of class 0 SHAP values detect the streak cores, where u1 varies little, more
so for the low-speed rather than the high-speed streak. For class 1, however, the SHAP
values point towards the tails of the corresponding more uniform streak cross-sections.
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The tails of the high-speed streaks are more pronounced. Interestingly, the tails of the less
regular class-0 streak cross-sections slightly contribute towards a classification of those
samples to class 1 and the inner region of the class-1 small velocity regions contribute
to the classification of those samples to class 0. That is because the tails and the core
look similar to those of the other class, respectively. We can therefore conclude that the
NN uses the streak cores for the classification towards class 0 and the streak tails, where
velocity-field gradients are large, for the classification towards class 1.

5.3. Discussion
The two-dimensional slices used in the training result in the classifier having to predict
relaminarisation events based on the structure of the streaks, but without directly seeing
the streak modulations characteristic of linear streak instabilities, as these would only be
visible in either the full volume or in a wall-normal cross-section of the flow. Comparing
wall-normal cross-sections obtained from samples of classes 0 and 1 a posteriori, we
find consistently that streak modulations are much weaker or absent in class 1 compared
with class 0. In conjunction with the results obtained by SHAP, we conclude that the
classifier bases its decision on proxies for streak modulations corresponding to linear
streak instabilities within the SSP.

For a relaminarisation event to occur, the SSP must break at some point in its evolution.
The SSP consists of three consecutive stages, (i) the laminar profile is advected by the
streamwise vortex creating streaks, (ii) the streaks become linearly unstable, (iii) the linear
instabilities couple nonlinearly and re-generate the streamwise vortex. Relaminarisation
could in principle be related with any of these stages, for instance, with a weakening of
streaks or of streamwise vortices or a suppression of streak instabilities. Strong streaks are
present in both class 0 and class 1 DNS data samples, as can be seen from the visualisations
of representative data samples shown in figure 9. This is commensurate with the results
obtained for the NMM, where we found that the streak mode itself is not relevant for
the prediction of relaminarisation events. That is, a scenario whereby relaminarisation is
connected with a suppression of streaks is unlikely. A similar observation has been made
for buoyancy-induced relaminarisation in a vertically heated pipe (Marensi et al. 2021). In
contrast to this, and as discussed above, accurate predictions of relaminarisation events can
be made based on the presence or absence for proxies for linear streak instabilities. If they
are present, the streaks have a less regular profile and the flow remains turbulent, if not, it
relaminarises. We note that the classification task did not involve observables connected
with streamwise vortices. However, as streamwise vortices are a consequence of streak
instabilities, not precursors, a suppression of streak instabilities would necessarily result
in a suppression of streamwise vortices. In summary, the SHAP analysis suggests that
the break-up point in the self-sustaining cycle is connected with a suppression of streak
instabilities.

Using two-dimensional slices of a low-resolution DNS near the laminar–turbulent
transition as training data for relaminarisation, predictions shows that SHAP values yield
insights into what is important for the prediction in the demonstration carried out here.
Specifically, localised SHAP values can be linked to localised coherent regions of the
flow, thereby providing a way to find relevant flow features for what the convolutional NN
classifier uses for the prediction. Interestingly, regions where velocity-field gradients are
large, that is, the tail ends of the streak cross-sections play a major role in the prediction
of relaminarisation events.

The ability of SHAP to identify localised regions in the flow and isolate important
sub-regions therein suggests that SHAP values can also identify physical processes that
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are used by classifiers provided a data representation capable of encoding physical, i.e.
dynamical, processes is used. This would involve passing temporally resolved data, for
instance by providing single training samples consisting of time-ordered data samples in
sub-intervals of a given time series. Additionally, the correlation between input data and
relevance for classifiers as determined by SHAP values could be used by experimentalists
to, for instance, increase measurement resolution where necessary or optimise the location
of probes.

6. Conclusions

The purpose of this article is to introduce SHAP as an explainable AI method capable
of identifying flow features relevant for the prediction of relaminarisation events in
wall-bounded parallel shear flows. As a first step and in order to facilitate a physical
interpretation of the SHAP output, we used a dataset consisting of snapshots generated
through forward integrations of the NMM of Moehlis et al. (2004), as it is based on
the SSP and each feature, here corresponding to a basis function, has a clear physical
meaning. Subsequently, the same classification task is carried out on data obtained from
DNSs of minimal plane Couette flow, where we specifically focus on the prediction of
relaminarisation event based on the structure of high- and low-speed streaks. The feature
ranking furnished by SHAP was interpreted in the context of the SSP, resulting in a
clear distinction between those near-wall features phenomenologically representative of
the flow and those significant for the dynamics of a wall-bounded turbulent flow close to
the onset of turbulence. More specifically, we demonstrated that relaminarisation events
are preceded by a weakening of streak instabilities and thus necessarily of streamwise
vortices, rather than being connected with the streaks themselves. Relaminarisation can
only occur when the self-sustaining cycle breaks up, and our analysis suggests that this
happens at the streak instability stage.

Concerning the NMM, each data feature has a clear physical interpretation. This allows
us to address the issue of representativeness vs significance (Jiménez 2018). To do so, we
suggest to classify the information obtained into two categories, one comprises features
of known phenomenological importance – the representative features – which can be
identified in a shear flow by the naked eye such as streamwise vortices or streaks, and
the other comprises features of potential dynamical significance that are more difficult to
observe directly, i.e. being not or at least much less representative. In the present context,
the second class contains modes representing linear streak instabilities, for instance. For
the first class, SHAP was used to uncover which of the known representative features
were significant for the prediction of relaminarisation events. First, we see that a known
representative feature of near-wall dynamics, the streamwise vortex, is identified. Second,
and more interestingly, the dynamics of streak mode, also a representative feature, is
not relevant for the prediction of relaminarisation events. In the second class, SHAP
identifies a dynamically significant feature among the streak instabilities, the fundamental
spanwise mode that is odd in x2. This suggests that, even though the streak has several
types of instabilities within the SSP, the main effect on the dynamics with respect to
relaminarisation events stems from spanwise instabilities of odd parity with respect to
reflection about the midplane, at least in the NMM.

For the DNS data, we find that SHAP identifies spatially localised regions in the flow
that are relevant for the prediction of relaminarisation events. Taking guidance from
the results obtained for the NMM, a classification task to probe the relevance of streak
instabilities for the prediction of relaminarisation events was constructed by showing
two-dimensional data planes orthogonal to the spanwise direction to a classifier, that
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is, planes including cross-sections of high- and low-speed streaks. We find that SHAP
values cluster in certain regions on the plane connected with variations in streak structure,
which indicates that the classifier bases its decision on proxies for streak modulations
corresponding to linear streak instabilities within the SSP. Since streamwise vortices
are generated by nonlinear interactions of streak instabilities, SHAP thus identifies the
suppression of streak instabilities as the point of breakdown within the self-sustaining
cycle leading to relaminarisation.

SHAP thus identifies not only which of the characteristic phenomenological features of
the SSP in a wall-bounded shear flow are significant for the prediction of relaminarisation
events, it also recognises patterns in the data corresponding to its fundamental dynamical
mechanism. That is, it serves as a means to distinguish representativeness from
significance of features for a given ML task. Furthermore, variances in the feature
importance ranking across prediction horizons are commensurate with differences in the
dynamics one would expect closer or further away from a relaminarisation event.

Finally, we conclude with a few suggestions for further work. As SHAP is model
agnostic and can be used in conjunction with deep learning algorithms, this method
can be upscaled and applied to high-dimensional experimental and numerical data.
Essentially, we can envisage two main application categories, one aimed at obtaining
further physics insight from high-dimensional numerical or experimental data, and one
at purely technical improvements of analysis routines. The former will in most instances
require a pre-processing step to decompose the data into physically interpretable features,
while no such decomposition would be required for the latter to yield useful results.
The results for the low-dimensional model presented here serve as a proof of concept
for the former. The aforementioned example calculation using DNS data of transitional
minimal plane Couette flow, where SHAP was used to identify regions in the flow that
the classifier needs to see in order to render accurate predictions, demonstrates that the
latter is in principle possible. An in-depth analysis of DNS data at higher Reynolds
number and resolution is beyond the scope of the present paper, however, it would be a
very interesting follow-up study. For the former, examples for useful data decompositions
are proper orthogonal decomposition (POD) (Berkooz, Holmes & Lumley 1993) or
dynamic mode decomposition (DMD) (Schmid 2010), both by now widely used techniques
for data analysis and model reduction in fluid dynamics. While POD returns modes
corresponding to energy content, DMD decomposes experimental or numerical data into
spatio-temporally coherent structures labelled by frequency. The suitability of any data
decomposition and reduction technique would depend on the planned task.

Identifying important modes and their interactions for a data representation without
a straightforward physical interpretation could be useful to construct, for instance, a
lower-dimensional description of the dynamics by only retaining important modes for any
given ML task at hand. In complex geometries, SHAP analyses could provide guidance
as to which part of a simulation domain requires high resolution and where compromises
regarding resolution and simulation cost will be less detrimental to the overall accuracy
of the simulation. This can become particularly helpful with pure turbulence research,
such as for active fluids, geo- and astrophysical flows, viscoelastic flows or complex flow
geometries, as these applications are data intensive and the flow complexity often does not
allow straightforward feature interpretation.

Ultimately, results reported here are based on a statistical analysis of the SHAP
values. Additionally, as SHAP values can be calculated alongside real-time predictions,
per-sample SHAP values may prove themselves as useful tools in on-the-fly tasks such as
machine-assisted nonlinear flow control or for optimisation problems.
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Appendix A

A.1. Boosted trees
In boosted methods, the ensemble of K weak learners, {gk}K

k=1, is set up in an additive
manner, so that the output of the boosted model g(K) for a sample z ∈ R

M is

g(K)(z) =
K∑

k=1

gk(z) ∈ R. (A1)

The models gk are learned sequentially so as to correct the mistakes of the previous models
{gi}i=1,...,k−1 without altering them. Given a per-sample loss L(y, ŷ) between the true
sample label y and the prediction of the previous model ŷ = g(k−1), the next weak learner
gk is found by optimising

min
gk

Nt∑
n=1

L(yn, g(k−1)(zn) + gk(zn)), (A2)

with Nt as number of training samples.
Boosted trees use decision trees T(z; θ) (Breiman et al. 1984) as weak learners, gk(z) =

T(z; θ) with θ as parameters of the decision tree. A decision tree classifier is a binary
tree that categorises its input as the class of the terminal node the input is assigned to.
A decision tree with J terminal nodes evaluates T(z; θ) according to

T(z; θ) =
J∑

j=1

γjI(z ∈ Rj), (A3)

with I as indicator function and parameters θ = {Rj, γj}J
j=1 as terminal regions Rj of the

terminal nodes in the input space and the assigned values in the terminal nodes γj.
Figure 10 illustrates how a spectral velocity field is classified according to an example

decision tree with J = 3. The sample we seek to classify is assigned to the grey terminal
node with a dashed border after it transverses the binary tree structure. The structure is
made up of binary decisions, which are noted next to the nodes in black. The predicted
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1

Figure 10. Schematic classification of a spectral velocity field a by a decision tree. The dotted and dashed
lines denote positive and negative decisions, respectively. The J = 3 terminal notes are coloured in grey and
the dashed terminal node marks the output of the example classification.

class of the sample is 1, since the terminal node it has been assigned to is itself assigned the
class 1. Learning a tree consists of finding the appropriate tree structure and the terminal
node classes in grey.

Boosted trees have been shown to yield state-of-the-art performances on a number
of standard classification benchmarks (Li 2010) and are thereby suitable for the task of
classifying relaminarisation events in shear flows.

As finding the optimal tree structure is an intractable problem, gradient boosted trees
make use of the gradient of the deployed per-sample loss function L for finding an
optimal tree structure {Rj}J

j=1. The specific role of the gradients in improving the boosted
trees depends on the exact model: for example, traditional gradient boosted tree methods
(Ridgeway 2006) fit a decision tree to the negative gradient of L, arising from the first-order
Taylor expansion of (A 2), in order to benefit from the generalisation ability of the tree to
new data (Hastie et al. 2009, Chapter 10.10).

The gradient boosted tree algorithm implemented by XGBoost, however, extends the
boosting objective (A 2) about a regularisation term and expands the loss function L(k) in
the next weak learner gk to be added

L(k) =
Nt∑

n=1

L(yn, ŷ(k−1)
n + gk(zn)) + Ω(gk)

≈
Nt∑

n=1

[
L(yn, ŷ(k−1)

n ) + ∂L(yn, d)

∂d

∣∣∣∣
d=ŷ(k−1)

n

gk(zn)

+ 1
2

∂2L(yn, d)

∂d2

∣∣∣∣
d=ŷ(k−1)

n

g2
k(zn)

]
+ Ω(gk), (A4)
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as iterative objective for iteration step k with regularisation Ω(gk) = ωJk +
1
2λ|(γ1k, . . . , γJkk)|2 on tree k. Here, Jk denotes the number of terminal nodes of tree k
and γjk with j = 1, . . . , Jk is the terminal node weight of index j and tree k. Using Rjk as
terminal node set of index j and tree k, the objective is used to quantify the quality of a
tree structure after minimising the quadratic iterative objective

L(k)({Rjk}j=1,...,Jk) = −1
2

Jk∑
j=1

⎛
⎝∑

i∈Ij

h(1)
i

⎞
⎠

2

∑
i∈Ij

h(2)
i + λ

+ ωJk, (A5)

with Ij = {i | q(zi) = j} as terminal node index set, q(z) mapping a sample to the index of
the terminal node it is assigned to and h(1) and h(2) as first- and second-order derivatives
of L from (A 4), respectively. Using L(k)({Rjk}j=1,...,Jk), the quality of a node I to be split
into left and right, I = IL ∪ IR, can be measured quantitatively.

The remarkable novelty of XGBoost, aside from the regularisation Ω(gk), is a split
finding technique that uses weighted data quantiles to find appropriate split candidates,
which are themselves evaluated with a novel approximate split finding algorithm that
uses the split loss L(k)({Rjk}j=1,...,J) as metric. Furthermore, XGBoost scales to very
large datasets as all components are properly parallelisable. This is due to additional
technical innovations, such as data sparsity awareness, cache awareness and out-of-core
computations if the dataset gets very large.

The loss function L is the logistic regression for binary classification with output
probabilities

L(y, ŷ) = y log(σ (ŷ)) + (1 − y) log(1 − σ(ŷ)), (A6)

with logistic function σ(y) = 1/(1 + exp(−y)).
XGBoost classifiers come with a number of tuneable hyperparameter that need to be

specified by the user. The following parameters are tuned in this work and are therefore
explained here using the XGBoost notation:

n_estimators (hNE) – The number of decision trees to fit to the task. This number corresponds
to K in the notation introduced above.

max_depth (hMD) – The maximal depth of each decision tree.
min_child_weight (hMCW ) – Regularisation of the tree building process as to only split a terminal

node when it contains samples of different target classes.
gamma (hGA) – Regularisation of the tree building process by only splitting a terminal

node when the loss reduces at least about a value of gamma.
subsample (hSS) – The percentage of the number of overall training samples Nt that are

randomly sampled per decision tree.
colsample_bytree (hCBT ) – The percentage of the number of training features M that are randomly

sampled per decision tree.
learning_rate (hLR) – Scaling applied to the learned terminal node weights γjk after each

boosting iteration (Friedman 2002),

gk(z) = gk−1(z) +
Jk∑

j=1

hLRγjkI(z ∈ Rjk).
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tp hNE hMD hMCW hGA hSS hCBT hLR

200 941 42 5 0.177 0.572 0.823 0.173
250 941 42 5 0.177 0.572 0.823 0.173
300 511 44 1 1.302 0.960 0.992 0.215
350 765 33 2 3.903 0.769 0.731 0.048
400 1148 39 8 0.501 0.917 0.620 0.008
450 1148 39 8 0.501 0.917 0.620 0.008

Table 1. Table of optimal hyperparameters for XGBoost classifier for the task of predicting the
relaminarisation of the turbulent trajectory. The abbreviations in the header line have been introduced in the
main text of Appendix A.1.

A.2. Optimal XGBoost hyperparameters for relaminarisation prediction
Table 1 lists the optimal hyperparameters as identified by the randomised hyperparameter
optimisation with 100 drawn hyperparameter samples. Since all prediction times use the
same 100 hyperparameter samples, the same set of hyperparameters might be found to be
optimal for more than one prediction horizon, e.g. tp = 200 and 250.
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