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F -PURITY VERSUS LOG CANONICITY
FOR POLYNOMIALS

DANIEL J. HERNÁNDEZ

Abstract. In this article, we consider the conjectured relationship between

F -purity and log canonicity for polynomials over C. In particular, we show

that log canonicity corresponds to dense F -pure type for all polynomials

whose supporting monomials satisfy a certain nondegeneracy condition. We

also show that log canonicity corresponds to dense F -pure type for very general

polynomials over C. Our methods rely on showing that the F -pure and log

canonical thresholds agree for infinitely many primes, and we accomplish this

by comparing these thresholds with the thresholds associated to their monomial

term ideals.

§1. Introduction

Let R denote a polynomial ring over a field of characteristic p > 0 with

homogeneous maximal ideal m. Given an ideal a of R contained in m, the

F -pure threshold of a (at the origin) is a numerical invariant measuring

the singularities of a near the origin, and is closely related to the theory of

F -purity and tight closure (see [HR76, HH90, HY03]).

In this article, we are particularly interested in the connection between

the F -pure threshold of a polynomial f ∈m, and the F -pure threshold of

af , the monomial ideal generated by the terms of f . The basic relationship

between these two invariants, which essentially follows from the containment

f ∈ af , is the following upper bound for fpt(f):

(1.1) fpt(f) 6 min{1, fpt(af )}.

This inequality may be strict: if f = xp + yp, then fpt(f) = 1
p , while

fpt(af ) = 2
p .

In the first part of this article, we aim to understand when equality

holds in (1.1). In Definition 17, we associate to a polynomial f (over a
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F -PURITY VERSUS LOG CANONICITY FOR POLYNOMIALS 11

field of arbitrary characteristic) a rational polytope P, called the splitting

polytope of f . The splitting polytope P is closely related to the familiar

Newton polyhedron N associated to af . However, P and N differ in the

following crucial way: the Newton polyhedron depends only on the ideal af
generated by the terms of f , while the splitting polytope depends strongly

on the terms themselves. For example, P is always contained in the n-fold

product of the unit interval (here, n denotes the number of terms of f),

while N is always a full-dimensional polyhedron in Rm (here, m denotes

the number of variables in the ambient polynomial ring). In Section 4, we

identify conditions on the Newton polyhedron N, the splitting polytope

P, and the characteristic p under which equality holds in (1.1). As these

conditions are rather technical, we omit them here, and instead refer the

reader to Theorem 42 and Proposition 40.

1.1 Log canonicity versus F -purity

We now switch gears and consider an invariant of singularities defined

over C. Let S be a polynomial ring over C, and let a be an ideal contained

in the homogeneous maximal ideal of S. The log canonical threshold of

a (at the origin), denoted lct(a), is a numerical invariant measuring the

singularities of a at the origin, and plays an important role in higher-

dimensional birational geometry (see [BL04, Laz04]). Remarkably, F -pure

thresholds can be thought of as the positive characteristic analog of log

canonical thresholds (see [Smi00, HW02, HY03, Tak04]). We now sketch

the relationship between these two invariants. If f has rational coefficients,

one may reduce them modulo p� 0 to obtain polynomials fp over the finite

fields Fp. If f has complex (but not necessarily rational) coefficients, a

generalization of this method, called the process of reduction to positive

characteristic, allows one to produce a family of positive characteristic

models fp over finite fields of characteristic p. Using the results of [HY03],

it is observed in [MTW05] that

(1.2) fpt(fp) 6 lct(f) for p� 0, and that lim
p→∞

fpt(fp) = lct(f).

We say that log canonicity equals dense (respectively, open) F -pure

type for f whenever fpt(fp) = lct(f) for infinitely many p (respectively,

for all p� 0) (see Remark 55 for a justification of this terminology). It

is conjectured that log canonicity always equals dense F -pure type, and

verification of this correspondence is a long-standing open problem (see

[Fed83, Smi97, EM06]). We now summarize the related results in this article.
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12 DANIEL J. HERNÁNDEZ

Theorem A. (Cf. Theorem 56) Let f denote a polynomial over C
vanishing at the origin. If the supporting monomials of f satisfy a certain

nondegeneracy condition, then there exists a simple characterization of the

set of all primes p for which fpt(fp) = lct(f). Moreover, this characteriza-

tion shows that log canonicity equals dense F -pure type for f .

For the precise statement (including the description of the nondegeneracy

condition, which may be stated in terms of the associated splitting polytope

P and Newton polyhedra N), we refer the reader to Theorem 56. We note

that the techniques used in proving Theorem 56 are related to those used

by Shibuta and Takagi in their calculation of log canonical thresholds of

binomial ideals appearing in [ST09].

Theorem B. (Cf. Theorem 58) Let f be a polynomial over C vanishing

at the origin. If the coefficients appearing in the terms of f form an

algebraically independent sequence over Q, then log canonicity equals dense

F -pure type for f .

These theorems differ in an important way: the first requires some

nondegeneracy of the supporting monomials of f , but assumes nothing

about the coefficients of f , while the second requires some generality of

the coefficients of f , but assumes nothing about the supporting monomials.

Moreover, under certain conditions, the first theorem characterizes the set

of primes for which the F -pure and log canonical thresholds agree, while

the second provides no such characterization.

We now outline our method for establishing these results. Let f denote

a polynomial over C, and let af denote its term ideal. An important

component of our argument relies on the fact that the characteristic zero

analog of (1.1) holds, that is, on the fact that

lct(f) 6 min{1, lct(af )}.

Let fp denote the reduction of f to characteristic p� 0. For such p, the

monomials appearing in f and fp agree, so that af and afp (the term ideals

of f and fp) are generated by the same monomials. Moreover, it follows from

[HY03] that fpt(afp) = lct(af ) for p� 0. Using results referenced earlier in

this introduction (i.e., Theorem 42 and Proposition 40), we are able to

show that fpt(fp) = min{1, fpt(afp)} for infinitely (or all but finitely) many

p, and an application of the relations in (1.2) shows that for such p,

fpt(fp) 6 lct(f) 6 min{1, lct(af )}= min{1, fpt(afp)}= fpt(fp),

forcing equality throughout.
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§2. Base p expansions

Definition 1. Let λ be a nonzero real number in the unit inter-

val. The nonterminating base p expansion of λ is the unique expression

λ=
∑

e>1 λ
(e) · p−e with the property that the integers 0 6 λ(e) 6 p− 1 are

all not eventually zero. The number λ(e) is called the eth digit of λ in base

p. By convention, we set λ(0) = 0(e) = 0.

Definition 2. Let λ be a nonzero real number in the unit interval, and

fix a prime p. Given an integer e> 1, we call 〈λ〉e :=
∑e

s=1 λ
(s) · p−s the eth

truncation of λ in base p. By convention, we set 〈λ〉0 = 〈0〉e = 0. Given a

vector λ ∈ [0, 1]n, we use 〈λ〉e to denote the vector whose entries are the eth

truncations of the entries of λ.

When p is obvious from the context (e.g., the characteristic of an

ambient field), we omit any reference to the base when discussing digits

and truncations.

Lemma 3. If (pe − 1) · λ ∈ N for some e, then (pe − 1) · λ= pe · 〈λ〉e.

Proof. This follows from the observation (whose verification is left to the

reader) that if (pe − 1) · λ ∈ N, then the digits of λ (in base p) are periodic

and repeat after e terms.

Lemma 4. If λ ∈ (0, 1], then pe · 〈λ〉e ∈ N, and 〈λ〉e < λ6 〈λ〉e + 1
pe .

Furthermore, if (p− 1) · λ ∈ N, then λ(e) = (p− 1) · λ for every e> 1.

Proof. The first two assertions follow from the definitions. For the third,

note that the nonterminating expansion for λ can be obtained by multiplying

each term in the expansion 1 =
∑

e>1(p− 1) · p−e by λ.

Definition 5. Let (λ1, . . . , λn) ∈ [0, 1]n. We say that λ1, . . . , λn add

without carrying (base p) if λ1
(e) + · · ·+ λn

(e) 6 p− 1 for every e> 1.

The notion of adding without carrying is relevant in light of the following

classical result.

Lemma 6. [Dic02, Luc78] Fix k = (k1, . . . , kn) ∈ Nn, and set N = k1 +

· · ·+ kn. For every i, let ki =
∑

e>0 ki,e · pe denote the (unique) base p

expansion of the integer ki (so that ki,e = 0 for e� 0), and, similarly, let

N =
∑

e>0 Ne · pe denote the (unique) base p expansion of N . Then, the

multinomial coefficient
(
N
k

)
:= N !

k1!···kn! 6≡ 0 mod p if and only if k1,e + · · ·+
kn,e =Ne for every e> 0.
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14 DANIEL J. HERNÁNDEZ

Corollary 7. The entries of a vector (λ1, . . . , λn) ∈ [0, 1]n add with-

out carrying if and only if
(pe〈λ1〉e+···+pe〈λn〉e
pe〈λ1〉e,...,pe〈λn〉e

)
6≡ 0 mod p for every e> 1

(or, equivalently, for infinitely many e> 1).

Proof. Lemma 6 implies that
(pe〈λ1〉e+···+pe〈λn〉e
pe〈λ1〉e,...,pe〈λn〉e

)
6≡ 0 mod p⇐⇒ λ1

(s) +

· · ·+ λn
(s) 6 p− 1 for every 1 6 s6 e, and the claim follows.

Lemma 8. Let (λ1, . . . , λn) ∈Qn ∩ [0, 1]n.

(1) If λ1 + · · ·+ λn 6 1, then λ1, . . . , λn add without carrying for infinitely

many p.

(2) If λ1 + · · ·+ λn > 1, then λ1
(1) + · · ·+ λn

(1) > p whenever p� 0.

Proof. By Dirichlet’s theorem, (p− 1) · (λ1, . . . , λn) ∈ Nn for infinitely

many p. For such p, Lemma 4 shows that λi
(e) = (p− 1) · λi for each i and

e, and therefore
∑
λi

(e) = (p− 1) ·
∑
λi, which establishes the first point.

For the second point, note that

λi
(1) = p〈λi〉1 = p · λi − p · (λi − 〈λi〉1) > p · λi − 1,

where the last inequality follows from Lemma 4. Consequently,

n∑
i=1

λi
(1) > p ·

n∑
i=1

λi − n= p+ p ·

(
n∑
i=1

λi − 1

)
− n,

and, hence,
∑
λi

(1) > p whenever p · (
∑
λi − 1) > n.

§3. F -pure thresholds

Let R denote a polynomial ring over a field of characteristic p > 0, and let

m = (x1, . . . , xm) denote the homogeneous maximal ideal of R. For every

ideal I of R, let I [p
e] denote the ideal generated by the set {fpe : f ∈ I}. We

call I [p
e] the eth Frobenius power of I.

Definition 9. [TW04, MTW05] Fix a nonzero ideal a⊆m generated

by t elements. By the pigeon-hole principle, we have that at(p
e−1)+1 ⊆m[pe],

and hence

νa (pe) = max{w : aw /∈m[pe]}

is a well-defined integer, bounded above by t(pe − 1) + 1. Thus, the sequence

{p−e · νa (pe)} is bounded above by t, and the flatness of the Frobenius
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morphism can be used to show that this sequence is nondecreasing, so that

the limit

fpt(a) = lim
e→∞

p−e · νa (pe)

exists. We call this limit the F -pure threshold of a at the origin. In the case

that a is a principal ideal generated by a polynomial f ∈m, we write fpt(f)

instead of fpt(a).

Remark 10. Although it is not obvious from the definition, the F -pure

threshold is a rational number (see [BMS08, Theorem 3.1]).

Remark 11. As a 6= 0, we have that a 6⊆m[pe] for large values of e,

so that νa (pe) 6= 0 for e� 0, and hence fpt(a) 6= 0. Moreover, the bound

νa (pe) 6 t(pe − 1) + 1 shows that fpt(a) 6 t. In particular, when a = (f) is

principal, we have that fpt(f) ∈ (0, 1].

Remark 12. If a⊆ b are ideals contained in m, then νa (pe) 6 νb (pe),

and hence fpt(a) 6 fpt(b). In particular, if f ∈m is a polynomial and af is

its term ideal, then

fpt(f) 6 min{1, fpt(af )}.

The following lemma, which is well known to experts, plays a key role in

this article.

Lemma 13. Let λ ∈ (0, 1] be a rational number such that (pe − 1) · λ ∈ N
for some e> 1. Then, fpt(f) > λ if and only if f (p

e−1)·λ /∈m[pe].

Proof. This may be deduced, for example, from either [Sch08, Propo-

sition 3.3] and [Sch08, Lemma 5.2], [Her12, Key Lemma 3.1] and [Her12,

Proposition 4.2], or [MTW05, Proposition 1.9] and [BMS09, Proposition

4.3(ii)]. For the convenience of the reader, we present a proof based on the

last of these options (as it only involves concepts introduced herein), and

we begin by recalling the relevant facts. In what follows, we fix an integer

e> 1.

(1) νf (pe) = dpe · fpt(f)e − 1 (see [MTW05, Proposition 1.9]).

(2) If a ∈ N, and if fpt(f)> a
pe , then fpt(f) > a

pe−1 (see [BMS09, Proposi-

tion 4.3(ii)]).

Note that, as dαe< α+ 1 for every real number α, (1) above implies that

(3) νf (pe)< pe · fpt(f).
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16 DANIEL J. HERNÁNDEZ

We now begin our proof. First, note that the assumption that (pe − 1)λ ∈
N implies that

(3.1) dpeλe= dpeλ− λ+ λe= (pe − 1)λ+ dλe= (pe − 1)λ+ 1.

If fpt(f) > λ, then combining (3.1) and (1) above shows that

νf (pe) = dpe · fpt(f)e − 1 > dpeλe − 1 = (pe − 1)λ.

On the other hand, if (pe − 1) · λ6 νf (pe), then combing this with (3)

above implies that

(pe − 1) · λ
pe

6
νf (pe)

pe
< fpt(f),

and (2) above then shows that fpt(f) > (pe−1)·λ
pe−1 = λ.

In summary, we have just shown that fpt(f) > λ if and only if νf (pe) >
(pe − 1) · λ, and the claim then follows.

§4. Polyhedral constructions

In this section, we consider two key polyhedra associated to polynomials,

and we begin by recalling some basic notions from convex geometry.

Throughout this discussion, our main reference is [Web94].

4.1 Polyhedral sets

Given a linear form L ∈ R[z1, . . . , zm] and a real number β, we use HL
β to

denote the hyperplane HL
β = {v ∈ Rm : L(v) = β}, and we use HS

L
β to denote

the closed upper halfspace HS
L
β = {v ∈ Rm : L(v) > β}. Given P ⊆ Rm, HS

L
β

is called a supporting halfspace of P if P ⊆HS
L
β and HL

β ∩P 6= ∅. In this

case, HL
β ∩P is called an (exposed) face of P. Recall that a subset P ⊆ Rm

is called a polyhedral set if there exist finitely many linear forms L1, . . . Ld
in R[z1, . . . , zm] and elements β1, . . . , βd ∈ R such that

P = HS
L1

β1
∩ · · · ∩HS

Ld
βd
.

If we may choose the linear forms L1, . . . , Ld to have rational coefficients,

and the numbers β1, . . . βd to be rational, then we call the polyhedral set

P rational. In the case that a polyhedral set is rational, all of its faces may

described by rational data. A compact polyhedral set is called a polytope.
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Given any subset C ⊆ Rm, we use cone(C ) to denote the collection of all

finite sums
∑

v λv · v with v ∈ C such that λv > 0; we call cone(C ) the cone

generated by C . Given v ∈ Rm, we call cone({v}) the ray generated by v.

We also use convex(C ) to denote the collection of all finite sums
∑

v λv · v
with v ∈ C such that λv > 0 and

∑
v λv = 1; we call convex(C ) the convex

hull of C . Although it is not obvious from these definitions, both cone(C )

and convex(C ) are rational polyhedral sets whenever C ⊆Qm (see [Web94,

Theorems 4.1.1 and 3.2.5]). Given two subsets V and W of Rm, we use

V +W to denote {v + w : v ∈ V,w ∈W}, the Minkowski sum of V and W .

We conclude by recalling the following structural result (often called the

finite-basis theorem for polyhedra): a set in Rm is polyhedral if and only

if it is of the form convex(C ) + cone(D), where C and D are two finite

(and possibly empty) subsets of Rm, and is rational if and only if C and D
are contained in Qm (see [Web94, Theorem 4.1.2]).

Remark 14. By the finite-basis theorem for polyhedra, every polyhe-

dron P ⊆ Rm is of the form convex(C ) + cone(D) for some finite subsets

C ,D ⊆ Rm>0. It then follows from the finiteness of C (and, hence, the

boundedness of convex(C )) that the polyhedron P is unbounded if and

only if it contains a ray of the form v + λ ·w, with v ∈P, and 0 6= w ∈ Rm.

4.2 Splitting polytopes

Notation 15. For s = (s1, . . . , sn) ∈ Rn, |s| denotes the coordinate sum

s1 + · · ·+ sn. We stress that | · | is not the usual Euclidean norm on Rn.

Furthermore, when dealing with elements of Rn, we use ≺ and 4 to

denote component-wise (strict) inequality. Finally, 1m denotes the element

(1, . . . , 1) ∈ Rm.

Notation 16. Fix a polynomial ring L[x1, . . . , xm] over a field of arbitrary

characteristic. Given a vector a = (a1, . . . , am) ∈ Nm, we use xa to denote

the monomial xa1
1 · · · xamm . If f =

∑n
i=1 ui · xai is the unique expression of a

polynomial f as an L∗-linear combination of distinct monomials, then we use

Supp(f) to denote {xa1 , . . . , xan}, the collection of supporting monomials

of f . We often abuse notation by identifying monomials with their exponent

vectors, and thus often write Supp(f) = {a1, . . . , an}. We continue to use

af to denote the term ideal of f , that is, the monomial ideal generated by

Supp(f) in L[x1, . . . , xm].

Definition 17. Fix an arbitrary field L, and consider a polynomial f ∈
L[x1, . . . , xm] vanishing at the origin, with Supp(f) = {a1, . . . , an} ⊆ Nm.
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18 DANIEL J. HERNÁNDEZ

Figure 1.

The splitting polytopes from Examples 20 and 21.

(1) We call the m× n matrix E := [a1 · · · an] the exponent matrix of f .

(2) We call P := {s ∈ Rn>0 : Es4 1m} the splitting polytope of f .

Remark 18. The exponent matrix and splitting polytope associated to

f depend only on Supp(f). Moreover, it follows by definition that P is a

polyhedral set, and as E has nonnegative integer entries, P is a compact

subset (and, hence, polytope) in [0, 1]n.

Definition 19. Consider the linear functional Rn→ R given by s 7→
|s|= s1 + · · ·+ sn. As P is compact, β = max{|s| : s ∈P} is well defined,

and the nonempty set {s ∈P : |s|= β} defines an exposed face of P. We call

this face the maximal face of P, and denote it by Pmax.

Example 20. If f = xd1
1 + · · ·+ xdmm , then P = {s ∈ Rm : 04 s4

(1/d1, . . . , 1/dm)}, and Pmax consists of the single point (1/d1, . . . , 1/dm).

The splitting polytopes considered in the following examples are depicted

in figure 1.

Example 21. If f = xa + yb + xcyc, then P =
{
s< 0 :

[
a 0 c

0 b c

]
s4

[
1
1

]}
is the convex hull of v1 = (1/a, 0, 0) , v2 = (0, 1/b, 0) , v3 = (1/a, 1/b, 0),

v4 = (0, 0, 1/c), and 0. The description of Pmax depends on the relationship

between a, b, and c.

(1) If 1/a+ 1/b > 1/c, then Pmax = {v3}.
(2) If 1/a+ 1/b < 1/c, then Pmax = {v4}.
(3) If 1/a+ 1/b= 1/c, then Pmax is the line segment connecting v3 and v4.

Definition 22. We call an element of Pmax a maximal point, and we

say that P contains a unique maximal point if #Pmax = 1.

https://doi.org/10.1017/nmj.2016.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.14


F -PURITY VERSUS LOG CANONICITY FOR POLYNOMIALS 19

Example 23. In Example 20, P always has a unique maximal point. In

Example 21, we see that P contains a unique maximal point if and only if

1/a+ 1/b 6= 1/c.

We conclude this discussion by illustrating an important property of

polynomials whose splitting polytope contains a unique maximal point. We

refer the reader to Remark 34 for a description of this condition in terms of

Newton polyhedra.

Lemma 24. Suppose that P has a unique maximal point η ∈P.

(1) If |s|= |〈η〉e| and Es = E〈η〉e for some s ∈ Rn>0, then s = 〈η〉e.
(2) If |s|= |ν|,Es = Eν, and ν 4 〈η〉e for some ν, s in Rn>0, then s = ν.

Proof. To prove the first statement, let η′ := s + η − 〈η〉e. By hypothesis,

η′ < s< 0, Eη′ = Es + Eη −E〈η〉e = Eη, and |η′|= |s|+ |η| − |〈η〉e|= |η|,
which shows that η′ is a maximal point of P. Thus, η′ = η, and s = 〈η〉e.

For the second statement, let s′ := s + 〈η〉e − ν. By hypothesis, s′ < 0,

|s′|= |〈η〉e|, and Es′ = E 〈η〉e. The first statement, applied to s′, shows that

s′ = 〈η〉e, and thus s = ν.

Corollary 25. Fix a field L of characteristic p, and a polynomial

f =
∑n

i=1 ui · xai in L[x1, . . . , xm] vanishing at the origin, and such that

the associated splitting polytope P has a unique maximal point η ∈P.

(1) The coefficient of the monomial xp
eE〈η〉e in fp

e|〈η〉e| is
(pe|〈η〉e|
pe〈η〉e

)
up

e〈η〉e .

(2) If ν ∈ 1
pe · N

n is an index such that ν 4 〈η〉e, then the coefficient of the

monomial xp
eEν in fp

e|ν| is
(
pe|ν|
peν

)
up

eν .

Proof. This follows immediately from Lemma 24, and the multinomial

theorem.

4.3 Newton polyhedra

Definition 26. Fix an arbitrary field L, and consider a polynomial f ∈
L[x1, . . . , xm] vanishing at the origin. We call N := convex(Supp(f)) + Rm>0

the Newton polyhedron of f .

Remark 27. It follows from the discussion in Section 4.1 that N is,

indeed, a polyhedron. Moreover, since Supp(f)⊆ Nm and Rm>0 is the cone

generated by the standard basis elements of Qm, it follows that N is rational.

Lemma 28. If N is the Newton polyhedron of f ∈ L[x1, . . . , xm], then

every nonempty face of N is of the form HL
β ∩N, where β ∈Q>0, and
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20 DANIEL J. HERNÁNDEZ

L ∈Q[z1, . . . , zm] is a Q>0-linear combination of the variables. Further-

more, such a face is bounded if and only if L is a Q>0-linear combination

of the variables (in which case, β ∈Q>0).

Proof. By Remark 27, every face of N is of the form HL
β ∩N, where

L= β1z1 + · · ·+ βmzn, and β, β1, . . . , βm ∈Q. Fix v ∈HL
β ∩N. By defini-

tion, v + λ · ei ∈N for every λ > 0, and so

(4.1) β 6 L (v + λ · ei) = L (v) + λ · L(ei) = β + λ · βi.

As λ > 0, (4.1) implies βi > 0. Furthermore, as we have shown that L is a

nonnegative rational combination of the variables, it follows that L (N)⊆
L
(
Rm>0

)
⊆ R>0. Consequently, as we are assuming that the face HL

β ∩N =

{v ∈N : L(v) = β} is nonempty, it follows that β must be nonnegative. We

now prove the second assertion. By Remark 14, we have that HL
β ∩N is

bounded if and only if for every v ∈HL
β ∩N, and nonzero element w ∈

Rm>0, there exists a positive real number λ such that v + λ ·w /∈HL
β ∩N.

Writing w =
∑m

i=1 wi · ei, the preceding condition may be written as β <

L (v + λ ·w) = L(v) +
∑m

i=1 λwi · βi = β +
∑m

i=1 λwi · βi. As λ > 0, and as

w can be chosen arbitrarily, we conclude that HL
β ∩N is bounded if and only

if β1, . . . , βm > 0. Finally, it follows from the positivity of the coefficients of

L, along with the fact that every point in N is has nonnegative entries (and

at least one positive entry), that L(N)⊆ R>0, and hence that β > 0.

Definition 29. By definition, the ray generated by 1m intersects the

boundary of N. By [Web94, Theorem 3.2.2], this boundary is the union of

the exposed faces of N, and we say that N is in diagonal position if the ray

generated by 1m intersects a bounded face of N.

Example 30. The polyhedra appearing in Examples 20 and 21 are in

diagonal position.

4.4 Connections

In this subsection, we fix a field L, a polynomial f ∈ L[x1, . . . , xm]

vanishing at the origin, and distinct, nonzero vectors such that Supp(f) =

{a1, . . . , an}.

Lemma 31. If P and N are the splitting polytope and the Newton

polyhedron associated to f , then {|s| : s ∈P \ 0}=
{
λ > 0 : 1

λ · 1m ∈N
}

. In

particular,

max{|s| : s ∈P}= max

{
λ > 0 :

1

λ
· 1m ∈N

}
.
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Proof. Fix s ∈P \ 0. By definition of P, we have that Es =
∑
si · ai 4

1m, and dividing this through by |s| 6= 0, we see that
∑ si
|s| · ai 4

1
|s| · 1m.

Consequently, there exists δ ∈ Rm with δ < 0 such that 1
|s| · 1m =

∑ si
|s| ·

ai + δ, and as
∑ si
|s| = 1, this shows that 1

|s| · 1m ∈N.

Next, fix λ 6= 0 such that 1
λ · 1m ∈N. By definition, there exist non-

negative real numbers σ1, . . . , σn with
∑
σi = 1, and a vector δ < 0 such

that 1
λ · 1m =

∑
σi · ai + δ, so that 1

λ · 1m <
∑
σi · ai. Multiplying through

by λ shows that 1m <
∑

(λσi) · ai, and it follows that the vector s :=

(λσ1, . . . , λσn) is contained in P, and has coordinate sum λ.

Lemma 32. Suppose that N is in diagonal position, so that the ray

generated by 1m intersects some bounded face of N. If F is such a bounded

face of N, then

Pmax = {s ∈ Rm>0 : Es = 1m and si = 0 whenever ai /∈ F}.

Proof. By Lemma 28, F = HL
β ∩N, where β ∈Q>0, and L ∈Q[z1, . . . zm]

is a positive linear combination of the variables. Moreover, by replacing L

with 1
β · L, we may, and will, assume that β = 1. Given s ∈Pmax, Lemma

31 implies that (1/|s|) · 1m, which lies on the ray generated by 1m, is also

contained in the boundary of N, and hence lies in F. Consequently,

1

|s|
· L (1m) = L

(
1

|s|
· 1m

)
= 1 for every s ∈Pmax.

Restated, L(1m) = |s| for every s ∈Pmax, which shows that

(4.2) Pmax = {s ∈ Rm>0 : Es4 1m and |s|= L(1m)}.

With this observation in hand, we begin our proof. Set

Q = {s ∈ Rm>0 : Es = 1m and si = 0 whenever ai /∈ F}.

To complete the proof, we must show that Pmax = Q. Toward this end,

choose s ∈Pmax. As L has positive coefficients, we may apply it to the

bound Es4 1m to obtain

|s|=
n∑
i=1

si 6
n∑
i=1

si · L(ai) = L(Es) 6 L(1m),

where we have also used that 1 6 L(ai) for all 1 6 i6 n, by our choice

of L. Furthermore, (4.2) shows that all of these inequalities must be,
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in fact, equalities. If the inequality Es4 1m were strict in some component,

then the positivity of L would imply that L(Es)< L(1m), which is impossi-

ble by our previous observation. On the other hand, if sk were nonzero (and,

hence, positive) for some index k with ak /∈ F, then we would have that

1< L(ak), and, hence, than sk < sk · L(ak), which would then force the

leftmost inequality above to be strict, which is also impossible. In summary,

we have just shown that s ∈Q.

Next, fix an element s ∈Q, so that 1m = Es =
∑

ai∈F si · ai. By our choice

of L, we have that L(ai) = 1 whenever ai ∈ F, and so applying L to this

identity shows that L(1m) =
∑

ai∈F si = |s|, which shows that s ∈Pmax.

Remark 33. (Constructing an element of Pmax) It follows immedi-

ately from the definition that Pmax is nonempty. On the other hand, if

N is in diagonal position, then one may also see this from the description

given in the preceding lemma. Suppose λ > 0 is such that (1/λ) · 1m lies

in a bounded face F of Newton (such a λ exists, by the assumption that

N is in diagonal position), then because F is bounded, it is the convex

hull of the set {a1, . . . , an} ∩ F, and so we may write both (1/λ)1m and

1m as a nonnegative combination of the elements of {a1, . . . an} ∩ F. The

coefficients in this latter linear combination can be used to produce an

element s described in the statement of Lemma 32.

The condition that #Pmax = 1 appears multiple times in this article, and

below we give an alternate description of this condition in terms of the

Newton polyhedron N whenever N is in diagonal position.

Remark 34. (A simple characterization of when #Pmax = 1) Suppose,

once more, that N is in diagonal position, and let F be the minimal bounded

face of N that intersects the ray generated by 1m. We claim that

#Pmax = 1 ⇐⇒ {a1, . . . , an} ∩ F is a linearly independent subset of Rm.

To see why this is the case, first suppose that {a1, . . . , an} ∩ F is a

linearly independent set. In this case, if s and t are in Pmax, then Lemma

32 shows that the kth entries of s and t are zero whenever ak /∈ F, and that∑
ai∈F

ti · ai = Et = 1m = Es =
∑
ai∈F

si · ai.

The linear independence of these vectors then shows that si = ti for every i

with ai ∈ F, and so s = t. We conclude that #Pmax = 1.
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Next, instead suppose that {a1, . . . , an} ∩ F is not a linearly independent

set, and fix coefficients so that
∑

ai∈F δi · ai = 0. As in Remark 33, we

may write 1m as a nonnegative rational combination of the vectors in

{a1, . . . , an} ∩ F, and the minimality of F guarantees that there exists

such a linear combination with positive coefficients. Thus, we may fix

positive rational coefficients γi such that 1m =
∑

ai∈F γi · ai, and this

positivity implies that γi + ε · δi > 0 for every i with ai ∈ F whenever ε > 0

is sufficiently small. Fix such an ε, and define an element s ∈ Rm>0 as follows:

si = 0 if ai /∈ F, and si = γi + ε · δi otherwise. It follows that si > 0 if and

only if ai ∈ F, and that

Es =
∑
ai∈F

si · ai =
∑
ai∈F

γi · ai + ε ·
∑
ai∈F

δi · ai =
∑
ai∈F

γi · ai = 1m.

This computation and Lemma 32 show that s ∈Pmax, and as this holds for

infinitely many values of ε, we have that #Pmax > 1.

Remark 35. (A comparison with another nondegeneracy condition on

Newton polyhedra) Given a face σ of N, let fσ denote the polynomial

obtained by summing only the terms of f whose supporting monomials lie

in σ. Recall that f is said to be nondegenerate with respect to N whenever

the system of equations ∂fσ/∂x1 = · · ·= ∂fσ/∂xm = 0 has no solution in

(L∗)m for every face σ of N. It is a general principle that polynomials that

are nondegenerate with respect to their Newton polyhedra often satisfy

certain desirable conditions (for a particularly relevant instance of this, see

[How01b]).

Note that if f ∈ L[x1, . . . , xm] is a general polynomial of degree d, then f

is nondegenerate with respect to N. On the other hand, it is apparent that

for such an f , the Newton polyhedron N is in diagonal position: the ray

generated by 1m intersects N in the bounded face σ = {s ∈ Rm : |s|= d} ∩N

of N. According to Remark 34, we then have that #Pmax = 1 if and only if

the supporting monomials of f lying on this face are linearly independent,

which is impossible for dimension reasons. Thus, #Pmax > 1.

As illustrated by this example, the condition that f be nondegenerate

with respect to N can be quite different from the condition that #Pmax = 1.

Indeed, as seen above, the latter condition may depend on the coefficients

in f , while the former only depends on the supporting monomials of f .
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§5. Polyhedra and F -pure thresholds

Proposition 36. Fix a field L of characteristic p > 0, and consider a

polynomial f in L[x1, . . . , xm] vanishing at the origin. If P is the splitting

polytope associated to f , and af is the term ideal of f , then fpt(af ) =

max {|s| : s ∈P}= max
{
λ 6= 0 : 1

λ · 1m ∈N
}

.

Proof. Fix distinct, nonzero vectors in Nm such that Supp(f) =

{a1, . . . , an}. By Lemma 31, it suffices to establish the first equality. By

definition, a := af = (xa1 , . . . , xan), and hence the ideal aN is generated by

monomials of the form xk1a1+···+knan = xEk with |k|= k1 + · · ·+ kn =N .

As aνa(p
e) /∈m[pe], there exists k ∈ Nn with |k|= νa (pe) such that xEk /∈

m[pe]. By definition, p−e · k ∈P, and consequently p−e · νa (pe) = p−e · |k|=
|p−e · k|, which by definition is bounded above by max {|s| : s ∈P}. Taking

e→∞ then shows that fpt(a) 6 max {|s| : s ∈P}. Next, choose η ∈Pmax.

As 〈η〉e ≺ η, we have that E 〈η〉e ≺Eη 4 1m, and so xp
eE〈η〉e is contained

in ap
e|〈η〉e| but not m[pe]. It follows that p−e · νa (pe) > |〈η〉e|, and letting

e→∞ shows that fpt(a) > |η|= max{|s| : s ∈P}.

Corollary 37. If L is a field of characteristic p > 0, and f in

L[x1, . . . , xm] is a polynomial vanishing at the origin, then the following

are equivalent.

(1) There exists a maximal point η ∈Pmax with (pe − 1) · η ∈ Nn.

(2) (pe − 1) · fpt(af ) ∈ N and a
(pe−1)·fpt(af )
f /∈m[pe].

Furthermore, if either condition holds and N is in diagonal position, then

a
(pe−1)·fpt(af )
f ≡

(
xp

e−1
1 · · · xpe−1m

)
mod m[pe].

Proof. Set Supp(f) = {a1, . . . , an}, and a = af . By definition, aN is

generated by the monomials xEk with |k|=N . If η ∈Pmax and (pe − 1) ·
η ∈ Nn, then it follows from Proposition 36 that (pe − 1) · fpt(a) = (pe −
1) · |η| ∈ N, and since η ∈Pmax, we have that x(p

e−1)·Eη is in a(p
e−1)·fpt(a),

but not in m[pe]. Conversely, if (pe − 1) · fpt(a) ∈ N, and a(p
e−1)·fpt(a) 6⊆m[pe],

there exists k ∈ Nn such that |k|= (pe − 1) · fpt(a) and xEk /∈m[pe], so that
1

pe−1 · k ∈Pmax. Having proven the equivalence, it remains to establish the

last assertion, which we do now. We have just seen that the monomials in

a(p
e−1)·fpt(a) not contained in m[pe] are of the form xEk for some index k

satisfying 1
pe−1 · k ∈Pmax. By Lemma 32, Ek = (pe − 1) · 1m, and it follows

that the only monomial in a(p
e−1)·fpt(a) not in m[pe] is x(p

e−1)·1m .
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Proposition 38. Fix a field L of characteristic p, and a polynomial

f ∈ L[x1, . . . , xm] vanishing at the origin. We fix distinct, nonzero vectors

a1, . . . , an in Nm, and nonzero elements u1, . . . , un in L, so that f =∑n
i=1 ui · xai. If N is in diagonal position, and if (pe − 1) · η ∈ Nn for

some η ∈Pmax and e> 1, then there exists a nonzero polynomial Θ ∈
Z[w1, . . . , wn] satisfying the following conditions.

(1) f (p
e−1)·fpt(af ) ≡Θ(u1, . . . , ur) · xp

e−1
1 · · · xp

e−1
m mod m[pe].

(2) If e= 1 and fpt(af ) 6 1, then Θ has nonzero image in Fp[w1, . . . , wn].

Proof. Set a = af . By definition, f (p
e−1)·fpt(a) ∈ a(p

e−1)·fpt(a), and Corol-

lary 37 then implies that f (p
e−1)·fpt(a) is a multiple of x(p

e−1)·1m mod-

ulo m[pe]. Moreover, the multinomial theorem identifies this multiple as

Θ(u1, . . . , ur) · x(p
e−1)·1m mod m[pe], where

(5.1)

Θ(w1, . . . , wn) :=
∑(

(pe − 1) · fpt(a)

k1, . . . , kn

)
wk1
1 · · · w

kn
n ∈ Z[w1, . . . , wr],

and the sum in (5.1) extends over all k = (k1, . . . , kn) ∈ Nn such that |k|=
(pe − 1) · fpt(a). (Note that, for such an index, we have that 1

pe−1 · k is

in Pmax, and, hence, Lemma 32 implies that Ek = (pe − 1) · 1m, making

this condition redundant.) By assumption, there exists η ∈Pmax with (pe −
1) · η ∈ Nn; as this index corresponds to a nonzero summand in (5.1), we

conclude that Θ is a nonzero polynomial over Z. For the last point, note

that if fpt(a) 6 1, then (p− 1) · fpt(a) 6 p− 1, and hence the multinomial

coefficients in (5.1) are nonzero modulo p.

Corollary 39. Fix a field L of characteristic p, and a polynomial

f ∈ L[x1, . . . , xm] vanishing at the origin. We fix distinct, nonzero vectors

a1, . . . , an in Nm, and nonzero elements u1, . . . , un in L, so that f =∑n
i=1 ui · xai. If N is in diagonal position, and if P contains a unique

maximal point η such that (pe − 1) · η ∈ Nn for some e> 1, then

f (p
e−1)·fpt(af ) ≡

(
(pe − 1) · fpt(af )

(pe − 1) · η

)
u(p

e−1)η · x(pe−1)·1m mod m[pe].

Proof. As Pmax = {η}, (5.1) implies that the only summand appearing

in Θ corresponds to k = (pe − 1) · η, and the claim then follows from

Proposition 38.

Proposition 40. Fix a field L of characteristic p, and a polynomial

f ∈ L[x1, . . . , xm] vanishing at the origin. We fix distinct, nonzero vectors
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a1, . . . , an in Nm, and nonzero elements u1, . . . , un in L, so that f =∑n
i=1 ui · xai. If fpt(af ) 6 1, N is in diagonal position, and (p− 1) · η ∈ Nn

for some η ∈Pmax, then there exists a nonempty closed set Z ⊆ AnL such

that fpt(f) = fpt(af ) whenever (u1, . . . , un) /∈ Z.

Proof. Let Θ ∈ Z[w1, . . . , wn] be as in Proposition 38. The assumption

that fpt(af ) 6 1 implies that Θ is nonzero modulo p, and hence defines

a nonempty closed set Z in AnL. Moreover, Proposition 38 shows that, if

(u1, . . . , un) /∈ Z, then f (p−1)·fpt(af ) /∈m[p], and Lemma 13 then shows that

fpt(f) > fpt(af ). As the opposite inequality always holds, we conclude that

fpt(f) = fpt(af ) whenever (u1, . . . , un) /∈ Z.

Remark 41. The condition that (p− 1) · η ∈ Nn in Proposition 40 is

necessary. Indeed, if f = u1x
d
d + · · ·+ udx

d
d is a degree d Fermat hypersur-

face, we have seen in Example 20 that η =
(
1
d , . . . ,

1
d

)
is the unique maximal

point of P, so that fpt(af ) = 1
d + · · ·+ 1

d = 1 by Proposition 36. However, it

is shown in [Her15] that, if (p− 1) · 1d /∈ N, then fpt(f)< fpt(af ) for every

choice of coefficients (u1, . . . , un).

Theorem 42. Fix a field L of characteristic p, and a polynomial

f ∈ L[x1, . . . , xm] vanishing at the origin. Suppose that the associated

splitting polytope P contains a unique maximal point η, and let L=

inf
{
e> 0 : η1

(e+1) + · · ·+ ηn
(e+1) > p

}
, where ηi

(e) is the eth digit of ηi.

(1) If L=∞, then fpt(f) = fpt(af ). The converse holds if N is in diagonal

position and p does not divide any of the denominators of η.

(2) If L <∞, then fpt(f) > 〈η1〉L + · · ·+ 〈ηn〉L + 1
pL

.

Proof. We fix distinct, nonzero vectors a1, . . . , an in Nm, and nonzero

elements u1, . . . , un in L, so that f =
∑n

i=1 ui · xai . We first prove (1), and

thus assume that L=∞ (i.e., that entries of η add without carrying).

Corollary 25 gives that, after gathering terms,

(5.2)

(
pe|〈η〉e|
pe 〈η〉e

)
up

e〈η〉exp
eE〈η〉e

appears as a summand of fp
e|〈η〉e|. By definition, each ui ∈ L∗, so up

e〈η〉e 6=
0. Moreover, as the entries of η add without carrying, it follows from

Corollary 7 that
(pe|〈η〉e|
pe〈η〉e

)
6= 0 mod p for every e> 1. Finally, 〈η〉e 4 η,

and so every entry of peE 〈η〉e is less than or equal to pe − 1. We see

then that the monomial in (5.2) is in Supp
(
fp

e|〈η〉e|
)
, but not in m[pe].

https://doi.org/10.1017/nmj.2016.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.14


F -PURITY VERSUS LOG CANONICITY FOR POLYNOMIALS 27

Thus, fp
e|〈η〉e| /∈m[pe], and so

νf (p
e)

pe > |〈η〉e|. Letting e→∞ shows that

fpt(f) > |η|= fpt(af ), where the last inequality follows from Proposition

36. As the opposite inequality always holds, we have just shown that

fpt(f) = fpt(af ) if L=∞, and it remains to show that the converse holds if

N is in diagonal position, and p does not divide any denominator in η, which

we do now. Suppose that fpt(f) = fpt(af ). Our hypothesis on p implies that

(pe − 1) · η ∈ N for infinitely many e, and for such e> 1, Lemma 13 implies

that f (p
e−1)·fpt(a) /∈m[pe]. On the other hand, Corollary 39 implies that this

occurs if and only if (
(pe − 1) · fpt(af )

(pe − 1) · η

)
6= 0 mod p.

Finally, Lemma 3 and Corollary 7 show that this multinomial coefficient is

nonzero mod p if and only if the entries of η add without carrying.

We now address the second point. If L <∞, then η1
(L+1) + · · ·+

ηn
(L+1) > p, by definition. Consequently, there exist (not necessarily unique)

integers δ1, . . . , δn such that

(5.3) δ1 + · · ·+ δn = p− 1 and 0 6 δi 6 ηi
(L+1),

with the second inequality in (5.3) being strict for at least one index.

Without loss of generality, we assume that δ1 < η1
(L+1). For e> 2, set

(5.4) λ= 〈η〉L +

(
δ1
pL+1

+
p− 1

pL+2
+ · · ·+ p− 1

pL+e
,
δ2
pL+1

, . . . ,
δn
pL+1

)
.

We summarize some important properties of λ. By construction, pL+e ·
λ ∈ Nn. Furthermore, the defining properties of the δi show that both λ≺
〈η〉e and

|λ|= |〈η〉L|+
p− 1

pL+1
+
p− 1

pL+2
+ · · ·+ p− 1

pL+e
= |〈η〉L|+

pe − 1

pL+e
,

while the definition of L, and Lemma 6, imply that
(pL+e|λ|
pL+eλ

)
6= 0 modulo p.

These properties imply that
(pL+e|λ|
pL+eλ

)
up

L+eλxp
L+eEλ is a nonzero summand

of fp
L+e|λ| = fp

L+e|〈η〉L|+pe−1 that is not contained in m[pL+e], so that
νf(pL+e)
pL+e > |〈η〉L|+ pe−1

pL+e , and the assertion follows by letting e→∞.

Remark 43. The estimates given in Theorem 42 can be used to

calculate fptm(f) in any characteristic whenever f is either a diagonal or

binomial hypersurface (see [Her15, Her14]).
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§6. Log canonical singularities and (dense/open) F -pure type

In this section, we prove our main results relating F -pure and log

canonical thresholds. Although it is not needed in this article, we briefly

recall the definition of the log canonical threshold. Given an ideal a⊆
C[x1, . . . , xm], recall that a log resolution of a consists of a map π :X → AmC
with the following properties.

• X is a smooth variety over C.

• π is a proper, birational map of algebraic varieties.

• a · OX is invertible, and hence of the form OX(−D) for some effective

divisor D.

• If Eπ is the exceptional divisor of π, then Eπ +D has simple normal

crossing support.

Given any log resolution, we use Da
π to denote an effective divisor on X

such that a · OX =OX(−Da
π), and we use Kπ to denote a relative canonical

divisor of π (which we may also choose to be effective). Finally, if z is any

point in AmC , and D =
∑
ai ·Di is any R-divisor on X (here, the sum extends

over all prime divisors on X, so that ai = 0 for almost all i), we say that D

is π-effective over z if the divisor
∑

z∈π(Di) ai ·Di is effective.

Definition 44. Fix an ideal a⊆ C[x1, . . . , xm] with 0 ∈ V(a), and

consider a log resolution π :X → AmC of a. The log canonical threshold of a

at the origin is defined as

lct(a) := sup {λ > 0 : the divisor Kπ − λ ·Da
π

on X is π-effective over 0 ∈ AmC }.

In the case that a is a principal ideal generated by f , we write lct(f) instead

of lct(a).

The log canonical threshold turns out to not depend on the choice

of log resolution. Moreover, lct(a) is always a rational number, and the

log canonical threshold of a principal ideal is always contained in (0, 1].

Furthermore, if f ∈ a, then lct(f) 6 lct(a). For justification of these facts,

and for more references to the theory of log canonical thresholds (and related

topics), we refer the reader to the surveys [BL04, EM06, BFS13]. In what

follows, we summarize all of the properties of log canonical thresholds that

we need in this article.
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Proposition 45. Let f ∈ C[x1, . . . , xm] be a polynomial vanishing at

the origin, and let af denote its term ideal, so that 0 is contained in both

the vanishing set of f and af .

(1) lct(f) and lct(af ) are rational numbers, with lct(f) 6 min {1, lct(af )}.
(2) If N denotes the Newton polyhedron associated to f , then

lct(af ) = max

{
λ > 0 :

1

λ
· 1m ∈N

}
.

Proof. The first point follows from the preceding discussion, while the

second appears in [How01a].

Corollary 46. If L is a field of characteristic p > 0, and if f ∈
C[x1, . . . , xm] and fp ∈ L[x1, . . . , xm] are polynomials vanishing at the

origin with Supp(f) = Supp(fp), then fpt(af ) = lct(afp).

Proof. This result is a restatement of [HY03, Theorem 6.10(3)]. For a

self-contained proof, compare the description of lct(af ) given in Proposition

45 with the description of fpt(afp) given in Proposition 36.

6.1 On reduction to positive characteristic

In this subsection, we discuss the process of reduction to positive

characteristic. Many of the technical steps that follow depend on the

following well-known lemma.

Lemma 47. Let A be a finitely generated algebra over a domain D ⊆
A. There exists a nonzero element N ∈D such that DN ⊆AN factors as

DN ⊆DN [z1, . . . , zd]⊆AN , where z1, . . . , zd are algebraically independent

over DN , and DN [z1, . . . , zd]⊆AN is finite.

Proof. If L= FracD, and R is the localization of A at the nonzero

elements of D, then Lemma 47 can be obtained by applying the Noether

normalization theorem to the inclusion L⊆R. The reader is referred to the

author’s thesis [Her11] for more details.

Corollary 48. If A is a finitely generated Z-algebra, then A/µ is a

finite field for every maximal ideal µ⊆A. Furthermore, all but finitely many

primes p ∈ Z are contained in a maximal ideal of A.
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Proof. This follows from Lemma 47, and we refer the reader to the

author’s thesis [Her11] for a detailed proof.

Suppose that f ∈ C[x1, . . . , xm] is a polynomial vanishing at the origin,

and let A⊆ C be a finitely generated Z-algebra containing the coefficients of

f , so that f ∈A[x1, . . . , xm]. For such an algebra, it follows from Corollary

48 that A/µ is a finite field for every µ ∈mSpecA, and all but finitely

many primes appear in the set {charA/µ : µ ∈mSpecA}. Let fµ denote the

image of f in (A/µ) [x1, . . . , xm]. Furthermore, we may enlarge A (say,

by adjoining the inverses of the coefficients of f) so as to assume that

Supp(fµ) = Supp(f) for every µ ∈mSpecA. We call {fµ : µ ∈mSpecA} a

family of positive characteristic models of f .

Corollary 49. If A is a finitely generated algebra over a domain D ⊆
A, then the inverse image of a dense set under the induced map SpecA

π→
SpecD is also dense.

Proof. Let D be dense in SpecD. It suffices to show that SpecAf ∩
π−1(D) is nonempty for every nonzero f ∈A. As A is finitely gener-

ated over D, so is Af =A[T ]/(1− Tf). Consider a factorization DN ⊆
DN [z1, . . . , zd]⊆AfN as in Lemma 47. By the lying over theorem,

SpecAfN
π→ SpecDN is surjective. As D is dense, D ∩ SpecDN = D ∩

π(SpecAfN ) is nonempty. Consequently, SpecAfN ∩ π−1(D), and hence

SpecAf ∩ π−1(D), is nonempty.

6.2 Connections with F -pure thresholds

Notation 50. Set S = C[x1, . . . , xm]. If A is a finitely generated Z
subalgebra of C, we use SA to denote the subring A[x1, . . . , xm]⊆ S.

Note that C⊗A SA = S. If µ is a maximal ideal of A, SA(µ) denotes the

polynomial ring SA ⊗A A/µ= SA/µSA = (A/µ) [x1, . . . , xm]. By Corollary

48, char SA(µ)> 0. For f ∈ SA, we use fµ to denote the image of f in SA(µ).

Finally, m denotes the ideal generated by the variables x1, . . . , xm in the

polynomial rings S, SA, and SA(µ).

It is an important fact that the F -pure (respectively, log canonical)

threshold of a polynomial may also be defined in terms of its associated test

ideals (respectively, multiplier ideals). Theorem 51 below was first observed

in [MTW05, Theorem 3.4], and follows from deep theorems in [Smi00, HY03]

relating test ideals and multiplier ideals. We refer the reader to the author’s

thesis [Her11] for a detailed proof.

https://doi.org/10.1017/nmj.2016.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.14


F -PURITY VERSUS LOG CANONICITY FOR POLYNOMIALS 31

Theorem 51. Let f ∈ S be a polynomial vanishing at the origin. Then,

for every finitely generated Z-algebra A⊆ C with f ∈ SA, the following hold.

(1) There exists a dense open set U ⊆ SpecA such that fpt(fµ) 6 lct(f)

for every maximal ideal µ ∈ U .

(2) For every 0< λ < lct(f), there exists a dense open set Uλ ⊆ SpecA

such that λ6 fpt(fµ) 6 lct(f) for every maximal ideal µ ∈ Uλ.

We stress that the open set Uλ depends on λ, and often shrinks as λ

increases.

Remark 52. Suppose that f has integer coefficients. If fp denotes the

image of f in Fp[x1, . . . , xm], the statements of Theorem 51 become

fpt(fp) 6 lct(f) for p� 0 and lim
p→∞

fpt(fp) 6 lct(f).

Definition 53. Let f ∈ S be a polynomial vanishing at the origin. We

say that log canonicity equals dense (respectively, open) F -pure type (at the

origin) for f if for every finitely generated Z-algebra A⊆ C with f ∈ SA,

there exists a dense (respectively, nonempty open) subset W ⊆ SpecA such

that fpt(fµ) = lct(f) for every maximal ideal µ ∈W .

Remark 54. To show that log canonicity equals (open/dense) F -pure

type for f , it suffices to produce a single finitely generated Z-algebra A

satisfying the conditions of Definition 53. We refer the reader to the author’s

thesis [Her11] for a detailed verification of this.

Remark 55. In the study of singularities of pairs, the terms log

canonical and F -pure have their own independent meanings1. Indeed, one

defines the notion of log singularities for pairs (S, λ • f) via resolution of

singularities (or via integrability conditions) (see [Laz04]). Additionally, we

have that

lct(f) = sup{λ > 0 : (S, λ • f) is log canonical},

which justifies the use of the term log canonical threshold. In the positive

characteristic setting, one defines the notion of F -purity for pairs via the

Frobenius morphism, and we again have that the F -pure threshold of a

1Although we are only interested in the local singularities of polynomials that vanish
at 0, we will omit the term at the origin, for the sake of clarity.
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polynomial is the supremum over all parameters such that the corresponding

pair is F -pure (see [HW02, TW04]). We say that the pair (S, λ • f) is

of dense (respectively, open) F -pure type (at the origin) if for every

(equivalently, for some) finitely generated Z-algebra A⊆ C with f ∈ SA,

there exists a dense (respectively, nonempty open) set W ⊆ SpecA such

that the pair (SA(µ), λ • fµ) is F -pure for every maximal ideal µ ∈W . It

is shown in [HW02, Tak04] that if (S, λ • f) is of dense F -pure type, then

it is also log canonical. It is an important, yet easy to verify, property of

log canonicity that (S, lct(f) • f) is log canonical. Consequently, (S, λ • f)

is log canonical if and only if 0 6 λ6 lct(f). In prime characteristic, that

a pair is F -pure at the threshold is shown in [Har06, Her12], and it follows

that the reductions (SA(µ), λ • fµ) are F -pure if and only if 0 6 λ6 fpt(fµ).

Examining the definitions, we reach the following conclusion. To show that

log canonicity is equivalent to dense (respectively, open) F -pure type for

pairs (S, λ • f), it suffices to show that fpt(fµ) = lct(f) for all maximal µ in

some dense (respectively, nonempty open) subset of SpecA, which justifies

our choice of terminology in Definition 53.

Theorem 56. Fix a polynomial f ∈ S = C[x1, . . . , xm] vanishing at the

origin, and suppose that the splitting polytope P associated to f contains

a unique maximal point η. If A⊆ C is any finitely generated Z-algebra

containing the coefficients of f , then the following hold.

(1) If lct(af )> 1, then fpt(fµ) = lct(f) = 1 for all µ ∈mSpecA with

char SA(µ)� 0. In particular, log canonicity equals open F -pure type

for f .

(2) If lct(af ) 6 1, then for all maximal ideals µ ∈mSpecA with

char SA(µ)� 0,

fpt(fµ) = lct(f)

whenever the entries of η add without carrying (base char SA(µ)). If, in

addition, the Newton polyhedron associated to f is in diagonal position,

then fpt(fµ) = lct(f) if and only if the entries of η add without carrying

(base char SA(µ)). In particular, log canonicity equals dense F -pure

type for f .

Proof. Let A be such that f ∈ SA, and consider the map SpecA
π→

Spec Z. After enlarging A, we may assume that Supp(fµ) = Supp(f) for

every µ ∈mSpecA, and, hence, that |η|= fpt(afµ) = lct(af ). First, suppose

that |η|> 1. By Lemma 8, there exists a nonempty open subset U ⊆ Spec Z
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such that η1
(1) + · · ·+ ηn

(1) > p for every p ∈ U . For such primes, it follows

that L= 0 in Theorem 42, which then states that fpt(fµ) > 1 for every

p ∈ U and µ ∈ π−1(U). Since fpt(fµ) 6 1 always, we see that 1 = fpt(fµ) 6
lct(f) 6 1 for every µ ∈ π−1(U), which is a nonempty open set, by Corollary

48. We conclude that log canonicity equals open F -pure type for f .

Next, suppose that |η|6 1, and let P denote the set of all primes p

such that the entries of η add without carrying (base p). By Lemma 8,

the set P is infinite, and by Corollary 49, π−1(P) is a dense subset

of SpecA. Moreover, Theorem 42 states that, if char SA(µ)� 0, then

fpt(fµ) = fpt(afµ) whenever µ ∈ π−1(P). Theorem 42 also shows that, if

char SA(µ)� 0 and Naf is in diagonal position, then fpt(fµ) = fpt(afµ) if

and only if µ ∈ π−1(P). Finally, the string of inequalities

(6.1) fpt(fµ) 6 lct(f) 6 lct(af ) = fpt(afµ)

shows that all of these thresholds agree whenever char SA(µ)� 0 and µ

is contained in the dense subset π−1(P). We conclude that log canonicity

equals dense F -pure type for f .

Lemma 57. If f ∈ S = C[x1, . . . , xm] is a polynomial vanishing at the

origin, then log canonicity equals dense F -pure type for f if there exist a

finitely generated Z-algebra A⊆ C with f ∈ SA, an infinite set of primes

P ⊆ Z, and for every p ∈P, a subset Dp ⊆ SpecA satisfying the following

conditions.

(1) Dp is a dense subset of π−1(p), where SpecA
π−→ Spec Z.

(2) fpt(fµ) = min
{

1, fpt(afµ)
}

for every maximal ideal µ ∈Dp.

Proof. Let D =
⋃
p∈P Dp. As Dp is dense in π−1(p), Dp = π−1(p), and

thus

(6.2) D ⊇
⋃
p∈P

Dp =
⋃
p∈P

π−1(p) = π−1(P).

By Corollary 49, π−1(P) is dense in SpecA, and (6.2) then shows that

D is dense as well. Let U ⊆ SpecA be the dense open set given by Theorem

51. As D is dense and U is dense and open, it follows that U ∩D is dense

in SpecA. Furthermore, for µ ∈ U ∩D ,

(6.3) lct(f) 6 min{1, lct(af )}= min{1, fpt(afµ)}= fpt(fµ) 6 lct(f).
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Indeed, the leftmost inequality in (6.3) holds by Proposition 45, the first

equality by Corollary 46, the second equality by our assumption on D , and

the rightmost inequality by the defining property of U . We conclude from

(6.3) that fpt(fµ) = lct(f) for every maximal ideal µ in the dense subset

U ∩D of SpecA, and the claim follows.

Theorem 58. Let f ∈ C[x1, . . . , xm] be a polynomial vanishing at the

origin. Fix distinct, nonzero vectors a1, . . . , an in Nm, and elements

u1, . . . , un in C∗, such that f =
∑n

i=1 uix
ai. If the coefficients u1, . . . , un

form an algebraically independent sequence over Q, then log canonicity

equals dense F -pure type for f .

Proof. By hypothesis, Z[u1, . . . , un] is a polynomial ring, with each ui a

variable. If we set A := Z[u1, . . . , un]∏ ui ⊆ C, then f ∈ SA, and Supp(fµ) =

Supp(f) for all maximal ideals µ⊆A. Set γ = min
{

1, fpt(afµ)
}

, and fix

η ∈Pmax ∩Qm (such points exist, as P is rational, and Pmax is a face of

P). If λ := γ
|η| · η, it follows that λ ∈ P ∩Qm (indeed, it lies in the line

segment connecting 0 and η), and satisfies |λ|= γ. If P denotes the set of

primes p such that (p− 1) · λ ∈ Nn, then #P =∞ by Dirichlet’s theorem

on primes in arithmetic progressions. Fix a prime p ∈P. It follows from the

multinomial theorem that x(p−1)Eλ appears in f (p−1)γ with coefficient

(6.4) Θλ,p(u1, . . . , un) =
∑(

(p− 1) · α
k

)
uk ∈ Z[u1, . . . , un]⊆A,

where the sum extends over all k ∈ Nn such that |k|= (p− 1)γ, and Ek =

(p− 1) ·Eλ. As (p− 1) · λ is such an index, it follows that Θλ,p(u1, . . . , un)

defines a nonzero element of the polynomial ring Z[u1, . . . , un]. Moreover,

as γ 6 1,
((p−1)·γ

k

)
6= 0 mod p for each k in (6.4), and it follows that the

image of Θλ,p(u1, . . . , un) defines a nonzero element of the polynomial ring

Z/pZ[u1, . . . , un]⊆A/pA. Consider the map SpecA
π→ Spec Z induced by

the inclusion Z⊆A. We have just shown that Dp :=D(Θλ,p(u)) ∩ π−1(p) is

a dense (and, in fact, open) subset of the fiber π−1(p). Let µp be a maximal

ideal in Dp. By definition, the image of Θλ,p(u) is nonzero in A/µp, and

(6.4) shows that x(p−1)Eλ is contained in Supp((fµp)
(p−1)γ) but not in m[p]

(as λ ∈P). Thus, (fµp)
(p−1)γ /∈m[p], which allows us to apply Lemma 13 to

fµp ∈ SA(µp) to conclude that fpt(fµp) > γ = min
{

1, fpt(afµ)
}

. By Remark

12, the opposite bound always holds, and we conclude that fpt(fµp) =

min{1, fpt(afµp )} for every p ∈P, and µp ∈Dp. In conclusion, we see that

A,P, and Dp satisfy the conditions of Lemma 57, and so we are done.
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