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Finite simple groups with

no elements of order six

L.M. Gordon

The aim of this paper is to completely classify the finite simple

groups with no elements of order 6 . The proof is by induction

and involves an analysis of the structure of the 2-local

subgroups of a counterexample of minimum order. A recent result

of Glauberman plays an essential role.

The object of this paper is to completely classify the groups of the

title. The result has recently been obtained independently by Fletcher,

StelImacher, Stewart [4], but the author feels that the present proof has

independent interest.

THEOREM. Let G be a finite simple group which has no elements of

order six. Then G is isomorphic to one of the following groups:

(i) PSL(2, q) 3 q % 1, 11 mod 12 ;

(ii) PSL(3, 2n) , n 2 2 , n \ 0 mod 6 ;

(Hi) PSU(3, 2n) , n 2 2 , » | 3, 5 mod 6 ;

(iv) Sz[22n+1) , n » 1 .

The centralizer of any 3-element in G has odd order whence the main

theorem could be rephrased to give an "odd characterization" of the simple

groups listed.

Notation is essentially standard (see [5], [6], [9]). For a set V ,
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236 L.M. Gordon

o{V) will denote the cardinality of V . In particular, o(H) is the

order of a group H and if x € H , o{x) = o((x>) . If H is a finite

group then sol(#) is the maximal soluble normal subgroup of H , soc(ff)

is the product of the minimal normal subgroups of H , and L(H) is the

maximal normal semisimple subgroup of H .

For the remainder of the paper, G will denote a counterexample to

the theorem of minimum order. We commence with an important observation.

The hypothesis of the theorem is inductive to subgroups and sections and

thus the only simple groups involved in G are those listed in the

theorem. Moreover, if t is an involution of G then CAt) is soluble

(j

or involves only Suzuki groups and so G is balanced ([76], p. 285). An

inspection of the l i s t of Gorenstein and Harada [7 7, Corollary A] shows

that SCN (2) is non-empty for G . I t follows that m{G) 2 3 and G is

connected. By [5, 2.63], 0[C.,(*)) = 1 for any involution of G . This

wil l be of particular importance in the final stages of the proof.

The following lemma is useful for a study of the 2-local subgroups.

LEMMA 1. Suppose Q o H , Q (. S2(H) , R € Sp(H) , o(R) = r , and

that H has no elements of order 2v .

If P (. H(i?, 2') , then [P, R] c 0(H) .

Proof. Suppose the lemma is false and let H be a counterexample of

minimum order.

First, 0(H) = 1 . Otherwise setting ~H = H/O{H) , ~H, P, R satisfy

the hypothesis of the lemma, whence [P, if] c 0{H) = 0(H) = 1 giving

[P, R] c 0(H) .

If R centralizes all Sylow subgroups of P the result is trivial.

By the minimality of o(H) , we may assume P is a p-group for some prime

p and H = QPR . Put R =<((>>. If P is abelian then

P = C (R) x [P, R] and (j> acts fixed-point-freely on [P, R] and hence

on Q[P, R] . It follows that QlP, R] = Q x [P, R] , whence [P, R] = 1

contradicting our choice of R .

By [9, Theorem 5.3.8], P is a non-abelian special p-group with <f>

acting irreducibly on P/<b{P) and trivially on $(P) . Further, $(C) = 1
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by Burnside 's Lemma and the minimali ty of o(H) . Thus Q = Q Q . . . @ Q
J. S

is elementary abelian with Q. irreducible under PR .
Is

Put P. = C [Q.) =C (Q.) . As P. is (J)-invariant, P.(P)/$(P) i s
Is Lit Is U Is Is Ts

a ^-invariant subspace of P/<b[P) ; <\> acts irreducibly on P/$(P) ,

whence P.$(P) = $(P) or P .

Assume P. c $(P) for some i . Then PR IP. has a faithful^ — t

irreducible representation on Q. and so Z(Pfi7P.) is cyclic. Since
Is Is

Z(PR/P.) = Z(P/P.) , P/P. i s e x t r a - s p e c i a l of order p22*"1"1 , say. By [ 9 ,
Is Is Is

Exercises, p. 37i-372] , Q has. a minimum polynomial of x - 1 on Q. or

p = r - 1 . As p and 3" are odd, the latter is impossible, and so <j>

has an eigenvalue of 1 in its representation on Q. . Then <j> fixes an

involution, contrary to hypothesis.

We are left with P.$(P) = P for each i , whence P. = P for each

i . Thus P centralizes C : a final contradiction which establishes the

lemma.

Recently Glauberman ([7], [£]) has classified all simple groups which

do not involve E, , the symmetric group on four letters. His work

guarantees the existence of an element of order 3 in some 2-local

subgroup in any counterexample to our theorem. To exploit this the

following lemma is basic.

LEMMA 2. Let H be a finite group with ElO^ti) ~ E . Suppose H

has no elements of order 6 , Pi S (H) , and § is an element of order 3

in H . Then

(i) cl(02(#)) < 2 ,

(ii) if R S 0AH) is abelian, (R, R > is also abelian,

(iii) if o[0 {H)) > k then the class of O^H) is less than

the class of any other subgroup of P of index 2 ,
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(iv) if R S 02{H) is (^-invariant and s € PV>2(H) , then

o[CR(S)) < o(R)h .

Proof. Explicitly given in [20] as Proposition 2.2, although

attributed, by Higman, to Burnside.

LEMMA 3. A non-soluble proper subgroup of G has order prime to 3

iff it involves a Suzuki group.

Proof. By induction any non-soluble proper subgroup of G with order

prime to 3 must involve a Suzuki group.

For the converse, let H be a proper subgroup of G which involves a

Suzuki group. Suppose H has a chief series B = R. > H. > . .. > H = 1
0 1 n

with H./H. = H. = S x S x ... x S , a direct product of isomorphic

Suzuki groups. Let R € S (#.+.) . If N(R) does not contain a four-

group then a Sylow 2-subgroup of N{R) is cyclic, generalized quaternion,

or trivial. By the Frattini argument N(R) involves a Suzuki group,

whence N(R) contains a subgroup VR with V a four-group. As

R = I f CB(x) and G has no elements of order 6 it follows that

R = 1 , and it is sufficient to show that R = H/H. contains no elements
'i'+l

of order 3 .

Let the kernel of the action of R on the components of H. be K ,
'V

and suppose that <j> is an element of order 3 in H . If <j> € H\K , then

$ acts non-trivially on S x S * x 5 . For some S. and some

_ _ . 2
involution t € S. the subgroup 5. x ST x S\ contains the involution

If Is If 1>

d> A2

t.t .t , which is centralized by $ . If <|> € K, it normalizes each

component, permuting the involutions in each one. The number of

involutions in any component is clearly prime to 3 , and so <|> centralizes

at least one (in fact $ centralizes a Suzuki group). In either case we

have an element of order 6 , contrary to hypothesis.

Suppose that G has a non-soluble 2-local subgroup which contains an

element of order 3 . In the following lemmas we investigate the structure
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of such a subgroup, eventually contradicting i t s existence. Thus choose N

to be a non-soluble 2-local subgroup with 3 |o(JV) . Further choose N

such that O[OAN)) is maximal and put Q = OAN) .

LEMMA 4. N has a section M such that M/0 AM) is isomovphio to

one of L2(q), LAq) , and UAq) , OAM) ^ 02(N) , and a Sylou 2-subgpoup

of M is isomovphio to a Sylou 2-subgroup of H .

Proof. Let K = sol(tf) . If R € SAK) , then N(R) i s non-soluble.

Since R is cyclic, C(R) i s non-soluble and G contains an element of

order 6 . Thus R is t r i v i a l .

If P € SoCtf) t n e n by the Fra t t in i argument again, N(P) i s non-

soluble and contains a 3-element. By the maximality of Q , P = Q and

K = 0o O,(N) • Since we seek a section of N, we may assume 0(N) = 1 .

Let H/K be a minimal normal subgroup of M/K . By Lemma 3, H/K i s

isomorphic to one of L Jq), I (q) , and UAq) . Put H =H/0 (#) . Let

ij> be an element of order 3 in H , L a <f>-invariant complement of

02(H) in 02 2,(fl) . Applying Lemma 1 to QH$) , [L,<^]c_O(H) = 1 ,

whence CJTCL).L > L forcing H = C-g(T) .~L . As each of L2(q), LAq) ,

and Uiq) has a multiplier which i s , at worst, a {2, 3) -group [ 2 ] ,

I = M x I, where A? ̂  ^Aq), L (q) , or t / ^ ) , and I = 0(W) . As W has

an element of order 3 , so ^VW has odd order and thus equals L . I t

follows that H/L 5 aut(W) . All outer automorphisms of M of even order

fix elements of order 3 in M . Thus [N : M] is odd and the required

properties of M follow easily.

LEMMA 5. M/O2(M) ±LA.q) or VA.q)

Proof. Put M = M/0AM) . Let £ = 1 (respectively -1 ) i f

M ̂  LAq) (respectively UAq) ) and V = (3 , q-e) . M contains a cyclic

2+Hall subgroup D, o(B) = [q2+eq+l) /v with [A (̂J?) :_• 5] = 3 (fl i s a Singer-

cycle [77], Satz 7-3), and [o(5) , 3) = 1 . If (f i s an element of order 3

in fc(^) then D = C—(<j>) x [D, <j>] and <j> acts fixed-point-freely on
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[D, <(>] and so on [D, <f> ]0 2{M) . It follows that [D, <p]O2(M) is

nilpotent and C^OgCW)) is non-trivial. Thus CTJ{0 (M)) = W and we have

an element of order 6 : a contradiction.

LEMMA 6. M/02(M) ± L2(q) , q odd.

Proof . By [20], Proposition 3.1.

LEMMA 7. M/02(M) •^

Proof. By [20], Proposition k.l, if P € S 2<,M) , then cl(P) = 2 . If

o[02{M)) > 2n or n i 3 then 0A.M) char P , ([20], Proposition U.I,

5.U). It follows that P € S {G) , G has Sylow 2-subgroups of class

2 . The classification of all such groups has been completed ([5, 6] ) and

no counter-example exists in their list.

Thus we may assume M/O (M) c* L2(k) ~ A~ , O^iM) c* E , . Let

P € 52(W) , (j) a 3-element in N(P) , and t an involution in P\0 (M)

(otherwise OAM) = Ji (P) char P and we are finished as above) . Now t

and t commute, so P is the split extension of E , by A . Only two

such groups exist [79] , and one contains elements of order 6 , whence M

is completely determined. A Sylow 2-subgroup of M and hence of N is

isomorphic to that of PSL(3, h) : we need only note th'at it contains

precisely two elementary abelian normal subgroups of order l6 , one of

which is 0AM) = Q , which contain all the involutions of the Sylow

2-subgroup.

Let P € SA.S) , R € 52(ff(P)) . If P = R then P € S^G) ,

cl(P) = 2 , and G is known. As R acts on the two elementary abelian

subgroups of P of order 16 , with kernel of the action in N{Q) , we

have [R : P] = 2 . As 3\o[N(P)) we can choose R < X £ N{P) with

X/P — Z-, and the extension splits by a Sylow argument. By Lemma 2 (Hi) ,

P char R , whence R € SAG) . If t is an involution in i?\P , t

interchanges Q and S . Now Q n Q = Z(P) = $(P) admits a 3-element
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i n i t s normal ize! - , and by Lemma 2 (iv) , l ^ z f m (*) I - | Z ( P ) | = 2 . Thus t

interchanges two involutions in Z(P) . Checking the outer automorphism

group of P , we see that R is now completely determined. The arguments

of Gorenstein and Harada [70, pp. 35^-355] quickly produce an element of

order 6 and finish the proof.

COROLLARY 7. If a 2-looal subgroup has order divisible by 3 , it

is soluble.

LEMMA 8. Let S € S2(G) . Then S contains a characteristic

subgroup S of index 2 with el(s ) 5 2 . Moreover, 3\O(N[S )) .

Proof. By Glauberman, some 2-group of G has an element of order 3

in its normalizer. Let Q be such a 2-group with maximal order and put

N = N(Q) . By the Corollary 7, N is soluble and by the maximality of

o{Q) and the Frattini argument Q = 0 (N) . Let R € S [o
d 3 dt

K = 02 2, 2(N) . Then K = 02 2,(N).N (R) . As R is cyclic and non-

trivial, N^(R) has a Sylow 2-subgroup of order 2 and hence a subgroup

of index 2 . It is immediate that 0 , „,(#) = 0o o, O(N) = N .

Moreover there exists H 5 N with H/Q ~ E . If o(Q) = U, then Q is

elementary abelian and self-centralizing in any Sylow 2-subgroup of G in

which it appears. The Sylow 2-subgroups of G are then dihedral or semi-

dihedral [2J] and G is known [/] and[/3, 14, 75]. No counterexample to

our theorem lies in their list, whence o(Q) > k . If P € S AN) , then

Q char P by Lemma 2 (Hi) . Thus P € 5p((J) , and the lemma follows from

Lemma 2 (ii) , (Hi) .

COROLLARY 8. There are no perfect central extensions of S3 (8)

involved in G .

Proof. [2] gives generators and relations for the perfect central

extensions of Sz{Q). In all cases the Sylow 2-subgroup has class 3 and

no subgroup of index 2 has class 2 .

REMARK. For the remainder of the proof, if S ( S (G) then S will

denote the subgroup given in Lemma 8. Moreover, when no confusion is

possible, if X < S then XQ will denote X n SQ .
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LEMMA 9. N(Q)/C(Q) is soluble for any 2-group Q of G .

Proof. Suppose that Q is a 2-group of G maximal subject to

N{Q)/C(Q) being non-soluble. Put 3" = SO1{N mod C(Q)) , where N = N{Q)

and let K = soc(N mod T) . Let Qx € S^T) . Then N/T ̂  N{Q±) /N^Q^

is non-soluble, C{Q1) C_ N-[Q.) and by the maximality of Q ,

Q = 0 (N) € Sp(T) , and K/T is a Suzuki group. It follows that C(Q) is

soluble and N/K has odd order.

Suppose that Q c P c_ S , with P e 52(iy) , S € S^d?) . Now QQ c PQ

and P^c Z(PO] .whence <2Q c. c(?y and [Q : ̂ ( P ^ j 5 2 . Choose

another Sylow 2-subgroup P* of // such that < P, P*> involves a

Suzuki group. Suppose that P* c_ S* € S2(G) , and set P* = S* n P* . As

above [Q : CQ{P*')~] £ 2 and < P' P*1 > still involves a Suzuki group and

centralizes Cg{pQ n C [P*'} . But this latter group has index at most 1*

in Q , whence C~(Q) involves a Suzuki group: a contradiction.
U

Gorenstein and Lyons have recently classified all simple groups with

soluble 2-local subgroups [72]. Consequently G contains some non-

soluble 2-local subgroups and, by Lemma 9, an involution with a non-soluble

centralizer.

Let A be an elementary abelian 2-group of G maximal subject to

(*) there exists a € A such that C-(a) involves a Suzuki group.

For the remainder of the proof we fix the following notation:

H = CJa) , T € SAH) , S £ SAG) , A £ T £ 5 , and if is an element of
U d c-

order 3 in N{sJ .

LEMMA 10. We aeon choose a, A satisfying (*) and A maximal and

have A £ 7 . and A ^-invariant. In particular 3\O[N(A)) .

Proof. I f A £ T then < A , A^> i s abelian by Lemma 2 (ii) , and

hence elementary abelian. By the maximality of o{A) , A = <A , A. > is

(((-invariant. Thus we may assume A > A .
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Suppose we can choose a (. A . Then \ ^ n , A^y i s elementary abelian

and the maximality of r{A) gives pi^r} - H-^n "!-J + 1 • ^nn n ""~s

^-invariant and centralized by any t € A\A • By Lemma 2 (iv) ,

AQn 4* = 1 , o[A^ = 2 , o(A) = h . As o ^i4Q, -4*^ = it, we can change

our choice of a, A to satisfy the lemma.

Arguing by contradiction we may assume that there is no choice of a

such that a € A . How < a) < S , S < S, whence 5 =< a) x 5 and

H =< a) x H , say. L{HJ is a central product of Suzuki groups. By [2] ,

the only Suzuki group which admits a perfect central extension i s Sz(8) ,

and by Corollary 8 this does not appear. Thus ^ (^ J is a direct product.

Moreover A = B x < a> where S > B d Mfffl , l e t H S^L[H^ and

suppose t interchanges two components K and K of • '̂( r̂J • Choosing

x, y € R € 5 (# ) with [x, y] # 1, we have [x, y, t] # 1 contrary to

c l ( s j = 2 . Thus S normalizes each component of i l ^ J • Moreover a l l

outer automorphisms of Suzuki groups have odd order, whence S = U x V ,

with U € S2[CH [L[ffJ)) and F € S2[L[HJ) . Thus B is a direct

product of a member of E(U) and a d i r e c t product of cen t res of Sylow

2-subgroups of Suzuki groups. I f U i s n o n - t r i v i a l we could choose

a £ U < A to s a t i s f y the lemma and s i m i l a r l y i f L[H_) has more than one

component. Since 0{H) = 1 by an e a r l i e r remark, CAa) =H=(a)*K,

where K 5 aut(S'3(^)) . The r e s u l t of Dempwolff [3] completes the proof.

LEMMA 11. (i) L{H)CH{L(H)) = L(H) x CU{L{H)) .

(ii) L(E) is a direct product of Suzuki groups,

Kr

(Hi) Each K. is A-invariant.

(iv) A n K. t M{K.) , that is A n K. = Z[E .) , B. € S [K.) .
2K iJ
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Proof. The arguments of Lemma 10 give (i) and (ii).

Choosing t € A and knowing t f T we can argue as in Lemma 10 with

K. and K. to prove (Hi).
lr Is

Now A € M(ff) whence A (. MUK.) . From AK. = C.[K.) X X. it

follows immediately that A n K. € Mf#.) and (iyj is true.

Completion of the proof. By Lemma 10, <j> € NJA)\CJA) whence
Lr h

<f> € NQ(S) for some S € S2(C U)) .

Let K be a component of H with i? 6 S_(#) , i? > Z(i?) = 4 n A! .

Let t € CQ(A) • T h e n X n Rt - A n X ' w h e n c e K = K*, R = R* , Bn& R ± S .

Moreover Sc_CJA) < il?ff(X) and, as |aut X : X| is odd,

5 c CU(K).K = C^U) x x . If we write S = Sn x 5 x ... x S with 5.
— n ti 1 d q 1

indecomposable, then we may assume by the above argument that R = S. . By

the Krull-Schmidt Theorem, <J> permutes the derived groups S! . If 4>

fixes 5' , it permutes the 2 - 1 involutions in the group and so

fixes at least one. On the other hand, choosing t £ 5' ,

. .2 2
5' x [s^ x (5')* contains the involution t.t^.t^ fixed by <}> .

In either case we have an element of order 6 contrary to assumption.
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