FINITE SYMMETRIC GRAPHS WITH 2-ARC-TRANSITIVE QUOTIENTS: AFFINE CASE

M. REZA SALARIAN

(Received 29 April 2015; accepted 2 May 2015; first published online 17 September 2015)

Dedicated to Professor Praeger

Abstract

Let G be a finite group and Γ a G-symmetric graph. Suppose that G is imprimitive on $V(\Gamma)$ with B a block of imprimitivity and $\mathcal{B}:=\left\{B^{g} ; g \in G\right\}$ a system of imprimitivity of G on $V(\Gamma)$. Define $\Gamma_{\mathcal{B}}$ to be the graph with vertex set \mathcal{B} such that two blocks $B, C \in \mathcal{B}$ are adjacent if and only if there exists at least one edge of Γ joining a vertex in B and a vertex in C. Xu and Zhou ['Symmetric graphs with 2-arc-transitive quotients', J. Aust. Math. Soc. 96 (2014), 275-288] obtained necessary conditions under which the graph $\Gamma_{\mathcal{B}}$ is 2 -arc-transitive. In this paper, we completely settle one of the cases defined by certain parameters connected to Γ and \mathcal{B} and show that there is a unique graph corresponding to this case.

2010 Mathematics subject classification: primary 05C25; secondary 05E18.
Keywords and phrases: symmetric graphs, transitive groups, arc-transitive graphs.

1. Introduction

Let G be a finite group. A graph Γ is called G-symmetric if Γ admits G as a group of automorphisms acting transitively on the set of vertices and the set of arcs of Γ, where an arc is an ordered pair of adjacent vertices. Suppose that G is imprimitive on $V(\Gamma)$ with B a block of imprimitivity. Then

$$
\mathcal{B}:=\left\{B^{g} ; g \in G\right\}
$$

is a system of imprimitivity of G on $V(\Gamma)$. Define $\Gamma_{\mathcal{B}}$ to be the graph with vertex set \mathcal{B} such that two blocks $B, C \in \mathcal{B}$ are adjacent if and only if there exists at least one edge of Γ joining a vertex in B and a vertex in C. We call $\Gamma_{\mathcal{B}}$ the quotient graph of Γ with respect to \mathcal{B}. A graph Γ is called ($G, 2$)-arc-transitive if it admits G as a group of automorphisms acting transitively on the set of vertices and the set of 2-arcs of Γ, where a 2 -arc is an oriented path of length two. In [1] the following question was asked:

[^0]Question 1.1. Under the assumptions above, when is the quotient $\Gamma_{\mathcal{B}}$ a $(G, 2)$-arctransitive graph?

Notation. Fix $B \in \mathcal{B}$. Let $\mathcal{U}:=\Gamma_{\mathcal{B}}(B)$ be the set of blocks of \mathcal{B} adjacent to B in $\Gamma_{\mathcal{B}}$. For $\alpha \in B$, let $\Gamma_{\mathcal{B}}(\alpha)$ be the set of blocks in \mathcal{U} containing at least one neighbour of α in Γ and let $r:=\left|\Gamma_{\mathcal{B}}(\alpha)\right|$. For $C \in \mathcal{U}$, let $\Gamma(C)$ denote the set of vertices of Γ adjacent to at least one vertex in C. Define $v:=|B|$ and $k:=|\Gamma(C) \cap B|$ for $C \in \mathcal{U}$. Since Γ is G-symmetric and \mathcal{B} is G-invariant, r, v and k are independent of the choice of α, B and C, respectively. Denote by G_{B} the setwise stabiliser of B in G, and define $H:=G_{B}^{\Gamma_{B}(B)}$ to be the quotient group of G_{B} relative to the kernel of the induced action of G_{B} on \mathcal{U}.

In [2], necessary conditions for $\Gamma_{\mathcal{B}}$ to be $(G, 2)$-arc-transitive were obtained in the case when $k=v-p \geq 1$, where p is an odd prime. The following result is extracted from [2, Theorem 1.1]. (It corresponds to the third case in the theorem.)

Theorem 1.2. Assume, in the context of the notation above, that $G \leq \operatorname{Aut}(\Gamma), \Gamma_{\mathcal{B}}$ is ($G, 2$)-arc-transitive and $\Gamma_{\mathcal{B}}$ is connected with valency $b \geq 2$. Assume further that $k=v-p \geq 1, p=2^{n}-1$ is a Mersenne prime, $v=2^{m} p$ is a multiple of p and $r=\left(2^{m}-1\right) t$, where $n-1 \geq m \geq 1$ and $t \geq 2$ are integers. Then H is isomorphic to a 2-transitive subgroup of $\operatorname{AGL}(n, 2)$.

We show that $p=3$ in this situation and that there is a unique graph satisfying the conditions of Theorem 1.2. More explicitly, we prove the following theorem.

Theorem 1.3. With the assumptions of Theorem 1.2, we have $p=k=3$ and $v=6$.
Theorem 1.3 shows that the graph which appears in [2, Theorem 3] is the only graph satisfying the conditions of Theorem 1.2.

2. Proof of the main theorem

In what follows we use the notation and assumptions in Theorem 1.2. By [2], $|\mathcal{U}|=p+1$ and so we may set

$$
\mathcal{U}:=\left\{C, C_{1}, \ldots, C_{p}\right\}, \quad W:=\Gamma(C) \cap B .
$$

Then $|B \backslash W|=p$ by our assumption and $r=2^{n}-2^{n-m}$ by [2]. Let H_{C} be the stabiliser of C in H. Then H_{C} leaves W and $B \backslash W$ invariant. Since $\Gamma_{\mathcal{B}}$ is assumed to be $(G, 2)$ -arc-transitive, H is 2-transitive on \mathcal{U} and so H_{C} is transitive on $\mathcal{U} \backslash\{C\}$. In fact, Γ, $\Gamma_{\mathcal{B}}$ and H satisfy the conditions in the third row of [2, Table 2]. So we assume that $H=N \rtimes H_{C}$ is an affine group (isomorphic to a subgroup of $\operatorname{AGL}(n, 2)$). Here $N \cong \mathbb{Z}_{2}^{n}$ is an elementary abelian group of order $p+1=2^{n}$ and is the minimal normal subgroup of H acting regularly on \mathcal{U} with centraliser $C_{H}(N)=N$. Further, H_{C} is isomorphic to a subgroup of $\mathrm{GL}_{n}(2)$ and acts transitively on the set of involutions of N.

Since N has exactly p involutions and H_{C} is transitive on the set of them, p divides the order of H_{C}. Since p is a prime, H_{C} contains an element of order p, say, x. Define

$$
X:=\langle x\rangle \leq H_{C}, \quad P:=\langle N, x\rangle=N \rtimes X \leq H .
$$

Lemma 2.1. The following hold:
(i) $\quad X$ is of order p and is regular on $\mathcal{U} \backslash\{C\}$;
(ii) $\quad X$ fixes W and $B \backslash W$ setwise and is fixed-point-free on each of them;
(iii) $\quad X$ is regular on $B \backslash W$.

Proof. (i) Obviously, X has order p. Since $|X|=|\mathcal{U} \backslash\{C\}|=p$ is a prime, by the orbitstabiliser lemma X must be regular on $\mathcal{U} \backslash\{C\}$.
(ii) Since $X \leq H_{C}$, it fixes W and $B \backslash W$ setwise. If a vertex $\alpha \in B \backslash W$ is fixed by a nonidentity element of X, then it is fixed by every nonidentity element of X. Since by (i), X is transitive on $\mathcal{U} \backslash\{C\}$, we then have $\alpha \in \Gamma\left(C_{i}\right) \cap B$ for $i=1,2, \ldots, p$, which yields $r=p$ and so $m=0$, a contradiction. Therefore, X is fixed-point-free on $B \backslash W$. A similar argument shows that X is fixed-point-free on W.
(iii) Since $|X|=|B \backslash W|=p$ is a prime and X acts fixed-point-freely on $B \backslash W, X$ must be regular on $B \backslash W$.

Lemma 2.2. No nonempty subset of W is N-invariant.
Proof. Suppose to the contrary that $\emptyset \neq Y \subseteq W$ is N-invariant. Since N is regular on \mathcal{U}, for each i there exists a unique element $g_{i} \in N$ such that $C^{g_{i}}=C_{i}$. Hence $W^{g_{i}}=\Gamma\left(C_{i}\right) \cap B$. Since Y is N-invariant, we have $Y=Y^{g_{i}} \subseteq W^{g_{i}}$ for $i=1,2, \ldots, p$, which implies $r=p+1=2^{n}$, a contradiction.

Lemma 2.3. The subgroup P is transitive on B.
Proof. Let α^{N} be an N-orbit on B, where $\alpha \in B$, and set $A=\bigcup_{g \in P}\left(\alpha^{N}\right)^{g}$. Since $N \unlhd P \leq H, A \subseteq B$ and P is transitive on A, both A and $B \backslash A$ are P-invariant. In particular, both A and $B \backslash A$ are N-invariant and X-invariant. Since $A \neq \emptyset$, by Lemma 2.2 we have $A \cap(B \backslash W) \neq \emptyset$. On the other hand, by Lemma 2.1, X is transitive on $B \backslash W$. Since A is X-invariant and $A \cap(B \backslash W) \neq \emptyset$, it follows that $B \backslash W \subseteq A$. Now $B \backslash A \subseteq W$ and $B \backslash A$ is N-invariant, by Lemma 2.2, so $B \backslash A=\emptyset$ and hence P is transitive on $B=A$.

Since N is regular on \mathcal{U}, it contains a unique involution z which interchanges C and C_{1}. Write

$$
W_{1}:=\Gamma\left(C_{1}\right) \cap B, \quad B_{z}:=\left\{\alpha \in B: \alpha^{z}=\alpha\right\} .
$$

Then z interchanges W and W_{1} and both $W \cap W_{1}$ and $W \cup W_{1}$ are z-invariant. Note that $\left|W \cap W_{1}\right|=\lambda=(a-1)\left(p-2^{n-m}\right) \neq 0$ by [2] with $a=2^{m}$. Therefore $B_{z} \cap\left(W \cap W_{1}\right) \neq$ \emptyset. Since N is abelian, B_{z} is N-invariant. Fix an N-orbit α^{N} contained in B_{z}, where $\alpha \in B_{z}$, and set

$$
\mathcal{F}:=\left\{\left(\alpha^{N}\right)^{g}: g \in X\right\} .
$$

Since N is normal in P, \mathcal{F} is a system of imprimitivity for P. Then $\left|\alpha^{N}\right|=2^{m}=a$, $|\mathcal{F}|=p$ and \mathcal{F} is the set of all N-orbits on B. We note that if $\left(\alpha^{N}\right)^{g_{1}}=\left(\alpha^{N}\right)^{g_{2}}$ for distinct $g_{1}, g_{2} \in X$, then since $X=\left\langle g_{1} g_{2}^{-1}\right\rangle$, we see that α^{N} is P-invariant. By Lemma 2.3, N is regular on B which implies that $v=|N|=p+1=2^{n}$, a contradiction.

Lemma 2.4. We have $\left|\alpha^{N} \cap(B \backslash W)\right|=1$. In fact, each element of $B \backslash W$ is in a unique element of \mathcal{F} and each element of \mathcal{F} contains a unique element of $B \backslash W$.

Proof. Let $x \in B \backslash W$. Since \mathcal{F} is a system of imprimitivity for P, there is $\left(\alpha^{N}\right)^{g} \in \mathcal{F}$, $g \in X$, such that $\left(\alpha^{N}\right)^{g} \cap(B \backslash W) \neq \emptyset$ and we may asssume that $x \in \alpha^{N}$. Since X fixes $B \backslash W$ setwise and is transitive on $B \backslash W$, we have $x^{X}=B \backslash W$. Using the fact $|\mathcal{F}|=p=|B \backslash W|$, we have $\alpha^{N} \cap(B \backslash W)=\{x\}$. This shows that each element of $B \backslash W$ is in a unique element of \mathcal{F} and each element of \mathcal{F} contains a unique element of $B \backslash W$.

Since z is fixed-point-free on \mathcal{U}, z has $(p+1) / 2=2^{n-1}=q$ orbits on \mathcal{U} each of length 2. Let $R_{i}, i=1,2, \ldots, q$, be the orbits of z on $\mathcal{U}, R_{1}=\left\{C=C_{0}, C_{1}\right\}$ and $R_{i}=\left\{C_{2 i-2}, C_{2 i-1}\right\}, i=2, \ldots, q$. For $i=1, \ldots, p$, set $W_{i}=\Gamma\left(C_{i}\right) \cap B$ and $W=W_{0}$. Then for $i \neq j$, we have $\left|W_{i} \cap W_{j}\right|=\lambda=(a-1)\left(p-2^{n-m}\right)$. We note that since $\langle z\rangle$ is normal in $N,\left\{R_{i}, i=1,2, \ldots, q\right\}$ is a system of imprimitivity for N. We recall that $r=2^{n}-2^{n-m}$ and $a=2^{m}$.

Lemma 2.5. For $i=1,2, \ldots, q$, we have:
(i) $\quad N$ has $\left|B \backslash\left(W_{2 i-2} \cup W_{2 i-1}\right)\right|=2 p-v+\lambda=2^{n-m}-1$ orbits on B_{z} and $\left|B_{z}\right|=$ $2^{n}-2^{m}$;
(ii) $\quad B_{z}=\left(B_{z} \cap W_{2 i-2} \cap W_{2 i-1}\right) \cup\left(B \backslash\left(W_{2 i-2} \cup W_{2 i-1}\right)\right)$;
(iii) $\left|B_{z} \cap W_{2 i-2} \cap W_{2 i-1}\right|=\left|B \backslash\left(W_{2 i-2} \cup W_{2 i-1}\right)\right|(a-1)$.

Proof. Without loss of generality, we can take $i=1$. Since both $W \cap W_{1}$ and $W \cup W_{1}$ are z-invariant, $B \backslash\left(W \cup W_{1}\right) \subseteq B \backslash W$ is also z-invariant. This and Lemma 2.4 together imply that $B \backslash\left(W \cup W_{1}\right) \subseteq B_{z}$ and N has $\left|B \backslash\left(W \cup W_{1}\right)\right|=2 p-v+\lambda=2^{n-m}-1$ orbits on B_{z}. Therefore $\left|B_{z}\right|=2^{m}\left(2^{n-m}-1\right)=2^{n}-2^{m}$ and the lemma holds.

We know that N has p orbits on B each of length a and we denote these orbits by $B_{i}, i=1, \ldots, p$. By Lemma 2.4, we can write $B \backslash W=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$ where $\alpha_{i} \in B_{i}$, $i=1,2, \ldots, p$.

Lemma 2.6. For $i=1, \ldots, p$ and $j=1,2, \ldots, p+1$:
(i) $\quad B_{i} \cap\left(B \backslash W_{j}\right) \mid=2$ and $B_{i} \cap\left(B \backslash\left(W_{2 j-2} \cup W_{2 j-1}\right) \mid=1\right.$;
(ii) either $B_{i} \subset B_{z}$ or $B_{i} \cap B_{z}=\emptyset$;
(iii) if $B_{i} \subset B_{z}$, then $\left|B_{i} \cap W_{2 s-2} \cap W_{2 s-1}\right|=a-1$ for each $s=1, \ldots, q$;
(iv) if $B_{i} \cap B_{z}=\emptyset$, then $\left|B_{i} \cap W_{2 s-2} \cap W_{2 s-1}\right|=a-2$.

Proof. Since B_{z} is N-invariant, (ii) holds. Note that $\left|B_{i}\right|=a, i=1, \ldots, p$. Let $B_{1} \subseteq B_{z}$ and $B_{2} \subseteq\left(W \cup W_{1}\right) \backslash B_{z}$. By Lemmas 2.4 and 2.5(i), we see that $B_{1} \backslash\left\{\alpha_{1}\right\} \subseteq\left(W \cap W_{1}\right), z$ acts fixed-point-freely on B_{2} and $B_{2} \backslash\left\{\alpha_{2}, \alpha_{2}^{z}\right\} \subseteq\left(W \cap W_{1}\right)$. Observe that for each orbit $R_{i}=\left\{C_{2 i-2}, C_{2 i-1}\right\}, i=1, \ldots, q$, and each orbit $B_{j}, j=1, \ldots, p$, either $B_{j} \subseteq B_{z}$ and there is an element $x_{i} \in B_{j}$ such that $x_{i} \notin W_{2 i-1} \cup W_{2 i-2}$ and $B \backslash\left\{x_{i}\right\} \subseteq\left(W_{2 i-1} \cap W_{2 i-2}\right)$, or z is fixed-point-free on B_{j} and $\left(B_{j} \backslash\left\{\alpha_{j}, \alpha_{j}^{z}\right\}\right) \subseteq\left(W_{2 i-1} \cap W_{2 i-2}\right)$. This proves the lemma.

Set $O=W \backslash W_{1}$.

Lemma 2.7. For each $R_{i}, i=2, \ldots, q$, we have:
(i) $\quad O=\left(O \cap W_{2 i-2} \cap W_{2 i-1}\right) \cup\left(\left(O \cap W_{2 i-1}\right) \backslash W_{2 i-2}\right) \cup\left(\left(O \cap W_{2 i-2}\right) \backslash W_{2 i-2}\right)$;
(ii) $\left|\left(\left(O \cap W_{2 i-1}\right) \backslash W_{2 i-2}\right)\right|=\left|\left(\left(O \cap W_{2 i-2}\right) \backslash W_{2 i-2}\right)\right|$.

Proof. Without loss of generality, we can take $i=2$. To prove (i), we show that $O=\left(O \cap W_{2} \cap W_{3}\right) \cup\left(\left(O \cap W_{2}\right) \backslash W_{3}\right) \cup\left(\left(O \cap W_{3}\right) \backslash W_{2}\right)$. For this it is enough to show that $O \subseteq W_{3} \cup W_{2}$. Assume not and let $x \in O \backslash\left(W_{2} \cup W_{3}\right)$. Then there is $j \in\{1, \ldots, p\}$ such that $x \in B_{j}$. Since $O \cap B_{z}=\emptyset$, we conclude that z acts fixed-point-freely on B_{j} and then $\left\{x, x^{z}\right\} \subseteq\left(B_{j} \backslash\left(W_{2} \cup W_{3}\right)\right)$. But by Lemma 2.6(i), N has no such orbit, a contradiction. Hence (i) holds. Since $\left|W \cap W_{2}\right|=\left|W \cap W_{3}\right|=\lambda,\left|W_{2} \cap W \cap W_{1}\right|=$ $\left|W_{3} \cap W \cap W_{1}\right|$ and, by (i), $\left|\left(O \cap W_{2}\right) \backslash W_{3}\right|=\left|\left(O \cap W_{3}\right) \backslash W_{2}\right|$, the lemma is proved.

Lemma 2.8. We have:
(i) $\quad W_{2 i-2} \cap W_{2 i-1} \cap B_{z}=B \backslash\left(W_{2 j-2} \cup W_{2 j-1}\right)$ for $i, j=1, \ldots, q, i \neq j$;
(ii) $m=1$;
(iii) $n=2, v=6$ and $k=3=p$;
(iv) $P \cong A_{4}$.

Proof. To prove (i), we may assume that $i=1$ and $j=2$. By Lemma 2.7(i) we have $O=\left(O \cap W_{2} \cap W_{3}\right) \cup\left(\left(O \cap W_{2}\right) \backslash W_{3}\right) \cup\left(\left(O \cap W_{3}\right) \backslash W_{2}\right)$. Let $O_{1}=O^{z}=W_{1} \backslash W$ and $\left|O \cap W_{2} \cap W_{3}\right|=a_{1}=\left|O_{1} \cap W_{2} \cap W_{3}\right|$. By Lemma 2.7(ii), $\left|\left(O \cap W_{2}\right) \backslash W_{3}\right|=$ $a_{2}=\left|\left(O \cap W_{3}\right) \backslash W_{2}\right|$. Next, set $\left|\left(W_{1} \cap W \cap W_{2}\right) \backslash W_{3}\right|=b_{2}=\left|\left(W_{1} \cap W \cap W_{3}\right) \backslash W_{2}\right|$, $\left|\left(W_{1} \cap W\right) \backslash\left(W_{2} \cup W_{3}\right)\right|=c=\left|\left(W_{2} \cap W_{3}\right) \backslash\left(W \cup W_{1}\right)\right|$ and $b_{1}=\left|W_{2} \cap W_{3} \cap W_{1} \cap W\right|$. We note that $B \backslash\left(W \cup W_{1}\right) \subseteq B_{z}$, so $W_{2} \cap\left(B \backslash\left(W \cup W_{1}\right)\right)=W_{3} \cap\left(B \backslash\left(W \cup W_{1}\right)\right)=c$. Now,

$$
\begin{gather*}
2 a_{1}+b_{1}+c=\left|W_{2} \cap W_{3}\right|=\lambda, \tag{2.1}\\
2 b_{2}+b_{1}+c=\left|W \cap W_{1}\right|=\lambda, \tag{2.2}\\
a_{1}+a_{2}+b_{2}+b_{1}=\left|W \cap W_{3}\right|=\lambda, \tag{2.3}\\
a_{1}+2 a_{2}=|O|=k-\lambda, \tag{2.4}\\
\lambda+a_{2}+a_{1}+c=\left|W_{3}\right|=k . \tag{2.5}
\end{gather*}
$$

From (2.1) and (2.2), $a_{1}=b_{2}$, and from (2.4) and (2.5), $c=a_{2}$. From this and (2.3) and (2.4), $2(k-\lambda-2 c)+c+b_{1}=\lambda$. This implies that $b_{1}=3 \lambda+3 c-2 k$. Again, from (2.3) and (2.4), $\left(a_{1}+2 c\right)-\left(2 a_{1}+c+b_{1}\right)=k-2 \lambda$. Hence $c-a_{1}-b_{1}=k-2 \lambda$. By this and (2.4), we conclude that $a_{1}+2 c-2\left(c-a_{1}-b_{1}\right)=k-\lambda-2(k-2 \lambda)$. Therefore $3 a_{1}+2 b_{1}=3 \lambda-k$. Thus,

$$
\begin{gather*}
b_{1}=3 \lambda+3 c-2 k \tag{2.6}\\
3 a_{1}+2 b_{1}=3 \lambda-k . \tag{2.7}
\end{gather*}
$$

Set $d=\left|W \cap W_{1} \cap W_{2} \cap W_{3} \cap B_{z}\right|$ and $t_{1}=\left|B \backslash\left(W \cup W_{1}\right)\right|=2 p-v+\lambda=2^{n-m}-1$. We need the following claim.
Claim. $\quad b_{1}-d=2 a_{2}(a-2)+a_{1}(a-4)$ and $d=\left(t_{1}-c\right)(a-1)+c(a-2)$.

Proof. By Lemmas 2.4 and 2.5(i), N has $p-t_{1}=k-\lambda=|O|=2 a_{2}+a_{1}$ orbits on $B \backslash B_{z}$ and t_{1} orbits on B_{z}. So assume that $B \backslash B_{z}=\bigcup_{i=1}^{2 a_{2}+a_{1}} B_{i}$. By Lemma 2.6(i), $\left|B_{i} \cap O\right|=\left|B_{i} \cap O_{1}\right|=\left|B_{i} \cap\left(W_{2} \backslash W_{3}\right)\right|=\left|B_{i} \cap\left(W_{3} \backslash W_{2}\right)\right|=1, i=1, \ldots, 2 a_{2}+a_{1}$. So by Lemma 2.7(i), we may assume that $\left|B_{i} \cap\left(O \backslash\left(W_{2} \cap W_{3}\right)\right)\right|=1$ for $i=1,2, \ldots, 2 a_{2}$, and $\left|B_{i} \cap O \cap W_{2} \cap W_{3}\right|=1$ for $i=2 a_{2}+1, \ldots, 2 a_{2}+a_{1}$. Assume that $B_{i} \cap O=\left\{x_{i}\right\}, i=$ $1, \ldots, 2 a_{2}+a_{1}$. Since z is fixed-point-free on B_{i}, by Lemma 2.6(iv), for $i=1, \ldots, 2 a_{2}$, we have $B_{i} \backslash\left\{x_{i}, x_{i}^{z}\right\} \subseteq W \cap W_{1} \cap W_{2} \cap W_{3}$, and for $i=2 a_{2}+1, \ldots, 2 a_{2}+a_{1}$, we have $\left|\left(B_{i} \backslash\left\{x_{i}, x_{i}^{z}\right\}\right) \cap W \cap W_{1} \cap W_{2} \cap W_{3}\right|=a-4$. Thus $b_{1}-d=2 a_{2}(a-2)+a_{1}(a-4)$. Since $B_{z}=\bigcup_{i=|O|+1}^{p} B_{i}$ by Lemma 2.6(iii), for $i=|O|+1, \ldots, p$, we have

$$
\left|B_{i} \cap\left(B \backslash\left(W_{2} \cup W_{3}\right)\right)\right|=1=\left|B_{i} \cap\left(B \backslash\left(W \cup W_{1}\right)\right)\right|
$$

Hence $d=\left(t_{1}-c\right)(a-1)+c(a-2)$ and the claim holds.
Recall that $a_{2}=c, k=(a-1) p$ and $\lambda=(a-1)\left(p-2^{n-m}\right)$. By (2.6) and our claim above, we conclude that

$$
3 \lambda+3 c-2 k=2 c(a-2)+a_{1}(a-4)+\left(t_{1}-c\right)(a-1)+c(a-2)
$$

From this, since $t_{1}=2^{n-m}-1$,

$$
c(8-2 a)=(a-1)\left(-2^{n}+2^{n-m+2}\right)+a_{1}(a-4)
$$

Therefore,

$$
\begin{aligned}
c & =\left(2^{m}-1\right) 2^{n-m+2}\left(1-2^{m-2}\right) /\left(8-2^{m+1}\right)-a_{1} / 2 \\
& =\left(2^{m}-1\right) 2^{n-m}\left(1-2^{m-2}\right) /\left(2-2^{m-1}\right)-a_{1} / 2=(a-1) 2^{n-m-1}-a_{1} / 2
\end{aligned}
$$

From this and equation (2.1), $3 a_{1}+b_{1}=2 \lambda-(a-1) 2^{n-m}$. Now by equation (2.7), $b_{1}=3 \lambda-k-\left(2 \lambda-(a-1) 2^{n-m}\right)=\lambda-k+(a-1) 2^{n-m}=0$. This and Lemma 2.5(ii) imply that $\left(W_{2} \cap W_{3} \cap B_{z}\right) \subseteq\left(B \backslash\left(W \cup W_{1}\right)\right)$. Next, we note that by Lemma 2.5(iii), $\left|W_{2} \cap W_{3} \cap B_{z}\right|=\left|W \cap W_{1} \cap B_{z}\right|=t_{1}(a-1)$. So $t_{1} \geq t_{1}(a-1)$ and then $a=2$. This gives $m=1$, and (i) and (ii) hold. By (i) and Lemma 2.5(ii), we have $q=2$. Thus, we see that $2^{n-1}=2$ and $n=2$. This gives (iii) and (iv) and the lemma is proved.

Finally, Theorem 1.3 follows from Lemma 2.8.

Acknowledgement

The author is grateful to Professor Sanming Zhou for his useful remarks.

References

[1] M. A. Iranmanesh, C. E. Praeger and S. Zhou, 'Finite symmetric graphs with two-arc transitive quotients', J. Combin. Theory Ser. B 94 (2005), 79-99.
[2] G. Xu and S. Zhou, 'Symmetric graphs with 2-arc-transitive quotients', J. Aust. Math. Soc. 96 (2014), 275-288.

M. REZA SALARIAN, Department of Mathematics, Kharazmi University, Karaj/Tehran, Iran
 e-mail: salarian@khu.ac.ir

[^0]: This project is supported by INSF (No. 92002927).
 (C) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

