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Powers in Orbits of Rational Functions:
Cases of an Arithmetic Dynamical
Mordell–Lang Conjecture

Jordan Cahn, Rafe Jones, and Jacob Spear

Abstract. Let K be a ûnitely generated ûeld of characteristic zero. For ûxed m ≥ 2, we study the
rational functions ϕ deûned over K that have a K-orbit containing inûnitely many distinct m-th
powers. For m ≥ 5 we show that the only such functions are those of the form cx j

(ψ(x))m with
ψ ∈ K(x), and for m ≤ 4 we show that the only additional cases are certain Lattès maps and four
families of rational functions whose special properties appear not to have been studied before.

With additional analysis, we show that the index set {n ≥ 0 ∶ ϕn
(a) ∈ λ(P1

(K))} is a union
of ûnitely many arithmetic progressions, where ϕn denotes the n-th iterate of ϕ and λ ∈ K(x) is
any map Möbius-conjugate over K to xm . When the index set is inûnite, we give bounds on the
number and moduli of the arithmetic progressions involved. _ese results are similar in �avor to
the dynamical Mordell–Lang conjecture, and motivate a new conjecture on the intersection of an
orbit with the value set of a morphism. A key ingredient in our proofs is a study of the curves
ym

= ϕn
(x). We describe all ϕ for which these curves have an irreducible component of genus at

most 1, and show that such ϕ must have two distinct iterates that are equal in K(x)∗/K(x)∗m .

1 Introduction

Let K be a ûeld and let ϕ ∈ K(x) be a rational function with coeõcients in K. We
denote by ϕn the n-th iterate of ϕ, whichwe emphasize is distinct from the n-th power
of ϕ. A fundamental object in dynamics is the (forward) orbit1

O+
ϕ(a) = {ϕn(a) ∶ n ≥ 0}

of a ∈ P1(K) under the map ϕ; note that ϕ0(x) = x by convention, and so a ∈ O+
ϕ(a).

An overarching goal is to classify the orbits of a given map ϕ in terms of salient fea-
tures ofK, such as ametric or arithmetic structure. A related goal, which has attracted
a large body of work, is to understand the collection of maps that can possess an orbit
with certain very special properties. For example, when K = C, Ghioca, Tucker, and
Zieve [9,10] show that if f ∈ C[x] has degree at least two, then for each g ∈ C[x]with
degree at least two and such that an orbit of g has inûnite intersection with an orbit
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1We generally drop the word “forward” in this article, but we wish to avoid confusion with the

backwards orbit O−

ϕ (a), which we use frequently (see Deûnition 3.4). We thus prefer the notation
O+

ϕ (a) for the forward orbit rather than the more standard Oϕ(a).

Canad. J. Math. Vol. 71 (4), 2019 pp. 773–817

https://doi.org/10.4153/CJM-2018-026-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-026-x


J. Cahn, R. Jones, and J. Spear

of f , it follows that f has a common iterate with g. _us the existence of a special
orbit of f has global implications for f ; in particular, it implies functional properties
of the map f . Another example of such a result is due to Silverman [21, _eorem
A]. Recall that the degree of ϕ can be deûned by writing ϕ(x) = A1(x)/A2(x), with
A1 ,A2 ∈ K[x] relatively prime polynomials, and taking the maximum of the degrees
of A1 and A2. Silverman shows that if ϕ(x) ∈ Q(x) has degree at least two, and there
is an orbit of ϕ(x) containing inûnitely many integers, then ϕ2(x) is a polynomial (a
more general result is given in [21, _eorem B]). _is theme is taken much further
in the dynamical Mordell–Lang conjecture [5, Conjecture 1.5.0.1], which posits that if
Φ is an endomorphism of a quasiprojective variety X deûned over C, a is any point
in X(C), and V ⊂ X is any subvariety, then {n ≥ 0 ∶ Φn(a) ∈ V(C)} is a union of
ûnitely many arithmetic progressions (note that singletons are considered arithmetic
progressions, and thus any ûnite set is a union of arithmetic progressions). In partic-
ular, if O+

ϕ(a) ∩ V(C) is inûnite, then V contains a positive-dimensional subvariety
that is periodic under the action of f . Indeed, let M > 0 and ℓ ≥ 0 be such that
ΦkM+ℓ(a) ∈ V(C) for all k ≥ 0; then the Zariski closure of {ΦkM+ℓ(a) ∶ k ≥ 0} is
positive-dimensional and invariant under ΦM . For a summary of the extensive recent
work surrounding this conjecture, see [5].
From this point forward, we let K be a ûnitely generated ûeld of characteristic

zero, that is, an extension of Q generated by a ûnite set of (possibly transcendental)
elements; all such ûelds can be embedded in the complex numbers, and throughout
this article we considerK as a subûeld ofC. Fix an integerm ≥ 2. Our goal is a study of
the ϕ ∈ K(x) possessing a K-orbit containing inûnitely many distinct m-th powers in
K. _e existence of such an orbit implies inûnitely many distinct K-rational solutions
to the equation ϕn(x) = ym for each n ≥ 1, and hence by Faltings’ _eorem the curve
Cn ∶ ϕn(x) = ym must have an irreducible component of genus at most one, for all
n ≥ 1 (throughout, we take the curve given by rational functions A1(x)/A2(x) =
B1(y)/B2(y) to be that given by A1(x)B2(y) − B1(y)A2(x) = 0). It is easy to see
that every irreducible component of Cn has the same genus (Proposition 2.2), and we
denote this quantity by gn . We are thus interested in the maps ϕ such that gn is at
most one for all n ≥ 1; our ûrst two results (_eorems 1.1 and 1.2) deal with the a priori
more general situation where gn is bounded as n grows. _ese results, together with
Corollary 1.3, show that the existence of an arithmetically special orbit of ϕ implies
strong conclusions about the global structure of the function.

_eorem 1.1 Fix m ≥ 2 and let ϕ ∈ C(x) have degree at least two. _en gn is bounded
as n →∞ if and only if

(1.1) there exist integers r > s ≥ 0 such that
ϕr(x) = ϕs(x)(ψ(x))m for some ψ ∈ C(x).

In that case, the following hold.

(i) If ϕ ∈ K(x) for some subûeld K of C, then (1.1) holds for some ψ ∈ K(x).
(ii) We have gn ≤ 1 for all n ≥ 1.
(iii) One can take r ≤ m if m ≥ 3, and r ≤ 6 if m = 2.
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A full accounting of the possible values of r and s that occur when (1.1) holds can
be found in Section 8.
As a primary part of our proof of_eorem 1.1, we show the following theorem. Re-

call that the post-critical set Postcrit(ϕ)of a rational function ϕ ∈ C(x) is⋃n≥1 ϕn(C),
where C is the critical set for ϕ, i.e., the set of points in P1(C) at which ϕ is not locally
one-to-one. A map ϕ ∈ C(x) of degree at least two is a Lattès map if there is a linear
map L(t) = at + b acting on a complex torus C/Λ and a ûnite-to-one holomorphic
map Θ ∶ C/Λ → P1(C) satisfying ϕ ○ Θ = Θ ○ L. Denote by eϕ(z) the ramiûcation
index, or local degree, of ϕ at z ∈ P1(C); when z ≠ ∞ and ϕ(z) ≠ ∞, this coincides
with the multiplicity of z as a root of ϕ(x)−ϕ(z) (see [22, p. 12] for a full discussion).
Usefully, the Lattès maps are precisely those rational functions ϕ ∈ C(x) such that
there exists a function r ∶ P1(C) → Z satisfying

(1.2) r(ϕ(z)) = eϕ(z) ⋅ r(z) for all z ∈ P1(C) and r(z) = 1 for z /∈ Postcrit(ϕ).

Such a function r is unique; see _eorem 7.2 or [15, Section 4] for details. When
there exists such a function r, the collection of values of r on Postcrit(ϕ) is called
the signature of ϕ, and the only possible signatures are (2,2,2,2), (3,3,3), (2,4,4), and
(2,3,6) [15, Corollary 4.5].

_eorem 1.2 Fix m ≥ 2 and let ϕ ∈ C(x) have degree at least two. _en gn is bounded
as n →∞ if and only if one of the following holds:
(1) ϕ(x) = cx j(ψ(x))m with ψ ∈ C(x), 0 ≤ j ≤ m − 1, c ∈ C∗;
(2) m = 4 and ϕ is a Lattès map of signature (2, 4, 4), with {0,∞} in the post-critical

set and r(0) = r(∞) = 4, where r is the function satisfying (1.2);
(3) m = 3 and ϕ is a Lattès map of signature (3, 3, 3), with {0,∞} in the post-critical

set;
(4) m = 2 and ϕ is a Lattèsmap of signature (2, 2, 2, 2)with {0,∞} in the post-critical

set;
(5) m = 2 and either ϕ(x) or 1/ϕ(1/x) can be written in one of the following ways,

where B,C ∈ C∗, f , g , h ∈ C[x] ∖ {0}, and the numerator and denominator of
each fraction have no common roots in C:
(a) − f (x)2

(x−C)g(x)2 with f (x)2 + C(x − C)g(x)2 = Cxh(x)2;

(b) − (x−C) f (x)
2

g(x)2 with (x − C) f (x)2 + Cg(x)2 = xh(x)2;

(c) B (x−C) f (x)
2

g(x)2 with B(x − C) f (x)2 − Cg(x)2 = −Ch(x)2;

(d) B x(x−C) f (x)2
g(x)2 with Bx(x − C) f (x)2 − Cg(x)2 = −Ch(x)2.

Moreover, if K is a subûeld of C with ϕ ∈ K(x), then we can take

ψ ∈ K(x) and c ∈ K∗ in case (1)(1.3)

B,C ∈ K∗ and f , g , h ∈ K[x] ∖ {0} in case (5).(1.4)

_e maps in part (5) of _eorem 1.2 appear not to have been studied before in
general. We discuss how to give explicit parameterizations of all such maps in Propo-
sition 7.4 and the paragraphs following. Important examples of these maps are closely
related to the degree-d monic Chebyshev polynomial Td , deûned by the equation
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Td(x + x−1) = xd + x−d ; see [15, Section 2] or [22, Section 6.2] for further properties.
_emap (−1)d(Td(x+2))−2 satisûes (5b) when d is odd and (5d) when d is even (see
Corollary 1.8 for more on these maps). Note that maps of type (5a) and (5c) cannot
be Möbius-conjugate to polynomials (see the proof of _eorem 1.2 in Section 7).
Combining Faltings’ theorem with _eorems 1.1 and 1.2, we obtain the main result

of this paper. Denote by P1(K)m the set {km ∶ k ∈ K} ∪ {∞}.

Corollary 1.3 Let K be a ûnitely generated ûeld of characteristic zero ûeld, let ϕ ∈
K(x) have degree at least two, and ûx m ≥ 2. If there exists a ∈ P1(K) such that
O+

ϕ(a)∩P1(K)m is inûnite, then ϕ falls into one of the cases in_eorem 1.2 and satisûes
(1.3) and (1.4), and ϕ also satisûes (1.1) with ψ ∈ K(x).

_us, the inûnitude of O+
ϕ(a)∩P1(K)m implies strong functional properties of ϕ,

similar to the results of [9, 10, 21] mentioned at the beginning of this section.
_e proofs of _eorems 1.1 and 1.2 unfold in two steps. _e ûrst is geometric and

involves studying ϕ ∈ C(x) for which gn is bounded. _e second is arithmetic and
consists of showing that various quantities in the two theorems can be deûned over a
subûeld K ofC, when ϕ was initially deûned over K. In the geometric part, our study
of the genus of Cn is a case of a problem with a long history, which remains largely
unresolved: determine all pairs A, B of complex rational functions such that the curve
A(x) = B(y) has an irreducible component of genus at most one. In the case where A
and B are polynomials, a complete solution is given in [6] for irreducible components
of genus zero with at most two points at inûnity (see [6, pp. 264, 281] for discussion
and references regarding the extensive past work on this problem). Partial results
exist for irreducible components of genus one, e.g., [1, 2], again assuming A and B are
polynomials. When A and B are allowed to be non-polynomial rational functions,
there are many fewer results available. One example is [18], which classiûes all A, B
with no common critical values such that A(x) = B(y) has an irreducible component
of genus at most one.

While the general problem is far from resolution, we propose the following variant,
which our _eorem 1.2 resolves for B(y) = ym ,m ≥ 2.

Problem 1.4 Given B ∈ C(x), explicitly determine all ϕ ∈ C(x) such that

(1.5) for all n ≥ 1 the curve ϕn(x) = B(y)
has an irreducible component of genus at most one.

One can also ûx ϕ and study rational functions B for which (1.5) holds. _is is the
approach taken in the recent preprint [17], where it is shown, among other results,
that if ϕ is not a power map, Chebyshev polynomial, or Lattès map, and (1.5) holds,
then there is a rational Galois covering h ∶ P1 → P1 (depending only on ϕ) and rational
functions V ,V ′ satisfying ϕ ○ h = h ○ V ′ and ϕℓ ○ h = B ○ V for some ℓ ≥ 1.

_e work of Ghioca, Tucker, and Zieve in [9, 10] addresses a question of similar
�avor to Problem 1.4, though still quite distinct. _ere, the authors classify all pairs
f , g of complex polynomials such that for every m, n ≥ 1 the curve f n(x) = gm(y)
has an irreducible component of genus zero with at most two points at inûnity. To do
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so, they rely on the classiûcation of Bilu and Tichy [6] mentioned above; thus, they
already know precisely which curves A(x) = B(y) have the desired property, but they
must determine when A and B arise from iteration of lower-degree polynomials. _is
requires signiûcant and novel results on polynomial decomposition.

Taking B(y) = ym , as in _eorem 1.2, greatly eases the generally diõcult problem
of determining the irreducible components of A(x) = B(y) and leads to a consider-
ably simpler genus formula than the one for general curves of the form A(x) = B(y)
(see Propositions 2.2 and 2.3). Nonetheless, similar to the situation of [9, 10], we are
le� with the a priori diõcult problem of determining the maps ϕ such that A can be
taken to be an arbitrary iterate of ϕ.

_e arithmetic part of the proofs of _eorems 1.1 and 1.2 can be found mainly in
Section 6. _is aspect of our results, in particular, the part of _eorem 1.1 where ψ
can be deûned over K when ϕ is deûned over K, leads to a result whose conclusion is
the same as that of the dynamical Mordell–Lang conjecture. When the intersection
set is inûnite, we are able to prove the far stronger conclusion that three arithmetic
progressions suõce, andwe give information on theirmoduli. _roughout, we denote
by N0 the set of nonnegative integers.

_eorem 1.5 Let K be a ûnitely generated ûeld of characteristic zero, let ϕ, λ ∈ K(x)
each have degree at least two, and suppose that λ is Möbius-conjugate (over K) to a
power map. _en for every a ∈ P1(K), the set

(1.6) {n ∈ N0 ∶ ϕn(a) ∈ λ(P1(K))}

is a ûnite union of arithmetic progressions. If O+
ϕ(a)∩ λ(P1(K)) is inûnite, then the set

(1.6) is a union of at most three arithmetic progressions, each with modulus M satisfying
M ≤ m if m ≥ 3 and M ≤ 6 if m = 2.

We emphasize again that we take singletons to be arithmetic progressions of mod-
ulus 0, and so _eorem 1.5 holds trivially when the set (1.6) is ûnite. If O+

ϕ(a) ∩
λ(P1(K)) is ûnite, then either O+

ϕ(a) is inûnite and the set (1.6) is ûnite or O+
ϕ(a)

is ûnite; in either case _eorem 1.5 holds trivially. In Section 10 we give an example
where O+

ϕ(a) ∩ λ(P1(K)) is inûnite and the set (1.6) cannot be written as a union of
two arithmetic progressions, showing that three is best possible. _e bound on M in
_eorem 1.5 is best possible for m ≥ 3, regardless of the choice of K (see Lemma 8.1);
form = 2 the bound can be reduced toM ≤ 4 using an analysis of the ûeld of deûnition
of Lattès maps, which we plan to describe in a future article.

_e proof of _eorem 1.5 quickly reduces to the case λ(x) = xm . Indeed, let
µ ∈ PGL2(K) and put ϕµ = µ−1 ○ ϕ ○ µ. If ϕn(a) = λ(b) for a, b ∈ P1(K), then
(ϕµ)n(µ−1(a)) = λµ(µ−1(b)), giving

(1.7) {n ∈ N0 ∶ ϕn(a) ∈ λ(P1(K))} = {n ∈ N0 ∶ (ϕµ)n(µ−1(a)) ∈ λµ(P1(K))} .

Hence, if _eorem 1.5 can be established for λµ and arbitrary ϕ and a, it must also
hold for λ and arbitrary ϕ and a. _us, if µ conjugates λ to a power map, we have
reduced to the case λ(x) = xm , as desired. Note that if λ is not conjugate over K
to a power map, we cannot take advantage of the special geometric properties of the
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curve ϕn(x) = ym mentioned in the discussion following Problem 1.4, and thus new
methods would be required.

_e dynamical Mordell–Lang conjecture asserts that once there exist inûnitely
many instances of the intersection between the geometric object V(C) and the arith-
metic dynamical object O+

ϕ(a) (using the notation from the ûrst paragraph of the
introduction), then the intersection must have a structure: its index set must be given
by ûnitely many arithmetic progressions. _eorem 1.5 proves this assertion in the
case where X = P1 and the geometric object V is replaced by an arithmetic object,
namely the set of K-values of the morphism λ ∶ X → X. We conjecture that a similar
conclusion holds for the set of K-values of more general morphisms:

Conjecture 1.6 (Arithmetic dynamical Mordell–Lang conjecture for P1) Let X =
P1 and let Y be a curve deûned over a ûnitely generated ûeld of characteristic zero K.
Suppose that λ ∶ Y → X is a ûnite K-morphism and ϕ ∶ X → X is a morphism of degree
at least two. _en for any a ∈ X(K), the set {n ∈ N0 ∶ ϕn(a) ∈ λ(Y(K))} is a ûnite
union of arithmetic progressions.

Shortly a�er this paper was posted to the arXiv, Hyde and Zieve sent us a proof of
Conjecture 1.6. _eir short argument makes use of the pigeonhole principle, as well
as the ûniteness of the number of topological covers of a compact Riemann surface
with speciûed degree and branch points. It also yields a proof of _eorem 1.2 in the
case where the curve ϕn(x) = ym is irreducible for all n ≥ 1.

It is interesting to consider whether a similar conclusion to that of Conjecture 1.6
holds for X = P j with j ≥ 1, whereY is a projective variety and λ is ûnite onto its image;
indeed, one can extend the question further to the case where X and Y are any quasi-
projective varieties, and ϕ is an endomorphism of X. To see why such a generalization
of Conjecture 1.6 is plausible, let Zn (n ≥ 1) be the subvariety of X × Y where the
morphisms ϕn ∶ X → X and λ ∶ Y → X agree. _en there is a natural K-morphism
Zn+1 → Zn taking (x , y) to (ϕ(x), y), which we again denote by ϕ. _us, for any
i > j there is a ûnite map ϕ i− j ∶ Z i(K) → Z j(K). Suppose that O+

ϕ(a) ∩ λ(Y(K)) is
inûnite; otherwise, the conclusion of Conjecture 1.6 holds trivially, as in the paragraph
following _eorem 1.5. _us, O+

ϕ(a) must be inûnite, and hence ϕ i(a) ≠ ϕ j(a) for
i ≠ j. We label the next observation for future reference:

(1.8) for any ûxed n ≥ 1,

there are inûnitely many i > n with ϕn(ϕ i−n(a)) ∈ λ(Y(K)) ,

implying that there are inûnitely many points in Zn(K) for all n ≥ 1. If these points
are Zariski-dense in Zn , then the Bombieri–Lang conjecture [12, Conjecture F.5.2.1]
predicts that Zn is not a variety of general type. We speculate that under suitable hy-
potheses this implies a functional relationship among iterates of ϕ and λ, for instance
ϕr = λ ○ g for some r ≥ 1 and some K-morphism g ∶ X → Y .

_e previous paragraph furnishes an outline for our proof of _eorem 1.5. In the
situation of that theorem, Zn is a curve, and thus any inûnite subset is Zariski dense,
and the Bombieri–Lang conjecture is Faltings’ famous theorem [14, Corollary 2.2,
p. 12] (see [12, _eorem E.0.1] for an exposition of the number ûeld case). We are
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le� with the problem of determining for which maps ϕ the curve Zn is not of gen-
eral type, i.e, when gn ≤ 1 for all n ≥ 1. _eorem 1.1 gives the desired functional
relationship under the hypothesis that deg ϕ ≥ 2, and a close analysis of the various
cases encountered in the proof of _eorem 1.1 gives the bound of three arithmetic
progressions found in _eorem 1.5, together with the information on M.

We close this introduction with three additional results related to Corollary 1.3.
Denote by Km the set {km ∶ k ∈ K}.

Corollary 1.7 Let K be a ûnitely generated ûeld of characteristic zero and let ϕ ∈ K(x)
have degree d ≥ 2. Suppose that there exists a ∈ P1(K) with O+

ϕ(a) ∩ P1(K)m inûnite,
for some m ≥ 5 with m ∣ d. _en ϕ(x) = (ψ(x))m for some ψ ∈ K(x).

Corollary 1.7 follows immediately from Corollary 1.3 and the observation that if
ϕ(x) = c(ψ(x))m with c /∈ Km , then for all a ∈ K, O+

ϕ(a) ∩P1(K)m ⊆ {a, 0,∞}, and
thus is ûnite.

When ϕ is a polynomial, we can give a particularly concrete version of Corol-
lary 1.3.

Corollary 1.8 Let K be a ûnitely generated ûeld of characteristic zero, let ϕ ∈ K[x]
have degree d ≥ 2, and ûx m ≥ 2. If there exists a ∈ P1(K) with O+

ϕ(a) ∩ Km inûnite,
then one of the following holds:
(i) ϕ(x) = cx j(g(x))m for some g ∈ K[x], 0 ≤ j ≤ m − 1, and c ∈ K∗;
(ii) m = 2 and there is c ∈ K∗ such that cϕ(x/c) is

(1.9) (−1)d(Td(x + 2)) − 2,

where Td is the degree-d monic Chebyshev polynomial.

Note that cases (i) and (ii) of Corollary 1.8 are mutually exclusive, unlike the cases
in _eorem 1.2. Indeed, for all d ≥ 2, we have that Td maps −2 to 2 ⋅ (−1)d with
multiplicity 1, implying that the map in case (ii) maps −4 to 0 with multiplicity 1,
and hence is not of the form given in case (i). _e polynomials of the form (1.9) are
conjugates of Td that contain 0 in their post-critical set but do not belong to case (i).
For d = 2, 3, 4, 5 these maps are: x(x + 4),−(x + 4)(x + 1)2 , x(x + 4)(x + 2)2, and
−(x + 4)(x2 + 3x + 1)2 , respectively.

Our ûnal corollary shows that when K = Q and deg ϕ = 2, we obtain very strong
consequences when there is a ∈ Q with O+

ϕ(a) ∩Q2 inûnite.

Corollary 1.9 A quadratic polynomial ϕ ∈ Q[x] has a rational orbit containing in-
ûnitely many distinct squares if and only if either
(i) ϕ is the square of a linear polynomial with rational coeõcients, or
(ii) ϕ(x) = cx2 + 4x with c ∈ Q∗.

_e paper is organized as follows. Sections 2–5 contain the geometric portion of
the proofs of_eorems 1.1 and 1.2. In Section 2we study the genera of irreducible com-
ponents of super-elliptic curves, and show in Corollary 2.5 that gn remains bounded
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as n grows if and only if 0 and∞ satisfy a ramiûcation condition on iterated preim-
ages that we call m-branch abundance (see Deûnition 2.1). We also show that if gn
is unbounded, then it grows exponentially with n (_eorem 2.6). In Section 3, we
study rational functions with two m-branch abundant points in P1(C) when m ≥ 5.
In Section 4 we study ramiûcation among iterated preimages of m-branch abundant
points when m is prime, with a view to understanding the most complicated cases
m = 2 andm = 3; this culminates in two classiûcation results (_eorems 4.6 and 4.7).
In Section 5 we study maps with two 4-branch abundant points. In Section 6 we give
the results that handle the arithmetic portion of the proofs of _eorems 1.1 and 1.2.
In Section 7 we state useful results of Milnor [15] on Lattès maps, and combine them
with material from the ûve previous sections to prove _eorem 1.2. In Section 8 we
give the proof of _eorem 1.1, which involves checking numerous cases. In Section 9
we give the proofs of the remaining results from the introduction. In Section 10 we
present the example mentioned a�er _eorem 1.5.

2 m-branch Abundant Points and the Genus of ϕn
(x) = ym

Recall from the discussion before_eorem 1.2 the deûnition of the ramiûcation index
eϕ(z) of a rational function ϕ ∈ C(x) at z ∈ P1(C). We refer to z ∈ P1(C) as a
ramiûcation point for ϕ if eϕ(z) > 1. An easy argument on compositions of power
series gives the following special case of the chain rule for ramiûcation indices (see [4,
Section 2.5]):

(2.1) eϕn(z) =
n−1
∏
i=0
eϕ(ϕ i(z)),

and hence eϕn(z) “remembers” the ramiûcation of the map ϕ at each of z, ϕ(z), . . . ,
ϕn−1(z). An essential tool throughout this paper comes in the form of the Riemann–
Hurwitz formula (see e.g., [4, Section 2.7] for a proof):

∑
z∈P1(C)

(eϕ(z) − 1) = 2d − 2.

For α ∈ C, ϕ ∈ C(x), and n ≥ 0, we use the standard notation of ϕ−n(α) to denote
the set {β ∈ C ∶ ϕn(β) = α}. We introduce the following terminology.

Deûnition 2.1 Fix m ≥ 2, let ϕ ∈ C(x) be non-constant, and let α ∈ P1(C). Deûne
ρn(α) to be the number of z ∈ ϕ−n(α) with eϕn(z) not divisible by m. We say that α
is m-branch abundant for ϕ if ρn(α) is bounded as n →∞.

Note that if m1 ∣ m2, then m1 ∤ eϕn(z) implies m2 ∤ eϕn(z), and hence if and
α is m2-branch abundant for ϕ, then α is also m1-branch abundant for ϕ. We re-
mark that in [11], the authors call α ∈ P1(C) dynamically ramiûed for ϕ if the set
⋃n≥1{z ∈ ϕ−n(α) ∶ eϕn(z) = 1} is ûnite. _edeûnition of anm-branch abundant point
is weaker in that it only considers z ∈ ϕ−n(α)with m ∤ eϕn(z), and, moreover, it only
asserts a bounded number of such points as n grows, rather than ûniteness of the full
set of such points as n varies.
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Aprimary goal of this section is to establish a relationship between the existence of
m-branch abundant points for ϕ and the genus of (irreducible factors of)Cn ∶ ϕn(x) =
ym . For curves of this form, the irreducible factors are easily found.

Proposition 2.2 Let C be the curve deûned (over C) by ψ(x) = ym , where ψ(x) =
c∏k

i=1(x − α i)
e i ∈ C(x) and e i ∈ Z∖ {0} for all i. Let a be the greatest positive integer

dividing m and all the e i , and put λ(x) = a
√
c∏k

i=1(x − α i)
e i/a ∈ C(x) for some ûxed

choice of a
√
c. Let ζa be a primitive a-th root of unity. _en the irreducible factors of C

are the curves

(2.2) ym/a = ζ k
a λ(x), k = 0, . . . , a − 1.

Proof We show that each curve is irreducible, and then it follows by comparing
the degrees in y that they must comprise all the irreducible components of C. By
assumption, ζ k

a λ(x) is not a p-th power in C(x) for any prime p dividing m, and it
follows that ym/a − ζ k

a λ(x) is irreducible as a polynomial in y, whence each of the
curves in (2.2) is irreducible.

We can determine the genus of every curve of the form (2.2) quite explicitly.

Proposition 2.3 Let C and a be as in Proposition 2.2, and put m′ = m/a and e′i =
e i/a. _en every irreducible factor of C has the same genus g, given by

(2.3) g = 1 + (
k − 1
2

)m′ −
1
2
( gcd(m′ , e′1 + ⋅ ⋅ ⋅ + e′k) +

k

∑
i=1

gcd(m′ , e′i)) .

Proof _is follows from a straightforward application of Proposition 2.2 and a genus
formula for irreducible curves given by variables-separated rational functions, ûrst
used by Ritt [19]. _e ûrst explicit statement and proof of the formula in the gen-
eral situation seems to be [8, Proposition 2]; for another statement and proof, see [6,
Proposition 4.1]. Many other authors have used various versions of this formula,
e.g., [3, Proposition 2.6] and [18, Corollary 2.1]. Another proof of this proposition can
be given by noting that the genus of each irreducible factor is equal to the genus of the
function ûeldC(x , m′

√
λ(x)). _en one can directly apply the formula in [23, Propo-

sition 3.7.3] for the genus of a Kummer extension of function ûelds.

Corollary 2.4 Let g be as in Proposition 2.3, and denote by t the number of i ∈
{1, . . . , k} such that m ∤ e i . If t = 0, then g = 0, and if t > 0, then

(2.4) ⌈(t/2) − 1⌉ ≤ g ≤ (m − 1)(t − 1)/2,

where ⌈ ⋅ ⌉ denotes the ceiling function.

Remark _e bounds are sharp, as evidenced by the hyperelliptic curves y2 = x t − 1.

Proof First note that t = 0 if and only if m′ = 1, and in this case (2.3) reduces to
g = 0. Assume now that t ≥ 1 and m′ ≥ 2. If m ∤ e i , then m′ ∤ e′i , giving us
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gcd(m′ , e′i) ≤ m′/2. From (2.3), we obtain

(2.5) g ≥ 1 + (
k − 1
2

)m′ −
1
2
(m′(1 + (k − t)) + t m

′

2
) = 1 +m′(

t
4
− 1) ,

with equality if and only if m′ ∣ e′1 + ⋅ ⋅ ⋅ + e′k and gcd(m′ , e′i) = m′/2 for each i with
m′ ∤ e′i . Becausem′ ≥ 2, (2.5) gives g ≥ (t/2) − 1. _is establishes the lower bound of
(2.4) when t is even. Assume then that t is odd. _en if (2.5) is an equality, we have
gcd(m′ , e′i) = m′/2 for an odd number of values of i and gcd(m′ , e′i) = m′ for the rest.
_us e′1 + ⋅ ⋅ ⋅ + e′k ≡ m′/2 mod m′, and therefore m′ ∤ (e′1 + ⋅ ⋅ ⋅ + e′k), a contradiction.
We have shown that (2.5) is a strict inequality, giving g > (t/2) − 1. As g is an integer,
we conclude g ≥ ⌈(t/2) − 1⌉.

To prove the upper bound of (2.4), note that (2.3) gives

g ≤ 1 + (
k − 1
2

)m′ −
1
2
(m′(k − t) + t + 1) =

(m′ − 1)(t − 1)
2

≤
(m − 1)(t − 1)

2
,

as desired.

Write ϕn(x) = c∏k
i=1(x−α i)

e i , and take tn to be the number of i ∈ {1, . . . , k} such
that m ∤ e i . _en tn is closely related to the quantity ρn(0) + ρn(∞), where ρn is
deûned in Deûnition 2.1. Indeed, ρn(0) + ρn(∞) = tn unless∞ ∈ ϕ−n(∞) ∪ ϕ−n(0)
andm ∤ eϕn(∞), in which case ρn(0)+ρn(∞) = tn+1. We thus obtain the following
corollary.

Corollary 2.5 Let ϕ ∈ C(x) have degree d ≥ 2. For n ≥ 1, let Cn be the curve deûned
(over C) by ϕn(x) = ym , let gn be the genus of every irreducible factor of Cn , and put
ρn(ϕ) ∶= ρn(0)+ρn(∞), where ρn(0) and ρn(∞) are as in Deûnition 2.1. _en either
ρn(ϕ) = gn = 0 or

⌈(ρn(ϕ) − 3)/2⌉ ≤ gn ≤ (m − 1)(ρn(ϕ) − 1)/2.

In particular, gn is bounded as n → ∞ if and only if both 0 and ∞ are m-branch
abundant for ϕ.

A consequence of Corollary 2.5 is a result on the growth rate of gn as n → ∞ in
the case where gn is unbounded.

_eorem 2.6 Let ϕ, Cn , and gn be as in Corollary 2.5. If gn is unbounded as n →∞,
then gn ≥ κdn for some constant κ.

Proof Because gn is unbounded, we have that ρn(ϕ) is unbounded, and without
loss of generality say that ρn(0) is unbounded. If ρn(ϕ) ≥ κdn , then a�er possibly
adjusting κ the same conclusion holds for gn , whence it suõces to give an exponential
lower bound for ρn(0).
Because ρn(0) is unbounded, the set

Z = { z ∈ P1(C) ∶ ϕk(z) = 0 and m ∤ eϕk(z) for some k ≥ 1}

is inûnite. Observe that O+
ϕ(0)∩Z must be ûnite: if 0 is periodic, then O+

ϕ(0) is itself
ûnite, while if 0 is not periodic, then O+

ϕ(0) ∩ Z = ∅. Consider the set

R = { c ∈ P1(C) ∶ eϕ(c) > 1 and ϕ i(c) = 0 for some i ≥ 0} .
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Now O+
ϕ(c) ∖ O+

ϕ(0) is ûnite for each c ∈ R, and as O+
ϕ(0) ∩ Z is ûnite, we have

that O+
ϕ(c) ∩ Z is ûnite. But R is ûnite by Riemann–Hurwitz, and thus ⋃c∈R O+

ϕ(c)
contains only ûnitely many elements of Z. _erefore, there exists z ∈ Z that is not in
the orbit of any ramiûcation point of ϕ. From the deûnition of Z, ϕk(z) = 0 for some
k ≥ 1. _en for all n ≥ k, ρn(0) ≥ ( 1

d k )(dn), furnishing the desired exponential lower
bound.

Observe that when combined with _eorem 1.1, _eorem 2.6 yields the result that
the sequence (gn)n≥1 is either bounded by 1 or grows exponentially.

3 Maps with Two m-branch Abundant Points, m ≥ 5

We begin with a deûnition and proposition that will be useful in proving_eorem 1.2.

Deûnition 3.1 For a ûxed integer m ≥ 2, rational function ϕ ∈ C(x), and distinct
α1 , α2 ∈ P1(C), we call ϕ m-trivial with respect to {α1 , α2} if we havem ∣ eϕ(z) for all
z ∈ ϕ−1({α1 , α2}) ∖ {α1 , α2}.

Proposition 3.2 For any integer m ≥ 2, a rational function ϕ ∈ C(x) is m-trivial
with respect to {0,∞} if and only if it is of the form

cx j(ψ(x))m with ψ(x) ∈ C(x), 0 ≤ j ≤ m − 1, and c ∈ C∗ .

Proof Let ϕ be m-trivial with respect to {0,∞}. For each z ∈ ϕ−1(0) ∖ {0,∞}, the
factor (x − z) appears in the numerator of ϕ with multiplicity eϕ(z). _e same holds
for z ∈ ϕ−1(∞)∖{0,∞} and the denominator of ϕ. Letting U = ϕ−1(0)∖{0,∞} and
V = ϕ−1(∞) ∖ {0,∞}, we can write

ϕ(x) = c ⋅ x j ⋅
∏u∈U(x − u)m

∏v∈V(x − v)m

for some c ∈ C∗ (we cannot have c = 0, since ϕ is non-constant). _us, ϕ(x) =
cx jψ(x)m with ψ(x) = ∏u∈U(x −u)/∏v∈V(x − v). If necessary, we can absorbm-th
powers of x into (ψ(x))m , allowing us to assume 0 ≤ j ≤ m − 1.

Suppose now that ϕ(x) = cx j(ψ(x))m . _en m ∣ eϕ(z) for all

z ∈ ϕ−1({0,∞}) ∖ {0,∞},

and it follows that ϕ is m-trivial with respect to {0,∞}.

In light of Proposition 3.2 and Corollary 2.5, in order to prove_eorem 1.2 we wish
to show that in many cases a map for which 0 and∞ arem-branch abundant must in
fact be m-trivial with respect to {0,∞}. _e purpose of this section is to prove this
in the case m ≥ 5, which is done in _eorem 3.8. _ere is no special advantage to
assuming that ϕ has 0 and∞ as m-branch abundant points, and so we assume only
that ϕ has two distinct m-branch abundant points α1 and α2.

We begin with several preparatory lemmas, which will be of use in later sections as
well as this one. _e ûrst shows that when m is a prime power, m-branch abundance
of α ∈ P1(C) propagates to certain iterated preimages of α.
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Lemma 3.3 Let ϕ ∈ C(x) and p be prime. Suppose that α ∈ P1(C) is pr-branch
abundant for ϕ, where r ≥ 1, and let β ∈ P1(C) satisfy ϕk(β) = α for some k ≥ 1. If
pr ∤ eϕk(β), then β is p-branch abundant for ϕ. Furthermore, if p ∤ eϕ(ϕ i(β)) for
each i = 0, 1, . . . , k − 1, then β is pr-branch abundant for ϕ.

Proof Consider z ∈ ϕ−n(β), implying in particular that z ∈ ϕ−(n+k)(α). Note that

(3.1) eϕn+k(z) = eϕk(ϕn(z)) ⋅ eϕn(z) = eϕk(β) ⋅ eϕn(z).

If pr ∤ eϕk(β), then (3.1) and the primality of p give

(3.2) #{z ∈ ϕ−n(β) ∶ p ∤ eϕn(z)} ≤ #{z ∈ ϕ−(n+k)(α) ∶ pr ∤ eϕn+k(z)}.

Because α is pr-branch abundant, the right-hand side of (3.2) is bounded as n grows,
and thus β is p-branch abundant.

If p ∤ eϕ(ϕ i(β)) for i = 0, 1, . . . , k − 1, then p ∤ eϕk(β) by (2.1). Arguing as in the
previous paragraph, it follows that β is pr-branch abundant.

For α ∈ P1(C) and ϕ ∈ C(x), we o�en wish to consider the union of the sets
ϕ−n(α) for n ≥ 0. We thus introduce the following standard deûnition.

Deûnition 3.4 Let ϕ ∈ C(x) and α ∈ P1(C). _e backwards orbit of α under ϕ is

O−
ϕ(α) ∶= {β ∈ P1(C) ∶ there exists n ≥ 0 with ϕn(β) = α}.

For S ⊂ P1(C), the backwards orbit O−
ϕ(S) of S is the union of O−

ϕ(α) over α ∈ S.

Note that, as in the case with forward orbits, we have α ∈ O−
ϕ(α).

_e next lemma is crucial in our analysis. We o�en apply it to a preimage of a
p-branch abundant point, and hence we use β instead of α in the statement.

Lemma 3.5 Let S be a ûnite subset of P1(C), and suppose that ϕ ∈ C(x), p is prime,
and β ∈ ϕ−1(S) ∖ S is p-branch abundant for ϕ. _en there exists y ∈ O−

ϕ(β) satisfying
the following conditions:
(i) If n ≥ 0 is minimal such that ϕn(y) = β, then S ∩{y, ϕ(y), . . . , ϕn(y)} is empty.
(ii) p ∣ eϕ(z) for all z ∈ ϕ−1(y) ∖ S.

Moreover, suppose that there are distinct {β1 , . . . , βk} ⊆ ϕ−1(S)∖S and (not necessarily
distinct) primes p1 , . . . , pk such that for all i = 1, . . . , k, we have that β i is p i-branch
abundant for ϕ, and y i satisûes conditions (i) and (ii) with respect to β i and S. _en
y i ≠ y j for all i ≠ j.

Proof If each z ∈ ϕ−1(β) ∖ S satisûes p ∣ eϕ(z), then we can take y = β (note β ∉ S
by assumption). Otherwise, construct a (possibly ûnite) sequence γ1 , γ2 , . . . in P1(C)
as follows. Choose γ1 ∈ ϕ−1(β) ∖ S with p ∤ eϕ(γ1). If γ i is chosen for i ≥ 1, then
select γ i+1 ∈ ϕ−1(γ i) ∖ S with p ∤ eϕ(γ i+1). If no such γ i+1 exists, then the sequence
terminates with γ i , and thus we can take y = γ i to satisfy conditions (i) and (ii) of the
theorem.
By construction, γ i /∈ S for all i. _erefore, all the γ i are distinct, for if γ i = γ j for

i > j, then γ i is periodic under ϕ and its orbit is {γ i , γ i−1 , . . . , γ j+1}. But γ i ∈ O−
ϕ(S),
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and so O+
ϕ(γ i) intersects S, implying that γℓ ∈ S for some j < ℓ ≤ i, which is a

contradiction.
It thus suõces to show that the set {γ i ∶ i ≥ 1} is ûnite. Note that by Lemma 3.3,

each γ i is p-branch abundant for ϕ. Consider the set R of all c ∈ P1(C)with eϕ(c) > 1
and c ∈ O−

ϕ(S). Observe that

(3.3) ⋃
c∈R

O+
ϕ(c) ⊆ ( ⋃

c∈R
(O+

ϕ(c) ∖ O+
ϕ(S))) ∪ O+

ϕ(S),

whereO+
ϕ(S) = ⋃s∈S O+

ϕ(s). Now for each c ∈ R, we have that O+
ϕ(c)∖O+

ϕ(S) is ûnite,
since c ∈ O−

ϕ(S). We claim that only ûnitely many of the γ i lie in O+
ϕ(S). Otherwise,

the ûniteness of S and the pigeonhole principle imply that inûnitely many of the γ i
lie in a single orbit O+

ϕ(s) for some s ∈ S. Because each γ i maps into S under enough
iterations of ϕ, the orbit O+

ϕ(s) visits S inûnitely o�en. _e ûniteness of S then gives
ϕn1(s) = ϕn2(s) for some n1 ≠ n2, and hence O+

ϕ(s) is ûnite, contradicting our sup-
position that it contains inûnitely many γ i . Now from (3.3) we have that only ûnitely
many of the γ i lie in ⋃c∈R O+

ϕ(c). _is implies there are only ûnitely many γ i , since
otherwise there is some γ i with no ramiûcation point of ϕ in O−

ϕ(γ i), contradicting
the p-branch abundance of γ i .

To prove the last assertion of the lemma, assume to the contrary that y i = y j for
some i ≠ j. Let n i ≥ 0 be minimal such that ϕn i (y i) = β i and let n j ≥ 0 be minimal
such that ϕn j(y j) = β j . Since y i = y j , we cannot have n i = n j , for then β i = β j .
Assume without loss of generality that n i > n j , and note that y i = y j implies

{β j , ϕ(β j), . . . ϕn i−n j(β j)} = {ϕn j(y i), ϕn j+1(y i), . . . ϕn i (y i)}

⊆ { y i , ϕ(y i), . . . , ϕn i (y i)} .

But S ∩ {y i , ϕ(y i), . . . , ϕn i (y i)} = ∅ by condition (i). Because n i − n j ≥ 1, we have
ϕ(β j) /∈ S, a contradiction.

Our next preparatory lemma is an elementary lower bound on ramiûcation in-
dices.

Lemma 3.6 Let m ∈ Z with m ≥ 2, let T be a ûnite subset of P1(C) with #T = t, and
let ϕ ∈ C(x) have degree d ≥ 2. Let U = {z ∈ ϕ−1(T) ∶ m ∤ eϕ(z)}, and put u = #U.
_en

∑
z∈ϕ−1(T)

(eϕ(z) − 1) ≥ (dt − u)( m − 1
m

) ,

where equality holds if and only if eϕ(z) ∈ {1,m} for all z ∈ ϕ−1(T).

Proof LetU ′ = ϕ−1(T)∖U . Because∑z∈ϕ−1(w) eϕ(z) = d for allw ∈ P1(C), we have

dt = ∑
z∈ϕ−1(T)

eϕ(z) = ∑
z∈U

eϕ(z) + ∑
z∈U ′

eϕ(z)

= ∑
z∈U

(eϕ(z) − 1) + u +m( ∑
z∈U ′

(rz − 1) + #U ′) ,
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from which we have that #U ′ ≤ dt−u
m , with equality if and only if eϕ(z) = 1 for all

z ∈ U and rz = 1 for all z ∈ U ′. _e lemma then follows from the observation that

∑
z∈ϕ−1(T)

( eϕ(z) − 1) = dt − #(ϕ−1(T)) = dt − u − #U ′ .

Let α1 and α2 be m-branch abundant points for ϕ. Put

(3.4) B = {β ∈ P1(C) ∶ β ∈ ϕ−1({α1 , α2}) ∖ {α1 , α2},m ∤ eϕ(β)} .

From Deûnition 3.1, one sees immediately that ϕ is m-trivial with respect to {α1 , α2}
if and only if B is empty. Now because m ∤ eϕ(β) for each β ∈ B, there must be
some prime pβ and some r ≥ 1 with pr

β ∣ m, but pr
β ∤ eϕ(β). Because α1 and α2

are m-branch abundant, they are also pr
β-branch abundant, and so by Lemma 3.3, β

is pβ-branch abundant. We can then apply Lemma 3.5 with S = {α1 , α2} to ûnd for
each β ∈ B some yβ ∈ O−

ϕ(β) with pβ ∣ eϕ(z) for each z ∈ ϕ−1(yβ) ∖ {α1 , α2}. We
then set

(3.5) Y = {yβ ∶ β ∈ B}.
By the last assertion of Lemma 3.5, Y has the same number of elements as B.

Lemma 3.7 Let m ∈ Z with m ≥ 2, let ϕ ∈ C(x) have degree d ≥ 2, and let α1 , α2 ∈
P1(C) be distinct m-branch abundant points for ϕ. Let B and Y be as in (3.4) and (3.5),
respectively. Put b = #B and ℓY = #(ϕ−1(Y) ∩ {α1 , α2}). _en

b(dm − 2m + 2) + ℓY(m − 2) ≤ 4d − 4.

Proof Let p be the smallest prime dividing m, so pβ ≥ p for all β ∈ B. By Lemma 3.5
we have #Y = #B = b. Applying Lemma 3.6 with T = Y yields

∑
z∈ϕ−1(Y)

(eϕ(z) − 1) ≥ (bd − ℓY)(
p − 1
p

) ≥
bd − ℓY

2
.

Now let u i = #{z ∈ ϕ−1(α i) ∶ m ∤ eϕ(z)} for i ∈ {1, 2}. Note that #ϕ−1(α i) ≤
u i + (d − u i)/m, whence

∑
z∈ϕ−1(α i)

(eϕ(z) − 1) = d − #ϕ−1(α i) ≥ d − (u i +
d − u i

m
) .

By Lemma 3.5(i), we have thatY∩{α1 , α2} = ∅. Hence, #(ϕ−1({α1 , α2})∩{α1 , α2}) ≤
2 − ℓY , and it follows that u1 + u2 ≤ b + 2 − ℓY . _us,

2d − 2 = ∑
z∈P1(C)

(eϕ(z) − 1) ≥ ∑
z∈ϕ−1({α1 ,α2}∪Y)

( eϕ(z) − 1)

≥ d − (u1 +
d − u1

m
) + d − (u2 +

d − u2

m
) +

bd − ℓY
2

= (2d − (u1 + u2))
m − 1
m

+
bd − ℓY

2

≥ (2d − (b + 2 − ℓY))
m − 1
m

+
bd − ℓY

2
.

Multiplying through by 2m and regrouping terms yields the desired inequality.
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We now prove the main theorem of this section.

_eorem 3.8 Let m ∈ Z with m ≥ 5. _en every rational function ϕ ∈ C(x) with
two m-branch abundant points α1 , α2 in P1(C) is m-trivial with respect to {α1 , α2}.

Proof We use the notation of Lemma 3.7, and assume b ≥ 1 in order to derive a
contradiction. If ℓY ≥ 1, then applying Lemma 3.7 with m ≥ 5 gives b(5d − 8) + 3 ≤
4d − 4. But b ≥ 1, so this yields 5d − 5 ≤ 4d − 4, which is impossible, because d ≥ 2.

If ℓY = 0, thenLemma3.7 and b ≥ 1 give 5d−8 ≤ 4d−4, which implies d ≤ 4. Hence,
m > d, implying ϕ−1({α1 , α2}) ⊆ B ∪ {α1 , α2}, and therefore #ϕ−1({α1 , α2}) ≤ b + 2.
Moreover, since ℓY = 0, for each yβ ∈ Y , all elements of ϕ−1(yβ) must have ramiûca-
tion index divisible by pβ , and in particular every element of ϕ−1(Y) has ramiûcation
index greater than 1. When d = 3, this implies eϕ(z) = 3 for all z ∈ ϕ−1(Y), while for
d = 4 we have eϕ(z) ≥ 2 for all z ∈ ϕ−1(Y). In either case,∑z∈ϕ−1(Y)(eϕ(z) − 1) ≥ 2b.
Hence for d ∈ {3, 4}, we obtain

∑
z∈ϕ−1(Y∪{α1 ,α2})

( eϕ(z) − 1) ≥ (2d − (b + 2)) + (2b) = 2d − 2 + b.

Because b ≥ 1 we have a contradiction to the Riemann–Hurwitz formula. When d = 2,
we have only∑z∈ϕ−1(Y)(eϕ(z) − 1) ≥ b, and so

∑
z∈ϕ−1(Y∪{α1 ,α2})

( eϕ(z) − 1) ≥ (2d − (b + 2)) + b = 2d − 2.

Hence, the inequality #ϕ−1({α1 , α2}) ≥ b + 2 is in fact an equality, and it follows that
ϕ−1({α1 , α2}) = B ∪ {α1 , α2}. In particular, ϕ({α1 , α2}) ⊆ {α1 , α2}, implying that
O+

ϕ({α1 , α2}) ⊆ {α1 , α2}. _us no element of B can be periodic under ϕ, for otherwise
B∩O+

ϕ({α1 , α2}) ≠ ∅, contradicting the fact that by deûnition B∩{α1 , α2} = ∅. Now
let β ∈ B, and for n ≥ 1, let γn ∈ ϕ−n(β). Because β is not periodic under ϕ, we must
have that γn , ϕ(γn), . . . , ϕn(γn) are all distinct. But

eϕn(γn) =
n−1
∏
i=0
eϕ(ϕ i(γn)),

and there can be at most two i with eϕ(ϕ i(γn)) = 2, with eϕ(ϕ i(γn)) = 1 for the rest.
It follows that eϕn(γn) ≤ 4. _is holds for arbitrary n and γn , and thus β cannot be
m-branch abundant, because m ≥ 5. _is contradiction completes the proof of the
theorem.

4 Preimage Trees of p-branch Abundant Points

In this section we study m-fold ramiûcation among preimages of an m-branch abun-
dant point.

Deûnition 4.1 Fix m ∈ Z with m ≥ 2, ϕ ∈ C(x), and α ∈ P1(C). Given z ∈ P1(C),
denote by rϕ(z) the unordered tuple whose entries are eϕ(y) as y varies over ϕ−1(z).
For n ≥ 0, let Sn be the set of z ∈ ϕ−n(α) with m ∤ eϕn(z). _e m-ramiûcation
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structure of O−
ϕ(α) is

⊔
n≥0

{(z, rϕ(z)) ∶ z ∈ Sn} .

For example, let T6 be the degree-6 monic Chebyshev polynomial, let m = 2,
ϕ(x) = T6(x + 2) − 2, and α = 0. _en S0 = {0}, Sn = {−4, 0} for all n ≥ 1, and
the 2-ramiûcation structure of O−

ϕ(0) is

{(0, (1, 1, 2, 2))} ⊔ {(−4, (2, 2, 2)), (0, (1, 1, 2, 2))}

⊔ {(−4, (2, 2, 2)), (0, (1, 1, 2, 2))} ⊔ ⋅ ⋅ ⋅

(4.1)

It is o�en convenient to represent m-ramiûcation structures pictorially. We do this
by constructing a diagram whose n-th row consists of the elements of Sn , and where
a line between γ ∈ Sn+1 and β ∈ Sn indicates that ϕ(γ) = β. We label such a line with
eϕ(γ) in the case where eϕ(γ) > 1. To eliminate clutter, we indicate with a double line
labeled by n (resp. n∗) a set of points each of which has ramiûcation index divisible
by n (resp. exactly n). To further simplify our diagrams, we omit repetition when it
does not add novel information, such as when Sn+1 is identical to Sn . For example, a
diagram representing the 2-ramiûcation structure in (4.1) is

0

−40

2∗

2∗.

If we replace the two occurrences of 2∗ by 2, then the resulting diagram still describes
the 2-ramiûcation structure in (4.1), though it also describes others, e.g.,

{(0, (1, 1, 2, 4, 6))} ⊔ {(−4, (4, 4, 6)), (0, (1, 1, 2, 4, 6))}

⊔ {(−4, (4, 4, 6)), (0, (1, 1, 2, 4, 6))} ⊔ ⋅ ⋅ ⋅

_e main goal of this section is to study maps ϕ ∈ C(x) for which 0 and ∞ are
m-branch abundant with m ∈ {2, 3}, which we do in_eorems 4.6 and 4.7. Ourmain
tool is a classiûcation of the p-ramiûcation structures ofO−

ϕ(α), where p is prime and
α is a p-branch abundant point for ϕ. _is is done in _eorems 4.3 and 4.5.

Lemma 4.2 Let ϕ ∈ C(x) have degree d ≥ 2, let p be a prime with p ∤ d, and suppose
that α ∈ P1(C) is p-branch abundant for ϕ. _en α is periodic under ϕ and there is
exactly one β ∈ ϕ−1(α) with p ∤ eϕ(β). Moreover, β must be p-branch abundant for
ϕ, and β must lie in O+

ϕ(α).

Proof Because p ∤ d, theremust be at least one β ∈ ϕ−1(α)with p ∤ eϕ(β). If β = α,
then evidently α is periodic under ϕ and β ∈ O+

ϕ(α). Assume β ∈ ϕ−1(α) ∖ {α}. By
Lemma 3.3 we have that β is p-branch abundant for ϕ. Applying Lemma 3.5 with
S = {α}, there exists y ∈ O−

ϕ(β) with p ∣ eϕ(z) for each z ∈ ϕ−1(y) ∖ {α}. If α /∈

ϕ−1(y), then from d = ∑z∈ϕ−1(y) eϕ(z)we have p ∣ d, contrary to assumption. Hence,
ϕ(α) = y, and so α is periodic under ϕ and β ∈ O+

ϕ(α).
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(1) (2) (3) (4) (5)
α

α

p k
α

β

α

p k1

p k2

α

β

γ

α

2 k1

2 k2

2 k3

α

β

γ

α

3∗

3∗

3∗
α

β

γ

δ

α

2∗

2∗

2∗

2∗

p = 2 p = 3 p = 2

Figure 1

It remains to show that β is the unique element of ϕ−1(α) with ramiûcation index
not divisible by p. If β′ is another such element, then by the previous paragraph we
have β′ ∈ O+

ϕ(α). _us, both β and β′ lie in the cycle C to which α belongs. But the
action of ϕ on C is one-to-one, so ϕ(β) = α = ϕ(β′) implies β = β′.

_eorem 4.3 Let ϕ ∈ C(x) have degree d ≥ 2, let p be a prime with p ∤ d, and
suppose that α ∈ P1(C) is p-branch abundant for ϕ. _en the p-ramiûcation structure
for O−

ϕ(α) is one of those in Figure 1, where k1 , k2 , and k3 are positive integers not
divisible by p, and points namedwith distinct letters within a given diagram are distinct.

Proof Put α1 = α, and note that by Lemma 4.2 there is a unique α2 ∈ ϕ−1(α1) with
p ∤ eϕ(α i+1) and α2 ∈ O+

ϕ(α1). By Lemma 3.3 we have that α2 is p-branch abundant
for ϕ, and so we can apply Lemma 4.2 to α2. Continuing in this fashion, we obtain a
sequence (α i)i≥1 inP1(C) of p-branch abundant points for ϕ that satisfy ϕ(α i+1) = α i
and α i+1 ∈ O+

ϕ(α i) for all i ≥ 1. _e latter condition impliesO+
ϕ(α i+1) ⊆ O+

ϕ(α i) for all
i ≥ 1, and so O+

ϕ(α i+1) ⊆ O+
ϕ(α1), implying α i+1 ∈ O+

ϕ(α1). But Lemma 4.2 shows that
α1 is periodic under ϕ. Hence, α i = α j for some i > j, which implies that α1 = α i− j+1.
Let n > 0 be minimal such that α1 = αn+1. Note that n = 1 gives p-ramiûcation
structure (1), while n = 2 gives p-ramiûcation structure (2).
Assume that n ≥ 3. Applying Lemma 3.6 with T = {α i} and summing over i yields

n

∑
i=1

∑
z∈ϕ−1(α i)

(eϕ(z) − 1) ≥ n(d − 1)
(p − 1)

p
≥ 3(d − 1)

(p − 1)
p

.(4.2)

If p > 3, we obtain a contradiction to Riemann–Hurwitz. If p = 3, then we obtain
a similar contradiction unless both the inequalities in (4.2) are equalities. _is holds
only when n = 3 and eϕ(z) ∈ {1, 3} for all z ∈ ϕ−1(α i), the latter by Lemma 3.6. _is
gives p-ramiûcation structure (4). If p = 2, then n(d−1)(p−1)/p = (n/2)(d−1), and
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(4.2) contradicts Riemann–Hurwitz unless n ≤ 4. _e case n = 3 gives p-ramiûcation
structure (3). If n = 4, then the ûrst inequality in (4.2) must be an equality, and
hence we have equality in Lemma 3.6 with T = {α i}. _e latter happens if and only
if eϕ(z) ∈ {1, 2} for all z ∈ ϕ−1(α i), which gives p-ramiûcation structure (5).

We now move to the more complicated case where p ∣ d. _e following lemma is
of central importance both in this section and in subsequent sections.

Lemma 4.4 Let ϕ ∈ C(x) have degree d ≥ 2. If p > 3 is prime, then ϕ has at most two
p-branch abundant points in P1(C). Moreover, ϕ has at most three 3-branch abundant
points in P1(C), and at most four 2-branch abundant points in P1(C). If ϕ possesses a
set V of three 3-branch abundant points (resp. four 2-branch abundant points), then all
ramiûcation points of ϕ lie in ϕ−1(V), and eϕ(z) ∈ {1, 3} (resp. eϕ(z) ∈ {1, 2}) for all
z ∈ P1(C).

Proof Let p be prime, and let V = V0 = {α1 , . . . , αk} ⊂ P1(C) be a set of distinct
p-branch abundant points for ϕ. For i ≥ 1, put Vi = {z ∈ ϕ−1(Vi−1) ∶ p ∤ eϕ(z)}.
Observe that Vi consists of all z ∈ ϕ−i(V0) with p ∤ eϕ i (z), and in particular, #Vi =

∑
k
n=1 ρ i(αn) (notation as in Deûnition 2.1). By the p-branch abundance of the α i ,

we have that (#Vi)i≥0 is bounded. Hence, the sequence cannot be strictly increasing,
and so there is j ≥ 1 with #Vj ≤ #Vj−1. Assume that j is minimal with this property.
Because #V0 = k, the minimality of j ensures that #Vj−1 ≥ k. Apply Lemma 3.6 with
T = Vj−1 to get

∑
z∈ϕ−1(Vj−1)

( eϕ(z) − 1) ≥ ((#Vj−1)d − #Vj)
p − 1
p

≥ (#Vj−1)(d − 1)
p − 1
p

≥ k(d − 1)
p − 1
p

.

(4.3)

If p > 3, then Riemann–Hurwitz implies k ≤ 2. If p = 3 (resp. p = 2), then Riemann–
Hurwitz implies k ≤ 3 (resp. k ≤ 4). If p = k = 3 or p = 2, k = 4, then by Riemann-
Hurwitz again we have equality throughout (4.3). In particular, we have #Vj−1 = k,
and the minimality of j then gives j = 1. Equality in (4.3) also implies equality in
Lemma 3.6 with T = Vj−1 = V , and thus eϕ(z) ∈ {1, p} for all z ∈ ϕ−1(V). Finally,
(4.3) gives∑z∈ϕ−1(V)(eϕ(z) − 1) = 2d − 2, implying that all ramiûcation points for ϕ
lie in ϕ−1(V), and hence eϕ(z) ∈ {1, p} for all z ∈ P1(C).

_eorem 4.5 Let ϕ ∈ C(x) have degree d ≥ 2, let p be a prime with p ∣ d, and
suppose that α ∈ P1(C) is p-branch abundant for ϕ. _en the p-ramiûcation structure
for O−

ϕ(α) is one of those in Figure 2, where points named with distinct letters within a
given diagram are distinct.

Proof For any z ∈ P1(C), we deûne

u(z) = #{β ∈ ϕ−1(z) ∶ p ∤ eϕ(β)} ,

u0(z) = #{β ∈ ϕ−1(z) ∖ {z} ∶ p ∤ eϕ(β)} .
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(6) (7) (8) (9)
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α
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p

α

β2β1

2

2 2

a b
α

β2β1α

3∗

3∗ 3∗

p ∣ (a + b) p = 2; a, b odd p = 3
(10) (11) (12)

α

β

γ2γ1

α

2∗

2∗

2∗ 2∗

α

β2

γα

β1

2∗

2∗ 2∗

2∗

α

β3β2β1α

2∗

2∗ 2∗ 2∗

p = 2 p = 2 p = 2

Figure 2

Note that u(z) = u0(z) or u(z) = u0(z) + 1, with the latter holding if and only if
ϕ(z) = z and p ∤ eϕ(z). We frequently use the observation that p ∣ d implies u(z) ≠ 1
for all z ∈ P1(C). For example, if u0(α) = 0, then u(α) ≤ 1, and so because p ∣ d, we
have u(α) = 0, which gives p-ramiûcation structure (6).
Case 1a: Let p ≥ 3 and u0(α) ≥ 2. Because α is p-branch abundant, Lemma 3.3

yields the same conclusion for β ∈ ϕ−1(α)∖{α}with p ∤ eϕ(β). If u0(α) ≥ 3, we thus
have a set of four distinct p-branch abundant points for ϕ, contradicting Lemma 4.4.
_us u0(α) = 2, and we let β1 , β2 be the two elements of ϕ−1(α) ∖ {α} with ram-
iûcation index not divisible by p. _en V = {α, β1 , β2} is a set of three p-branch
abundant points for ϕ, and by Lemma 4.4 this implies p = 3 and eϕ(z) ∈ {1, 3} for all
z ∈ ϕ−1(V). In particular, we have eϕ(β1) = eϕ(β2) = 1. Because 3 ∣ d, we must have
α ∈ ϕ−1(α) and 3 ∤ eϕ(α), whence eϕ(α) = 1. Now from Lemma 4.4, V contains
all 3-branch abundant points for ϕ, and it follows from Lemma 3.3 that eϕ(z) = 3
for all z ∈ ϕ−1(V) ∖ V . But V ∩ ϕ−1({β1 , β2}) = ∅, for otherwise applying ϕ gives
α ∈ {β1 , β2}. Hence eϕ(z) = 3 for all z ∈ ϕ−1({β1 , β2}), giving 3-ramiûcation struc-
ture (9).
Case 1b: Let p ≥ 3 and u0(α) = 1. Let β be the unique element of ϕ−1(α) ∖ {α}

with p ∤ eϕ(β). Because p ∣ d we have u(α) = 2, whence ϕ(α) = α. From Lemma 3.3
we have that β is p-branch abundant for ϕ. By our work in Case 1a, u0(β) = 2 implies
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that ϕ(β) = β, contradicting α ≠ β. If u0(β) = 1, then because p ∣ d, we have
u(β) = 2 > u0(β), and so ϕ(β) = β, again a contradiction. _us we have u0(β) = 0,
and therefore u(β) = 0, giving p-ramiûcation structure (7).
Case 2a: Let p = 2 and u0(α) ≥ 3. Arguing similarly to Case 1a, we must have

u0(α) = 3. Let β1 , β2 , β3 be the three elements of ϕ−1(α)∖{α}with odd ramiûcation
index. _enV = {α, β1 , β2 , β3} is a set of four 2-branch abundant points for ϕ, and by
Lemma 4.4 this implies eϕ(z) ∈ {1, 2} for all z ∈ ϕ−1(V). Because d is even, we must
have α ∈ ϕ−1(α) and 2 ∤ eϕ(α), whence eϕ(α) = 1. Lemma 4.4 shows thatV contains
all 2-branch abundant points for ϕ, and it follows from Lemma 3.3 that eϕ(z) = 2 for
all z ∈ ϕ−1(V) ∖ V . But V ∩ ϕ−1({β1 , β2 , β3}) = ∅, for otherwise applying ϕ gives
α ∈ {β1 , β2 , β3}. Hence, eϕ(z) = 2 for all z ∈ ϕ−1({β1 , β2 , β3}), giving 2-ramiûcation
structure (12).
Case 2b: Let p = 2 and u0(α) = 2. _e latter implies u(α) ∈ {2, 3}, but u(α) must

be even because d is, giving u(α) = 2 and hence α /∈ ϕ−1(α). Let β1 , β2 be the two
elements of ϕ−1(α) ∖ {α} with odd ramiûcation index. Note that β1 and β2 are both
2-branch abundant by Lemma 3.3, and so Lemma 4.4 implies u0(β i) ≤ 3 for i = 1, 2.
Moreover, neither of the β i can have u0(β i) = 3, because then ϕ(β i) = β i by Case 2a,
giving a contradiction.

Suppose that u0(β i) = 2 for some i (say without loss of generality i = 2), and
let z1 , z2 be the elements of ϕ−1(β2) ∖ {β2} with odd ramiûcation index. _en V =
{α, β1 , β2 , z1 , z2} is a set of 2-branch abundant points for ϕ, and Lemma 4.4 gives
#V ≤ 4. But #{β1 , β2 , z1 , z2} = 4 and α /∈ {β1 , β2} by construction, whence α ∈
{z1 , z2}. Without loss of generality say α = z1. Because #V = 4, Lemma 4.4 shows
that eϕ(z) ∈ {1, 2} for all z ∈ ϕ−1(V). Lemma 4.4 also shows that V contains all
2-branch abundant points for ϕ, and it follows from Lemma 3.3 that eϕ(z) = 2 for all
z ∈ ϕ−1(V) ∖ V . Note that ϕ(V) = {α, β2}, and so if V ∩ ϕ−1({β1 , z2}) ≠ ∅, then
applying ϕ gives {β1 , z2} ∩ {α, β2} ≠ ∅, which is impossible. Hence, eϕ(z) = 2 for all
z ∈ ϕ−1({β1 , z2}), which gives 2-ramiûcation structure (11).

Suppose that u0(β i) ≤ 1 for i = 1, 2. Because β i ≠ α, we have ϕ(β i) ≠ β i , and thus
u(β i) = u0(β i) for i = 1, 2. Because 2 ∣ d, we cannot have u(β i) = 1, which proves
that u(β1) = u(β2) = 0. _is gives 2-ramiûcation structure (8).
Case 2c: Let p = 2 and u0(α) = 1. _en there exists a unique β ∈ ϕ−1(α)∖{α}with

eϕ(β) odd. Because u(α) ≠ 1, we must have u(α) > u0(α), implying that ϕ(α) = α
and eϕ(α) is odd. Note that u0(β) ≤ 3 by Lemma 4.4. If u0(β) = 3, then by Case 2a
we have ϕ(β) = β, contradicting β ≠ α. We also cannot have u0(β) = 1, for then
u(β) = 2, and so again ϕ(β) = β. If u0(β) = 0, we have 2-ramiûcation structure (7).

Suppose then that u0(β) = 2, and let γ1 , γ2 be the two elements of ϕ−1(β) ∖ {β}
with odd ramiûcation index. Note that α /∈ {γ1 , γ2}, for otherwise ϕ(α) = α gives
the contradiction β = α. _us, V = {α, β, γ1 , γ2} is a set of four 2-branch abundant
points for ϕ, and Lemma 4.4 shows that eϕ(z) ∈ {1, 2} for all z ∈ ϕ−1(V). Lemma 4.4
also shows that V contains all 2-branch abundant points for ϕ, and it follows from
Lemma 3.3 that eϕ(z) = 2 for all z ∈ ϕ−1(V) ∖ V . Note that ϕ(V) = {α, β}, and
so if V ∩ ϕ−1({γ1 , γ2}) ≠ ∅, then applying ϕ gives {γ1 , γ2} ∩ {α, β} ≠ ∅, which is
impossible. Hence, eϕ(z) = 2 for all z ∈ ϕ−1({γ1 , γ2}), which gives 2-ramiûcation
structure (10).
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If α ∈ P1(C) is p-branch abundant for ϕ ∈ C(x), deûne

Ab(α) = ⋃
n≥1

{z ∈ ϕ−n(α) ∶ p ∤ eϕn(z)},

and note that by Lemma 3.3, Ab(α) consists of p-branch abundant points for ϕ. In the
notation of _eorems 4.3 and 4.5, the named points in each p-ramiûcation structure
comprise Ab(α). Note that it follows from Lemma 3.3 that if α1 and α2 are p-branch
abundant points for ϕ and α2 ∈ Ab(α1), then Ab(α2) ⊆ Ab(α1). If α1 , . . . , αn are
p-branch abundant points for ϕ, we write Ab(α1 , . . . , αn) for ⋃n

i=1 Ab(α i).

_eorem 4.6 Let ϕ ∈ C(x) have degree d ≥ 2, and assume that A = {α1 , α2} ⊂ P1(C)
is a set of distinct 3-branch abundant points for ϕ. Suppose that ϕ is not 3-trivial with
respect to A, and let µ be a Möbius transformation exchanging α1 and α2. _en for
either ϕ or µ ○ ϕ ○ µ−1, one of the following holds.
(3A) O−

ϕ(α1) has 3-ramiûcation structure (4), α2 ∈ Ab(α1), and ϕ(α2) = α1;
(3B) O−

ϕ(α1) (resp. O−
ϕ(α2)) has 3-ramiûcation structure (2) (resp. (1)),

and Ab(α1) ∩ Ab(α2) = ∅;
(3C) O−

ϕ(α1) has 3-ramiûcation structure (9), α2 ∈ Ab(α1), and ϕ(α2) = α1.
Moreover, in all cases we have

(4.4) all ramiûcation points of ϕ lie in ϕ−1(Ab(α1 , α2)),
and eϕ(z) ∈ {1, 3} for all z ∈ P1(C).

Remark _e conditions in (4.4) are invariant under Möbius conjugation, and thus
hold for both ϕ and µ ○ ϕ ○ µ−1.

Proof Let O−
ϕ(α1) have 3-ramiûcation structure (a) andO−

ϕ(α1) have 3-ramiûcation
structure (b), where we use the numbering of_eorems 4.3 and 4.5. Replacing ϕ with
µ ○ ϕ ○ µ−1 if necessary, we assume that a ≥ b. In the case where a = b, clearly it is not
necessary to replace ϕ by µ ○ ϕ ○ µ−1 in order to obtain a ≥ b, and so we are free to
make this replacement for other purposes. Because ϕ is assumed to be non-3-trivial
with respect to A, we must have a /∈ {1, 6}.

Suppose ûrst that 3 ∤ deg ϕ. If a = 4, then Ab(α1) contains three 3-branch abun-
dant points for ϕ, and hence by Lemma 4.4 we have that α2 ∈ Ab(α1) and (4.4) holds.
Because Ab(α1) consists of a 3-cycle, we can replace ϕ with µ ○ ϕ ○ µ−1 if neces-
sary to obtain ϕ(α2) = α1. _is gives (3A). Suppose that a = b = 2, and note that
Ab(α i) is invariant under ϕ for i = 1, 2. It follows that either Ab(α1) ∩ Ab(α2) = ∅
or Ab(α1) = Ab(α2). _e former contradicts Lemma 4.4, while the latter implies
that ϕ is 3-trivial with respect to A. _is leaves us with a = 2 and b = 1. In this case
ϕ(α2) = α2, and so Ab(α2) ∩ Ab(α1) = ∅, which is (3B). Lemma 4.4 then gives that
(4.4) holds.

Suppose now that 3 ∣ deg ϕ. If a = 9, then Ab(α1) contains three 3-branch abun-
dant points for ϕ, and hence by Lemma 4.4 we have α2 ∈ Ab(α1) and (4.4) holds.
Replacing ϕ by µ ○ ϕ ○ µ−1 if necessary, we have ϕ(α2) = α1, giving (3C). If a = b = 7,
then both α1 and α2 are ûxed points of ϕ, and thus Ab(α1) and Ab(α2) are disjoint,
contradicting Lemma 4.4. If a = 7, b = 6, and α2 /∈ Ab(α1), then Lemma 4.4 gives
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eϕ(z) ∈ {1, 3} for all z ∈ P1(C), and in particular, d = ∑z∈ϕ−1(α1) eϕ(z) ≡ 2 mod 3,
contrary to supposition. Hence, α2 ∈ Ab(α1), implying that ϕ is 3-trivial with respect
to A.

_eorem 4.7 Let ϕ ∈ C(x) have degree d ≥ 2, and assume that A = {α1 , α2} ⊂ P1(C)
is a set of distinct 2-branch abundant points for ϕ. Suppose that ϕ is not 2-trivial with
respect to A, and let µ be a Möbius transformation exchanging α1 and α2. _en for
either ϕ or µ ○ ϕ ○ µ−1, one of the following holds:
(2A) O−

ϕ(α1) has 2-ramiûcation structure (5), α2 ∈ Ab(α1), and ϕ(α2) = α1;
(2B) O−

ϕ(α1) has 2-ramiûcation structure (5), α2 ∈ Ab(α1), ϕ(α2) ≠ α1, and
ϕ2(α2) = α1;

(2C) O−
ϕ(α1) (resp. O−

ϕ(α2)) has 2-ramiûcation structure (3) (resp. (1)), and
Ab(α1) ∩ Ab(α2) = ∅;

(2D) O−
ϕ(α1) has 2-ramiûcation structure (3), α2 ∈ Ab(α1), and ϕ(α2) = α1;

(2E) O−
ϕ(α1) and O−

ϕ(α1) have
(2F) O−

ϕ(α1) (resp. O−
ϕ(α2)) has 2-ramiûcation structure (2) (resp. (1)), and

Ab(α1) ∩ Ab(α2) = ∅;
(2G) O−

ϕ(α1) has 2-ramiûcation structure (12), α2 ∈ Ab(α1), and ϕ(α2) = α1;
(2H) O−

ϕ(α1) has 2-ramiûcation structure (11), α2 ∈ Ab(α1), ϕ(α2) = α1, and
ϕ(α1) = α2;

(2I) O−
ϕ(α1) has 2-ramiûcation structure (11), α2 ∈ Ab(α1), ϕ(α2) = α1, and

ϕ(α1) ≠ α2;
(2J) O−

ϕ(α1) has 2-ramiûcation structure (11), α2 ∈ Ab(α1), ϕ(α2) ≠ α1, and
ϕ2(α2) = α1;

(2K) O−
ϕ(α1) has 2-ramiûcation structure (10), α2 ∈ Ab(α1), and ϕ(α2) = α1;

(2L) O−
ϕ(α1) has 2-ramiûcation structure (10), α2 ∈ Ab(α1), ϕ(α2) ≠ α1, and

ϕ2(α2) = α1;
(2M) O−

ϕ(α1) has 2-ramiûcation structure (8), α2 ∈ Ab(α1), and ϕ(α2) = α1;
(2N) O−

ϕ(α1) and O−
ϕ(α1) have 2-ramiûcation structure (7), and

Ab(α1) ∩ Ab(α2) = ∅;
(2O) O−

ϕ(α1) (resp. O−
ϕ(α2)) has 2-ramiûcation structure (7) (resp. (6)), and

Ab(α1) ∩ Ab(α2) = ∅.
Moreover, in all cases except (2D), (2F), (2M), and (2O), we have

(4.5) all ramiûcation points of ϕ lie in ϕ−1(Ab(α1 , α2)),
and eϕ(z) ∈ {1, 2} for all z ∈ P1(C).

Proof Similarly to the proof of _eorem 4.6, we let O−
ϕ(α1) have 2-ramiûcation

structure (1) and O−
ϕ(α1) have 2-ramiûcation structure (2), and we assume that a ≥ b.

Because ϕ is assumed to be non-2-trivial with respect to A, we must have a /∈ {1, 6}.
Suppose that 2 ∤ deg ϕ. If a = 5, then Ab(α1) contains four 2-branch abundant

points for ϕ, and hence by Lemma 4.4, we have that α2 ∈ Ab(α1) and (4.4) holds.
Replacing ϕ with µ ○ ϕ ○ µ−1 if necessary, we have either ϕ(α2) = α1 or ϕ(α2) ≠ α1
and ϕ2(α2) = α1, giving (2A) and (2B), respectively.
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If a = 3, then observe that b ∈ {1, 2, 3}, and it follows that both Ab(α1) and Ab(α2)
are invariant under ϕ. If Ab(α1) ∩ Ab(α2) = ∅, then from Lemma 4.4 we must have
that b = 1 and (4.5) holds. _is gives (2C). IfAb(α1)∩Ab(α2) ≠ ∅, then the invariance
of Ab(α1) and Ab(α2) under ϕ implies α2 ∈ Ab(α1), and hence b = 3. Replacing ϕ by
µ ○ ϕ ○ µ−1 if necessary, we have ϕ(α2) = α1. _is is (2D).

If a = b = 2, then as in the previous paragraph, we have that Ab(α i) is invariant
under ϕ for i = 1, 2. It follows that either Ab(α1) ∩ Ab(α2) = ∅ or Ab(α1) = Ab(α2).
In the former case, Lemma 4.4 shows that (4.5) holds, giving (2E). In the latter case,
ϕ is 2-trivial with respect to A. _is leaves us with a = 2 and b = 1. In this case
ϕ(α2) = α2, and so Ab(α2) ∩ Ab(α1) = ∅, which is (2F).

Suppose now that 2 ∣ deg ϕ. If a ∈ {10, 11, 12}, then Ab(α1) contains four 2-branch
abundant points for ϕ, and hence by Lemma 4.4 we have α2 ∈ Ab(α1) and (4.4) holds.
If a = 12, then because α1 ≠ α2, we must have ϕ(α2) = α1, and so (2G) holds. If
a = 11 and ϕ(α2) = α1, then either both α1 and α2 lie in the 2-cycle that is part of
2-ramiûcation structure (11), or only α1 lies in said 2-cycle. _ese give (2H) and (2I),
respectively. If a = 11 and ϕ(α2) ≠ α1, then α1 and ϕ(α2)must lie in the 2-cycle that is
part of 2-ramiûcation structure (11), and thus ϕ2(α2) = α1, giving (2J). If a = 10, then
we clearly have either (2K) or (2L).

If a = 8 and Ab(α1) ∩ Ab(α2) = ∅, then from Lemma 4.4 we have b = 6. _en
applying Lemma 3.6 with T = Ab(α1) ∪ Ab(α2) gives

∑
z∈ϕ−1(T)

(eϕ(z) − 1) ≥
4d − 2

2
> 2d − 2.

Hence, α2 ∈ Ab(α1), and necessarily ϕ(α2) = α1, giving (2M).
If a = b = 7, then both α1 and α2 are ûxed points of ϕ, and thus Ab(α1) and Ab(α2)

are disjoint. By Lemma 4.4, we have that (4.5) holds, giving (2N). If a = 7, b = 6, and
Ab(α2) ∩ Ab(α1) ≠ ∅, then α2 ∈ Ab(α1), implying that ϕ is 2-trivial with respect to
A. If Ab(α2) ∩ Ab(α1) ≠ ∅, we have (2O).

5 Maps with Two m-branch Abundant Points, m = 4

In this section we study rational functions with two 4-branch abundant points α1 and
α2. In_eorem 5.3, we show that either such amap is 4-trivial with respect to {α1 , α2}
(see Deûnition 3.1), or the 4-ramiûcation structure of O−

ϕ(α1) has a very restricted
form, and in particular α2 ∈ Ab(α1) with ϕ(α2) = α1. _is is done in _eorem 5.3.

_eorem 5.1 Suppose ϕ ∈ C(x) has degree d with d odd, and let α1 , α2 ∈ P1(C) be
distinct 4-branch abundant points for ϕ. _en ϕ is 4-trivial with respect to {α1 , α2}.

Proof Any point α that is 4-branch abundant for ϕ is also 2-branch abundant for
ϕ, and by the classiûcation of 2-branch abundant points (_eorem 4.3), α must be
periodic with its orbit consisting only of points with odd ramiûcation index. If w ∈
ϕ−1(α) has ramiûcation index divisible by 2 but not by 4, then by Lemma 3.3 we have
thatw is 2-branch abundant, and hence by_eorem 4.3,w must be periodic. But then
w ∈ O+

ϕ(α), and the evenness of eϕ(w) gives a contradiction. Furthermore, again
by _eorem 4.3, ϕ−1(α) must have a unique element with odd ramiûcation index.

795

https://doi.org/10.4153/CJM-2018-026-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-026-x


J. Cahn, R. Jones, and J. Spear

_us, there is xα ∈ ϕ−1(α) with odd ramiûcation index such that every member of
ϕ−1(α) ∖ {xα} has ramiûcation index divisible by 4.

Suppose now that α1 , α2 , and α3 are distinct 4-branch abundant points for ϕ. By
Lemma 3.6, we have

∑
c∈ϕ−1({α1 ,α2 ,α3})

( eϕ(c) − 1) ≥ 3((d − 1)(3/4)) =
9
8
(2d − 2) > 2d − 2,

contradicting Riemann–Hurwitz. Hence, if α1 and α2 are distinct 4-branch abundant
for ϕ, they are the only such points. Now xα1 and xα2 are also 4-branch abundant,
and hence {xα1 , xα2} = {α1 , α2}. _erefore, ϕ−1({α1 , α2}) ∖ {α1 , α2} is empty, as
desired.

Lemma 5.2 Let ϕ ∈ C(x) have even degree d ≥ 2. If ϕ has two 4-branch abundant
points in P1(C), then ϕ has at most three 2-branch abundant points in P1(C).

Proof Let A = {α1 , α2} ⊂ P1(C) be a set of two 4-branch abundant points for ϕ,
and suppose that V ⊂ P1(C) is a set of four 2-branch abundant points for ϕ. Because
α1 and α2 are 2-branch abundant, we have A ⊆ V , and we take V = {α1 , α2 , v1 , v2}.
By Lemma 4.4, V is the complete set of 2-branch abundant points, and eϕ(z) ∈ {1, 2}
for each z ∈ ϕ−1(V). It then follows from Lemma 3.3 that every element of ϕ−1(A) is
2-branch abundant for ϕ, and so ϕ−1(A) ⊆ V . Hence,

(5.1) 2d = ∑
z∈ϕ−1(A)

eϕ(z) ≤ ∑
z∈V
eϕ(z) ≤ 8,

and it follows that d ∈ {2, 4}. If d = 4, then we have equality in (5.1), implying
that ϕ−1(A) = V and eϕ(z) = 2 for all z ∈ V . Because ϕ−1(A) = V , we must have
ϕ−1({v1 , v2})∩V = ∅, for, otherwise, applying ϕ gives the impossible {v1 , v2}∩A ≠ ∅.
If eϕ(u) = 2 for all u ∈ ϕ−1({v1 , v2}), then #ϕ−1({v1 , v2}) = 2d/2 = 4, and together
with eϕ(z) = 2 for z ∈ V , we have a contradiction to Riemann–Hurwitz (recall d = 4
here). Hence, eϕ(u) = 1 for some u ∈ ϕ−1({v1 , v2}). But then u is 2-branch abundant
and u /∈ V , contradicting Lemma 4.4.
Finally, suppose d = 2. Let U = {z ∈ ϕ−1({v1 , v2}) ∶ eϕ(z) = 1}, and note that the

set ϕ−1(A)∪U consists of 2-branch abundant points for ϕ, and so is a subset ofV , and
hence has atmost four elements. Let r1 (resp. r2) be the number of ramiûcation points
of ϕ in ϕ−1(A) (resp. ϕ−1({v1 , v2})), and note that #ϕ−1(A) = 4− r1 and #U = 4− 2r2.
_us, 4 − r1 + 4 − 2r2 ≤ 4, implying 4 ≤ r1 + 2r2. Because d = 2 and ϕ−1(A) ∩
ϕ−1({v1 , v2} = ∅ (otherwise A ∩ {v1 , v2} ≠ ∅), we have r1 + r2 ≤ 2. It follows that
r2 = 2 and r1 = 0. Now r1 = 0 implies eϕ(z) = 1 for all z ∈ V . In addition, r1 = 0
and ϕ−1(A) ⊆ V give ϕ−1(A) = V , and hence v1 and v2 are 4-branch abundant by
Lemma 3.3. _erefore ϕ−1({v1 , v2}) consists of 2-branch abundant points, again by
Lemma 3.3. But r2 = 2 and eϕ(z) = 1 for all z ∈ V imply ϕ−1({v1 , v2}) ∩ V = ∅,
contradicting Lemma 4.4.

_eorem 5.3 Let ϕ ∈ C(x) have degree d ≥ 2, and assume that A = {α1 , α2} ⊂ P1(C)
is a set of distinct 4-branch abundant points for ϕ. Suppose that ϕ is not 4-trivial with
respect to A, and let µ be aMöbius transformation exchanging α1 and α2. _en for either
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(13) (14)
α1

α2

β

α1

4∗

4∗ 2

2∗

α1

βα2α1

4∗ 2

4∗ 2∗

Figure 3

ϕ or µ○ϕ○µ−1, the 4-ramiûcation structure for O−
ϕ(α1) is one of those in Figure 3, where

points named with distinct letters within a given diagram are distinct.

Proof Because ϕ is not 4-trivial with respect to A, _eorem 5.1 shows that d is even.
Let

B = { z ∈ ϕ−1(A) ∖ A ∶ 4 ∤ eϕ(z)} ,

and observe that by Lemma 3.3, B consists of 2-branch abundant points for ϕ. It
follows from Lemma 5.2 that #B ≤ 1. If B is empty, then ϕ is 4-trivial with respect
to A, which gives a contradiction. Hence #B = 1, and we take B = {β}. Observe that
4 ∤ eϕ(β) and 4 ∣ eϕ(z) for each z ∈ ϕ−1(A)∖Awith z ≠ β. But also,∑z∈ϕ−1(A) eϕ(z) =
2d is divisible by 4 (since d is even), whence we must have ϕ−1(A) ∩ A ≠ ∅, which
implies

(5.2) A∩ ϕ(A) ≠ ∅.

If 2 ∤ eϕ(β), then Lemma 3.3 gives that β is 4-branch abundant for ϕ, and soW =

{α1 , α2 , β} is a set of three 4-branch abundant points for ϕ. _enU = #{ϕ−1(W)∖W ∶
4 ∤ eϕ(z)} consists of 2-branch abundant points for ϕ, and Lemma 5.2 implies that
U is empty. Applying Lemma 3.6 with T =W gives the contradiction

∑
z∈ϕ−1(W)

( eϕ(z) − 1) ≥ (3d − 3) ⋅ (3/4) > 2d − 2.

_erefore, eϕ(β) ≡ 2 mod 4. Suppose now that there is v ∈ ϕ−1(β) with eϕ(v)
odd. Because d is even, there must also be v′ ∈ ϕ−1(β) with eϕ(v′) odd and v′ ≠ v.
By Lemma 3.3, β, v, and v′ are all 2-branch abundant, and so by Lemma 5.2 we have
#{α1 , α2 , β, v , v′} = 3. But β /∈ {v , v′}, for otherwise applying ϕ gives the impossible
A ∋ β. Hence, {v , v′} = A, and thus {β} = ϕ(A), contradicting (5.2).

_us, all elements of ϕ−1(β) have even ramiûcation index. Let

R = {z ∈ ϕ−1(A) ∶ 4 ∣ eϕ(z)},
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and observe that ϕ−1(A) ⊆ A∪ {β} ∪ R, with equality if and only if A ⊆ ϕ−1(A). We
claim that

#ϕ−1(A) ≤ 3 +
2d − 2 − eϕ(β)

4
, with equality holding if and only if(5.3)

eϕ(z) = 4 for all z ∈ R, A ⊆ ϕ−1(A), and eϕ(α1) = eϕ(α2) = 1.(5.4)

To see why, let a = #(A ∩ ϕ−1(A)), and write eϕ(z) = 4rz for each z ∈ R. _en
#ϕ−1(A) = a + 1 + #R. To compute #R, observe that

2d = ∑
ϕ−1(A)

eϕ(z) = ( ∑
z∈(A∩ϕ−1(A))

eϕ(z)) + eϕ(β) + 4( ∑
z∈R

(rz − 1) + #R) ,

from which it follows that

#ϕ−1(A) = a + 1 +
1
4
(2d − eϕ(β) − ∑

z∈(A∩ϕ−1(A))
eϕ(z)) − ∑

z∈R
(rz − 1)

≤ a + 1 +
1
4
(2d − eϕ(β) − a) ,

with equality holding if and only if eϕ(z) = 1 for all z ∈ (A∩ ϕ−1(A)) and eϕ(z) = 4
for all z ∈ R. But a ∈ {1, 2}, and from this, one has a + 1 + (2d − eϕ(β) − a)/4 ≤
3 + (2d − 2 − eϕ(β))/4, with equality holding if and only if a = 2. _is proves the
statements in (5.3) and (5.4). Recall that all elements of ϕ−1(β) have even ramiûcation
index, and apply this together with (5.3) to get

∑
z∈ϕ−1(A∪{β})

(eϕ(z) − 1) = 2d − #(ϕ−1(A)) + ∑
z∈ϕ−1(β)

(eϕ(z) − 1)

≥ 2d − (3 +
2d − 2 − eϕ(β)

4
) +

d
2

= 2d − 3 +
2 + eϕ(β)

4
≥ 2d − 2,

(5.5)

with equality holding if and only if the conditions in (5.4) hold, and also eϕ(β) = 2
and eϕ(z) = 2 for all z ∈ ϕ−1(β). Because d is even, we must have A ⊆ ϕ−1(α1) or
A ⊆ ϕ−1(α2); replacing ϕ by µ ○ ϕ ○ µ−1 if necessary, we assume the former. If d ≡ 2
(mod 4), we obtain 4-ramiûcation structure (13) for O−

ϕ(α1), and if d ≡ 0 (mod 4)
we obtain 4-ramiûcation structure (14) for O−

ϕ(α1).

6 Field of Definition of ϕ and its Components

Many of our main results require showing that if ϕ is deûned over a subûeld K of
C, then certain irreducible factors of the numerator and denominator of iterates of
ϕ can also be deûned over K. In view of potential future applications, and because
it entails no additional work, we state the results of this section for arbitrary ûelds of
characteristic zero.

Lemma 6.1 Let F be a ûeld of characteristic zero and let F be an algebraic closure of
F. Given h ∈ F[x] and m ≥ 2, let g ∈ F[x] be the monic polynomial of maximal degree
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such that h(x) = f (x)(g(x))m for some f ∈ F[x]. If h has coeõcients in F, then so do
both f and g.

Remark _e assumption that F have characteristic zero is necessary, as illustrated
by the case where ℓ is prime, F = Fℓ(t), f (x) = x, g(x) = (x − ℓ

√
t), and m = ℓ.

Proof Let

R1 = {roots of f that are not roots of g},
R2 = {roots of g that are not roots of f },

Crit(ϕ)R3 = {roots of both f and g}.

_ese are pairwise disjoint subsets of F. _e maximality of the degree of g implies
that eh(α) < m for each α ∈ R1, m ∣ eh(α) for each α ∈ R2, and each α ∈ R3 satisûes
m > eh(α) andm ∤ eh(α). Because the set of roots of h is R1 ∪R2 ∪R3 and h ∈ F[x],
each σ ∈ GF ∶= Gal(F/F) permutes R1 ∪ R2 ∪ R3. We also have eh(α) = eh(σ(α)),
and it follows that σ(R i) = R i for i = 1, 2, 3. Now the set of roots of f is R1 ∪ R3,
and the set of roots of g is R2 ∪ R3. Let c f be the leading coeõcient of f , and observe
that each of f /c f and g are monic polynomials whose set of roots is preserved by the
action of GF . Because F has characteristic zero, F/F is Galois, and thus the ûxed ûeld
of GF is F, implying that f /c f and g are both in F[x]. But c f is the leading coeõcient
of h, and thus is in F. Hence, f ∈ F[x].

We remark here that by deûnition a rational function ϕ is deûned over F (written
ϕ ∈ F(x)) if there are relatively prime p, q ∈ F[x] with ϕ = p/q. If ϕ ∈ F(x) and
f , g ∈ F[x] with ϕ = f /g and gcd( f , g) = 1, then we have pg = f q, whence c f = p
and cg = q for some c ∈ F. If f and g are monic, then c equals the leading coeõcient
of p (or q), and hence c ∈ F, giving that f , g ∈ F[x].

_eorem 6.2 Let F be a ûeld of characteristic zero, F an algebraic closure of F, and
ϕ ∈ F(x). Let Crit(ϕ) be the set of all α ∈ P1(F) with eϕ(α) > 1. For each α ∈ Crit(ϕ),
write eϕ(α) = qαm + rα , with 0 < rα < m. Let

ψ(x) = ∏
α∈Crit(ϕ)

(x − α)qα .

If ϕ ∈ F(x), then ψ(x) and ϕ(x)/(ψ(x))m are both in F(x).

Proof Assume that ϕ ∈ F(x). Write ψ = g1/g2, where each g i ∈ F[x] is monic
and gcd(g1 , g2) = 1, and write ϕ(x)/(ψ(x))m = f1/ f2, where each f i ∈ F[x] and
gcd( f1 , f2) = 1. Because ϕ ∈ F[x], there is c ∈ F with c f i(x)(g i(x))m ∈ F[x] for
i = 1, 2. By Lemma 6.1, we have g i ∈ F[x] and c f i ∈ F[x]. Hence, ψ ∈ F(x) and
ϕ(x)/(ψ(x))m ∈ F(x), the latter since ϕ(x)/(ψ(x))m = (c f1)/(c f2).
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7 Proof of Theorem 1.2

To prove_eorem 1.2, we must relate the ramiûcation structure of backward orbits of
m-branch abundant points to global properties of ϕ. When these ramiûcation struc-
tures have certain properties, ϕ must descend from an endomorphism of an algebraic
group – either Gm or an elliptic curve. For this we cite some results from the invalu-
able paper of Milnor [15]. We call z ∈ P1(C) exceptional for ϕ if the backwards orbit
⋃∞n=1 ϕ−n(z) is ûnite, and we denote by Eϕ the collection of all exceptional points for
ϕ. Recall that we denote the postcritical set of ϕ by Postcrit(ϕ) (see the paragraph
before_eorem 1.2 for the deûnition). A rational function ϕ ∈ C(x) of degree at least
two is a ûnite quotient of an aõne map if there is a �at surface C/Λ (where Λ ⊂ C
is a lattice), an aõne self-map of C/Λ given by L(t) = at + b, and a ûnite-to-one
holomorphic map Θ ∶ C/Λ → P1(C) ∖Eϕ satisfying ϕ ○Θ = Θ ○ L. As stated prior to
_eorem 1.2, we call ϕ a Lattès map when Λ has rank two, and hence C/Λ is a torus.
Milnor states a useful ramiûcation-based characterization of Lattès maps, which we
make heavy use of in the proof of _eorem 1.2.

_eorem 7.1 (Milnor [15,_eorem 4.1]) Let ϕ ∈ C(x) be a rational function and Eϕ
its set of exceptional points. _en ϕ is a ûnite quotient of an aõnemap if and only if there
exists an integer-valued function r(z) onP1(C)∖Eϕ that satisûes r(ϕ(z)) = eϕ(z)r(z)
and takes the value 1 outside of Postcrit(ϕ).

We can extend r to a function from P1(C) to Z ∪ {∞} by taking r(z) = ∞ if
z ∈ Eϕ . When ϕ is a ûnite quotient of an aõne map, its signature is the sequence
of values r takes on Postcrit(ϕ). It is true, though not obvious, that the existence of
the map r as in _eorem 7.1 implies the ûniteness of the post-critical set of ϕ (see
the proof of [15, _eorem 4.1]). In [15, _eorem 4.5 and Remark 4.7], Milnor shows
that there are only six possible signatures. _ey are (2, 2,∞) and (∞,∞), which
give maps conjugate to Chebyshev polynomials and power maps, respectively; and
(2, 2, 2, 2), (3, 3, 3), (2, 4, 4), and (2, 3, 6), which give Lattès maps. We summarize
this as follows.

_eorem 7.2 (Milnor [15]) Let ϕ ∈ C(x) be a rational function. _en ϕ is a Lattès
map if and only if there exists a function r ∶ P1(C) → Z satisfying r(ϕ(z)) = eϕ(z)r(z)
and taking the value 1 outside of Postcrit(ϕ). In this case, the signature of ϕ is one of
(2, 2, 2, 2), (3, 3, 3), (2, 4, 4), or (2, 3, 6).

We immediately obtain a corollary that will be useful in the proof of _eorem 1.2.

Corollary 7.3 Let m ∈ Zwith m ≥ 2, let ϕ ∈ C(x) have degree d ≥ 2, and assume that
A = {α1 , α2} ⊂ P1(C) is a set of distinct m-branch abundant points for ϕ. Suppose that
ϕ is not m-trivial with respect to A, and let µ be a Möbius transformation exchanging
α1 and α2. _en m ≤ 4. If m = 4 (resp. 3), then ϕ is a Lattès map of signature (2, 4, 4)
(resp. (3, 3, 3)) with r(α1) = r(α2) = m. If m = 2, then unless ϕ or µ ○ ϕ ○ µ−1 satisûes
(2D), (2F), (2M), or (2O) of_eorem 4.7, ϕ is a Lattès map of signature (2, 2, 2, 2)with
r(α1) = r(α2) = 2.
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Proof It is well known that the collection of Lattès maps is invariant under Möbius
conjugation; hence for this corollary it suõces to show that either ϕ or µ ○ ϕ ○ µ−1

is Lattès. Because ϕ is not m-trivial with respect to A, _eorem 3.8 shows m ≤ 4. If
m = 4, then for either ϕ or µ○ϕ○µ−1, O+

ϕ(α1) has 4-ramiûcation structure (13) or (14)
in _eorem 5.3, and we let β be as in those 4-ramiûcation structures. Observe that
(5.5) implies that eϕ(z) = 1 for z /∈ ϕ−1({α1 , α2 , β}, and so taking r(α1) = r(α2) = 4
and r(β) = 2 and applying _eorem 7.2 shows that ϕ is Lattès of signature (2,4,4). If
m = 3, then it follows from _eorem 4.6 that we can take r(z) = 3 for z ∈ Ab(α1 , α2)
and r(z) = 1 otherwise and apply _eorem 7.2 to show that ϕ is Lattès of signature
(3,3,3). If m = 2 and neither ϕ nor µ ○ ϕ ○ µ−1 satisûes (2D), (2F), (2M), or (2O)
of _eorem 4.7, then it follows from _eorem 4.6 that we can take r(z) = 2 for z ∈
Ab(α1 , α2) and r(z) = 1 otherwise and apply _eorem 7.2 to show that ϕ is Lattès of
signature (2,2,2,2).

Proof of_eorem 1.2 Fix m ≥ 2, let K be a subûeld of C, let ϕ ∈ K(x) have degree
d ≥ 2, and let gn be deûned as in the discussion before _eorem 1.1.

Suppose that gn is bounded as n → ∞. By Corollary 2.5 we have that 0 and ∞
are m-branch abundant points for ϕ. If ϕ is m-trivial with respect to {0,∞}, then
Proposition 3.2 shows that ϕ(x) = cx j(ψ(x))m with ψ ∈ C(x), 0 ≤ j ≤ m − 1, and
c ∈ C∗. We can apply _eorem 6.2 to conclude that ψ ∈ K(x) and c ∈ K∗.
Assume that ϕ is not m-trivial with respect to {0,∞}. We apply Corollary 7.3 with

µ(x) = 1/x. If m = 4 (resp. m = 3), then Corollary 7.3 shows that we are in case (2)
(resp. (3)) of the present theorem. Ifm = 2 and neither ϕ nor µ ○ϕ○ µ−1 satisûes (2D),
(2F), (2M), or (2O) of _eorem 4.7, then we are in case (4) of the present theorem.

If m = 2 and one of ϕ or µ ○ ϕ ○ µ−1 satisûes (2D) in _eorem 4.7, then we take
α1 = 0 and α2 = ∞, giving a 3-cycle C ↦ ∞ ↦ 0 ↦ C (C ∈ C∗) in 2-ramiûcation
structure (3) from _eorem 4.3. Observe that ϕ(x) = B∏r∈R(x − r)∏p∈P(x − p)−1,
where B ∈ C∗ and R (resp. P) is the set of roots (resp. poles) of ϕ, with multiplicity.
From 2-ramiûcation structure (3), we have that all roots of ϕ except∞, and all poles
of ϕ except C, occur to even multiplicity. Hence,

(7.1) ϕ(x) = B f (x)2

(x − C)g(x)2 ,

for f , g ∈ C[x] monic with deg g ≥ deg f and gcd( f (x), (x − C)g(x)) = 1. From
_eorem 6.2, we have B(x − C) ∈ K[x] and f /g ∈ K(x), and hence B,C ∈ K∗, and
by the remark before _eorem 6.2, we have f , g ∈ K[x].

Subtracting C from both sides of (7.1) and doing some algebra yields

ϕ(x) − C =
B

(x − C)g(x)2 ( f (x)
2 − (C/B)(x − C)g(x)2) .

Because 0 is the only preimage of C under ϕ with odd ramiûcation index, we must
have

(7.2) f (x)2 − (C/B)(x − C)g(x)2 = bxh(x)2 , b ∈ C∗ .

Because the le�-hand side of (7.2) is in K[x], bxh(x)2 must be as well. By _eo-
rem 6.2 we have b ∈ K and h ∈ K[x]. Putting x = 0 in (7.2) gives −B ∈ K2 (note that
f (0), g(0) ≠ 0 since ϕ(0) /∈ {0,∞}), and putting x = C then gives b ∈ CK2 ( f (C) ≠ 0
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by assumption, whence h(C) ≠ 0). Letting D, E ∈ K satisfy D2 = −B and b = CE2, we
take f1(x) = D f (x) ∈ K[x] and h1(x) = DEh(x) to obtain

ϕ(x) = − f1(x)2

(x − C)g(x)2

with f1(x)2/D2 − (C/B)(x − C)g(x)2 = bxh1(x)2/(DE)2, i.e., f1(x)2 + C(x −
C)g(x)2 = Cxh1(x)2. Writing f for f1 and h for h1, we have obtained the form in_e-
orem 1.2(5a). Note that Cxh(x)2 has odd degree, and so we must have deg g ≥ deg f ,
and hence we do not need to make this stipulation separately.

Ifm = 2 and one of ϕ or µ○ϕ○µ−1 satisûes (2F) in_eorem 4.7, then we take α1 = 0
and α2 = ∞, giving a 2-cycle C ↦ 0 ↦ C (C ∈ C∗) in 2-ramiûcation structure (2)
from_eorem 4.3. If one of ϕ or µ○ϕ○µ−1 satisûes (2M) in_eorem 4.7, then we take
α1 = 0 and α2 = ∞, so that∞ and C are the preimages of 0 having odd multiplicity. If
one of ϕ or µ ○ ϕ ○ µ−1 satisûes (2O) in _eorem 4.7, then we take α1 = 0 and α2 = ∞,
so that 0 is a ûxed point in 2-ramiûcation structure (7) of _eorem 4.5 with unique
non-zero preimage C of oddmultiplicity. In each case, we argue as in case (2D) above
to show that ϕ has form (5b), (5c), or (5d), respectively, and that (1.4) holds. We leave
the details to the reader.

We now prove the ‘only if ’ part of the theorem. Suppose that ϕ satisûes one of
conditions (1)–(5). We show that 0 and ∞ are m-branch abundant for ϕ, which by
Corollary 2.5 shows that gn is bounded as n → ∞. If ϕ satisûes condition (1), the
desired conclusion follows fromProposition 3.2. If ϕ satisûes conditions (2)–(4), then
ϕ is Lattès with r(0) = r(∞) = m, where r is the function in _eorem 7.2. It follows
from the deûnition of r that for each n ≥ 1, we have

eϕ(z) = m for all z ∈ ϕ−n(0) ∖ Postcrit(ϕ).
By _eorem 7.2, Postcrit(ϕ) has at most four elements, and thus in the notation of
Deûnition 2.1, we have that ρn(0) ≤ 4 for all n. Hence, 0 is m-branch abundant for
ϕ, and an identical argument shows the same conclusion for ∞. If ϕ satisûes one
conditions (5a)–(5d), then by construction 0 and ∞ are 2-branch abundant points
for ϕ.

We now discuss the parameterizations of maps in cases (5a)–(5d) in _eorem 1.2
mentioned in the introduction. We begin with a detailed analysis of the case (5a).

Proposition 7.4 Let f , g ∈ C[x] and C ∈ C ∖ {0}. _e following are equivalent:
(i) gcd( f , g) = 1, f (C) ≠ 0, and f (x)2 + C(x − C)g(x)2 = Cxh(x)2 for some

h(x) ∈ C[x].
(ii) _ere exist P,Q ∈ C[x] satisfying gcd(P,Q) = 1, Q(C) ≠ 0, CP(0) ≠ Q(0),

f (x) = C2P(x)2(x − C) − 2CP(x)Q(x)(x − C) − CQ(x)2 ,

g(x) = −CP(x)2(x − C) − 2CP(x)Q(x) + Q(x)2 .

Proof Given P and Q as in (ii), one checks that f (x)2 +C(x −C)g(x)2 = Cxh(x)2

for h(x) = Q(x)2 + CP(x)2(x − C). _e assumption that Q(C) ≠ 0 implies that
f (C) ≠ 0. Moreover, f (x) + Cg(x) = −2CxP(x)Q(x), and so if r ∈ C is a common
root of f and g, then r = 0, P(r) = 0, or Q(r) = 0. Observe that f (0) = −C(CP(0) −
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Q(0))2, and the assumption that CP(0) ≠ Q(0) forces f (0) ≠ 0. Hence, r ≠ 0. If
P(r) = 0, then 0 = f (r) = −CQ(r)2, contradicting gcd(P,Q) = 1. If Q(r) = 0, then
r ≠ C by assumption, and so 0 = f (r) = C2P(r)(r−C) also contradicts gcd(P,Q) = 1.
It follows that gcd( f , g) = 1.

Given f , g as in (i), observe that f (x)2+C(x−C)g(x)2 = Cxh(x)2 is equivalent to
( f (x)/h(x))2+C(x−C)(g(x)/h(x))2 = Cx. We thus look for solutions α, β ∈ C(x)
to the equation α(x)2 + C(x − C)β(x)2 = Cx. Clearly, α(x) = C and β(x) = 1 is one
such solution, and because our equation is a conic, we use projection to ûnd all other
solutions. Letting s and t be variables and γ an undetermined constant in C(x), the
line s = γt + (1 − Cγ) passes through (C , 1). Substituting β = γα + (1 − Cγ) into our
conic and dividing through by α − C gives the solution

α = C
2γ2(x − C) − 2Cγ(x − C) − C

1 + Cγ2(x − C)
.

We then use β = γα + (1 − Cγ) to obtain

β = −Cγ2(x − C) − 2Cγ + 1
1 + Cγ2(x − C)

.

Writing γ(x) = P(x)/Q(x) with gcd(P,Q) = 1 and clearing denominators gives the
expressions for f and g in the Proposition 7.4(ii). Because f (C) ≠ 0, we must have
Q(C) ≠ 0. We must also have CP(0) ≠ Q(0), for otherwise f (0) = g(0) = 0,
contradicting gcd( f , g) = 1.

For maps of the form (5b), a similar analysis gives the parameterization

f (x) = CP(x)2 − 2CP(x)Q(x) − (x − C)Q(x)2 ,

g(x) = −CP(x)2 − 2(x − C)P(x)Q(x) + (x − C)Q(x)2 .

Taking C = −4, Q(x) = 2, and P(x) = 1 gives f (x) = −4(x + 1) and g(x) = 4, leading
to ϕ(x) = −(x + 4)(x + 1)2, which is −(T3(x + 2))+ 2, one of the maps mentioned in
the paragraph following _eorem 1.2.
As for maps of the form (5c), note that B(x − C) f (x)2 − Cg(x)2 = −Ch(x)2 is

equivalent to (B/C)(x−C) f (x)2 = (g(x)+h(x))(g(x)−h(x)). From gcd( f , g) = 1
it follows that gcd(g , h) = 1, and so gcd(g + h, g − h) = 1. _us one of g + h, g − h is a
square in C[x] while the other is (x − C) times a square, and the squares multiply to
f (x). It follows that

g(x) = a(x − C)P(x)2 + bQ(x)2 ,
f (x) = P(x)Q(x)

for some P,Q ∈ C[x] with ab = B/4C and gcd((x −C)P(x),Q(x)) = 1. Clearly, any
such P,Q give a solution to B(x − C) f (x)2 − Cg(x)2 = −Ch(x)2.

Maps of the form (5d) can be handled with a similar analysis, though there are two
cases: when one of g + h, g − h is a square in C[x] and the other is x(x − C) times a
square; and when one is x times a square and the other is (x − C) times a square.
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8 Proof of Theorem 1.1

As a stepping stone to proving _eorem 1.1, we give a useful result on m-trivial maps.
We require some notation. For an integer n ≥ 1, let Pn be the (possibly empty) set
of primes dividing n. Fix an integer j ≥ 1, and let n ≥ 1 satisfy Pn ⊆ Pj . Deûne
w j(n) to be the smallest nonnegative exponent ℓ such that n ∣ jℓ . More explicitly,
if n = pe11 pe22 ⋅ ⋅ ⋅ pekk , and f i = vp i ( j) for i = 1, . . . , k, where vp i denotes the p i-adic
valuation, then w j(n) = maxi⌈(e i/ f i)⌉. For relatively prime integers a, b ≥ 1, we
denote the order of a in (Z/bZ)∗ by ord(a mod b).

Lemma 8.1 Let m ≥ 2, let K be a subûeld of C, let ϕ ∈ K(x) have degree d ≥ 2,
and assume that ϕ is m-trivial with respect to {0,∞}. Let ϕ(x) = cx j(ψ0(x))m as in
Proposition 3.2, and let gn be as in the discussion preceding _eorem 1.1. _en gn = 0
for all n ≥ 1 and there exist integers r > s ≥ 0 such that

(8.1) ϕr(x) = ϕs(x)(ψ(x))m for some ψ ∈ K(x).

When j = 0, (8.1) holds if and only if s ≥ 1. When j > 0, let t be the minimal positive
integer with c t ∈ Km , and let m′ (resp. t′) be the maximal divisor of m (resp. t) relatively
prime to j. _en (8.1) holds if and only if

(8.2)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

s ≥ w j(m/m′),

t′ ∣ (r − s) if j = 1,
lcm[ord( j mod m′), ord( j mod t′( j − 1))] ∣ (r − s) if j > 1.

In all cases there exists r ≤ m such that (8.1) holds.

Proof Because ϕ ∈ K(x), we can apply _eorem 6.2 to conclude that ψ0 ∈ K(x)
and c ∈ K∗. We describe the image of ϕn in K(x)∗/K(x)∗m for all n ≥ 1. Because
ϕ(x) ≡ cx j (mod K(x)∗m), we have

(8.3) ϕn(x) ≡ c1+ j+⋅⋅⋅+ jn−1
x jn (mod K(x)∗m)

for n ≥ 1. It follows immediately from Proposition 2.3 that gn = 0 for all n ≥ 1. Note
that if j = 0, then (8.3) gives ϕr(x) ≡ ϕ(x) for all r ≥ 1, and we can take r = 2 ≤ m.
Assume for the rest of the proof that j ≥ 1. We now show that (8.1) holds if and

only if (8.2) does. It follows from (8.3) that ϕr(x) ≡ ϕs(x) (mod K(x)∗m) for r >
s ≥ 0 is equivalent to x jr ≡ x js (mod K(x)∗m) and c1+ j+⋅⋅⋅+ jr−1

∈ K∗m (if s = 0) or
c1+ j+⋅⋅⋅+ jr−1

≡ c1+ j+⋅⋅⋅+ js−1
(mod K∗m) (if s ≥ 1). _is in turn is equivalent to:

jr ≡ js (mod m) and(8.4)

js + ⋅ ⋅ ⋅ + jr−1 ≡ 0 (mod t).(8.5)

Now (8.4) holds if and only ifm ∣ js( jr−s−1). Observe that gcd(m′ , j) = 1 implies that
gcd(m′ , js) = 1, and hencem′ ∣ ( jr−s−1). _is holds if and only if ord( j mod m′) ∣ r−
s. Moreover, every prime dividing m/m′ also divides j, and so we have that m/m′ and
( jr−s − 1) are relatively prime, whence (m/m′) ∣ js . By the deûnition ofw j , this holds
if and only if s ≥ w j(m/m′). Similarly, (8.5) holds if and only if t ∣ js(1+ ⋅ ⋅ ⋅ + jr−s−1),
and as above this is equivalent to t′ ∣ (1 + ⋅ ⋅ ⋅ + jr−s−1) and (t/t′) ∣ js . _e former is
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equivalent to t′ ∣ r− s (if j = 1) and t′( j− 1) ∣ ( jr−s − 1), i.e., ord( j mod t′( j − 1)) ∣ r− s
(if j > 1). Note that the minimality of t implies that t ∣ m, and so t′ ∣ m′ and (t/t′) ∣
(m/m′). Hence, (t/t′) ∣ js is implied by (m/m′) ∣ js .

It remains to show that there exists r ≤ m such that (8.1) holds. From (8.2), if we
set

s = w j(m/m′),

r =
⎧⎪⎪
⎨
⎪⎪⎩

s + t′ if j = 1
s + lcm[ord( j mod m′), ord( j mod t′( j − 1))] if j > 1

then (8.1) is satisûed, and so it is enough to show that

w j(m/m′) + lcm [ ord( j mod m′), ord( j mod t′( j − 1))] ≤ m
and

w j(m/m′) + t′ ≤ m.

Because t′ ∣ m′, we have that both ord( j mod t′( j − 1)) and ord( j mod m′) divide
ord( j mod m′( j − 1)). But j belongs to the subgroup

{ g ∈ (Z/m′( j − 1)Z)∗ ∶ g ≡ 1 (mod ( j − 1))} ,

which has at most m′ elements, whence ord( j mod m′( j − 1)) ≤ m′, and so

lcm [ ord( j mod m′), ord( j mod t′( j − 1))] ≤ m′ .

Hence, it suõces in both the j > 1 and j = 1 cases to show that w j(m/m′) +m′ ≤ m.
If m = m′, then w j(m/m′) = 0, and we are done. If m ≠ m′, then write m/m′ =
pe11 ⋅ ⋅ ⋅ p

ek
k , with k ≥ 1. Let eℓ = maxi e i , write e = eℓ and p = pℓ , and note that

m′ ≤ m/pe . Hence we must show e + (m/pe) ≤ m. But pe ∣ m and e ≥ 1, and so
1 + e ≤ pe ≤ m. Using e/(pe − 1) ≤ 1 gives e/(pe − 1) + e ≤ m, and dividing by e and
combining terms gives pe/(pe − 1) ≤ m/e. Taking reciprocals gives 1−(1/pe) ≥ e/m,
which gives m ≥ e + (m/pe), as desired.

Before proving _eorem 1.1, we give one more preliminary result that will aid in
our analysis.

Lemma 8.2 Let K be a subûeld ofC, let ϕ ∈ K(x) be a Lattès map satisfying ϕ(∞) =
∞, and write ϕ(x) = M f (x)/g(x) with f , g ∈ K(x) monic. If ϕ has signature (2,4,4)
and r(∞) = 4, where r is the function in _eorem 7.2, then M2 ∈ K4. If ϕ has signature
(3,3,3) and r(∞) = 3, then M ∈ K3.

Proof By deûnition, r(ϕ(z)) = eϕ(z)r(z) for all z ∈ P1(C). By assumption, ϕ(∞) =
∞ and r(∞) ≠ 0, and hence we must have eϕ(∞) = 1. _erefore, deg f = 1 + deg g.
Now the multiplier λ∞(ϕ) of ϕ at ∞ is deûned to be (1/ϕ(1/x))′ evaluated at x = 0
(see [22, Exercise 1.13]). Because deg f = 1 + deg g, one easily deduces that λ∞(ϕ) =
1/M. Put nϕ = 3 if ϕ has signature (3,3,3), and nϕ = 4 if ϕ has signature (2,4,4), and
recall from _eorems 7.1 and 7.2 that ϕ is a ûnite quotient of a linear map L ∶ C/Λ →
C/Λ, where Λ ⊂ C is a lattice. By [15, Corollary 3.9], the multiplier at any ûxed
point z0 of ϕ has the form (ωa)r(z0), where ωnϕ = 1. Hence, M is of the form anϕ .
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From [15,_eorem 5.1], we have aΛ ⊂ Λ and ζnϕΛ = Λ, where ζnϕ is a primitive (nϕ)-
th root of unity. It follows that a ∈ Λ and Λ = Z[i] if nϕ = 4 and Λ = Z[e2πi/3] if
nϕ = 3. _erefore [K(a)∶K] ≤ 2, and hence [K(M1/nϕ)∶K] ≤ 2. Because nϕ ≥ 3, this
implies xnϕ −M is reducible over K, and by a well-known theorem (e.g., [13,_eorem
8.1.6]), it follows that either nϕ = 3 and M ∈ K3 or nϕ = 4 and one of M ∈ K2 or
M ∈ −4K4 holds. In either of the cases for nϕ = 4 we haveM2 ∈ K4, which proves the
lemma.

Proof of_eorem 1.1 Fix m ≥ 2, let K be a subûeld of C, let ϕ ∈ K(x) have degree
d ≥ 2, and let gn be deûned as in the discussion before _eorem 1.1. By Corollary 2.5
it suõces to show that 0 and ∞ are m-branch abundant points for ϕ if and only if
ϕr(x) = ϕs(x) in K(x)∗/K(x)∗m for r > s ≥ 0 with r ≤ m ifm ≥ 3 and r ≤ 6 ifm = 2.
One direction is easy: if there are r and s satisfying the requisite properties, then for
all n ≥ r, we have ϕn(x) = ϕ j(x) in K(x)∗/K(x)∗m for some j ∈ {0, . . . , r − 1}, and
hence all z ∈ ϕ−n(0)with m ∤ eϕn(z) lie in the set⋃r−1

j=0 ϕ− j(0), which is independent
of n. Hence, 0 is m-branch abundant for ϕ. Observe that

(8.6) ϕr(x) = ϕs(x)(ψ(x))m implies ϕr
1(x) = ϕs

1(x)(ψ1(x))m ,

where ϕ1(x) = 1/ϕ(1/x) and ψ1(x) = 1/ψ(1/x); note in particular that if ψ ∈ K(x),
then ψ1 ∈ K(x). Because ϕ−n

1 (0) = ϕ−n(∞), we have that∞ is also m-branch abun-
dant for ϕ.
Assume henceforth that 0 and∞ are m-branch abundant; we will show that there

exist r and s as described in the previous paragraph. From (8.6) and the remark fol-
lowing, it suõces to show that for all ϕ, the desired conclusion holds for either ϕ or
µ ○ ϕ ○ µ−1, where µ(x) = 1/x.

If ϕ is m-trivial with respect to {0,∞}, then the desired conclusion follows from
Lemma 8.1. If ϕ is not m-trivial with respect to {0,∞}, then m ≤ 4 by _eorem 3.8,
and O−

ϕ(0) and O−
ϕ(∞) are described in one of _eorems 4.7, 4.6, or 5.3, according

to whether m = 2, 3, or 4. We consider each of these cases separately.
Case 1: m = 4. If O−

ϕ(α1) has 4-ramiûcation structure (13) for either ϕ(x) or
1/ϕ(1/x)), then we take α1 = ∞ and α2 = 0, and we let β be the unique preimage
of 0 with ramiûcation index 2. _en

ϕ(x) = M (x − β)2 f (x)4

xg(x)4

where the numerator and denominator are relatively prime, f and g are monic, and
M ∈ C∗. As with the function in (7.1), we use_eorem 6.2 to conclude that M ∈ K and
f , g , and (x − β)2 are all in K[x]. _erefore, ϕ(x) ≡ M(x − β)2/x (mod K(x)∗4),
and hence

(8.7) ϕ2(x) ≡ M(ϕ(x) − β) 2
/ϕ(x) (mod K(x)∗4).

Note that (x − β)2 ∈ K[x] implies 2β ∈ K, and so β ∈ K. Now,

ϕ(x) − β = 1
xg(x)4 [M(x − β)2 f (x)4 − βxg(x)4] .

Let u(x) = M(x − β)2 f (x)4 − βxg(x)4. _e roots (with multiplicity) of u are the
preimages (with multiplicity) of β under ϕ, and hence u(x) = bh(x)2, with h ∈ C[x]
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monic and b ∈ C∖{0}. Applying_eorem6.2 again, we have b ∈ K and h ∈ K[x]. _is
shows that ϕ(x)−β ∈ b

x K(x)∗2 = bxK(x)∗2, and so (ϕ(x)−β)2 ∈ b2x2K(x)∗4. Now
bh(β)2 = u(β) = −β2g(β)4, and because g(β) ≠ 0 (otherwise ϕ(β) ≠ 0, contrary to
supposition), we have −b ∈ K2, and squaring gives b2 ∈ K4. _erefore, (ϕ(x) − β)2 ∈
x2K(x)∗4. Similarly, putting x = 0 in u(x) yields Mb ∈ K2, and hence M2 ∈ K4 (one
could also use Lemma 8.2 to derive this latter fact). Returning to (8.7) now gives

ϕ2(x) ≡ M (ϕ(x) − β)2

ϕ(x)
≡ x2 ⋅

x
(x − β)2 ≡ x3(x − β)2 (mod K(x)∗4).

_us, moduloK(x)∗4, we have ϕ3(x) ≡ (ϕ(x))3(ϕ(x)−β)2 ≡ M3(x−β)2/x ≡ ϕ(x),
where the last equivalence follows, because M2 ∈ K4. Hence, (1.1) holds with r = 3
and s = 1, and from Proposition 2.3 we have gn = 1 for all n ≥ 1.

If O−
ϕ(α1) has 4-ramiûcation structure (14) for either ϕ(x) or 1/ϕ(1/x)), then we

take α1 = ∞ and α2 = 0, and we let β be the unique preimage of∞ with ramiûcation
index 2. _en

ϕ(x) = M f (x)4

(x(x − β)2g(x)4)
and ϕ(x) − β = u(x)

(x(x − β)2g(x)4)
,

with

(8.8) u(x) ∶= M f (x)4 − βx(x − β)2g(x)4 = bh(x)2 .

Taking x = β or x = 0 in (8.8) yields b/M ∈ K2, and thus b2M2 ∈ K4, but no further
information. However, by Corollary 7.3 we have that ϕ is Lattès of signature (2,4,4)
with r(∞) = 4, and so from Lemma 8.2 we get M2 ∈ K4, whence b2 ∈ K4. One now
obtains ϕ2(x) ≡ x3(x−β)2 (mod K(x)∗4) and ϕ3(x) ≡ ϕ(x) (mod K(x)∗4) using
an argument virtually identical to the previous case. _e same conclusions about r, s,
and gn hold.

Remark _e same general template as in the m = 4 case is applied to further cases
below, and we omit certain details. For example, _eorem 6.2 is frequently applied in
subsequent cases to show that relevant polynomials and constants are deûned over K.
Hence, from now on we assume that f and g are monic relatively prime polynomials
with coeõcients in K, and that b, b1 , b2 ∈ K and h, h1 , h2 ∈ K[x] are monic.

Case 2: m = 3. We invoke_eorem 4.6 with µ(x) = 1/x.
If either ϕ(x) or 1/ϕ(1/x) satisûes (3A), then we take α1 = ∞ and α2 = 0, and let γ

be the unique preimage of 0 with ramiûcation index 1. Hence,

ϕ(x) = γ (x − γ) f (x)3

xg(x)3 , ϕ(x) − γ = u(x)
xg(x)3 ,

where u(x) ∶= γ(x − γ) f (x)3 − γxg(x)3 = bh(x)3 and the initial γ in ϕ is because
ϕ(∞) = γ. Putting x = 0 in u(x) gives −b/γ2 ∈ K3, and so bγ ∈ K3, implying that
ϕ(x) − γ ∈ γ2x2K(x)∗3. It is then straightforward to check that ϕ2(x) ≡ γ2(x − γ)2

(mod K(x)∗3), and ϕ3(x) ≡ x (mod K(x)∗3). Hence, (1.1) holds with r = 3 and
s = 0, and from Proposition 2.3 we have gn = 0 for all n ≥ 1.
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If either ϕ(x) or 1/ϕ(1/x) satisûes (3B), then we take α1 = 0 and α2 = ∞, and let γ
be the unique preimage of 0 with ramiûcation index 1. Writing

ϕ(x) = M(x − β) f (x)3/g(x)3

and arguing as in the previous case, one obtains ϕ2(x) ∈ xK(x)∗3. _us, (1.1) holds
with r = 2 and s = 0, and gn = 0 for all n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (3C), then we take α1 = ∞ and α2 = 0, and
let β be the unique element of ϕ−1(∞) ∖ {0,∞} with ramiûcation index 1. _en
ϕ(x) = M f (x)3/(x(x−β)g(x)3) and ϕ(x)−β = u(x)/(x(x−β)g(x)3)with u(x) ∶=
M f (x)3 − βx(x − β)g(x)3 = bh(x)3. Putting x = 0 or x = β gives b2M ∈ K3 but no
further information. However, by Corollary 7.3 we have that ϕ is Lattès of signature
(3,3,3) with r(∞) = 3, and so from Lemma 8.2 we get M ∈ K3, whence b ∈ K3. One
now easily calculates ϕ2(x) ≡ x2(x − β)2 ≡ ϕ(x) (mod K(x)∗3). _us, (1.1) holds
with r = 2 and s = 1, and from Proposition 2.3, we have gn = 1 for all n ≥ 1.
Case 3: m = 2. We invoke_eorem 4.7 with µ(x) = 1/x.
If either ϕ(x) or 1/ϕ(1/x) satisûes (2A), then we take α1 = ∞ and α2 = 0, and let

γ be the unique preimage of 0 with multiplicity 1, and δ be the unique preimage of γ
with multiplicity 1. _us,

ϕ(x) = δ (x − γ) f (x)2

xg(x)2 , ϕ(x) − γ = u1(x)
xg(x)2 , ϕ(x) − δ = u2(x)

xg(x)2 ,

where

u1(x) ∶= δ(x − γ) f (x)2 − γxg(x)2 = b1(x − δ)h1(x)2 ,

u2(x) ∶= δ(x − γ) f (x)2 − δxg(x)2 = b2h2(x)2 .

Taking x = 0 in u1(x) yields b1 ∈ γK2, and taking x = 0 in u2(x) gives b2 ∈ −δγK2.
_en one calculates ϕ2(x) ≡ γ(x − γ)(x − δ) (mod K(x)∗2), ϕ3(x) ≡ −γδ(x − δ)
(mod K(x)∗2), and ϕ4(x) ≡ x (mod K(x)∗2), so that (1.1) holds with r = 4 and
s = 0, and gn = 0 for all n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2B), then we take α1 = ∞ and α2 = 0, and let
γ be the unique preimage of∞ with multiplicity 1, and δ be the unique preimage of 0
with multiplicity 1. Arguing as in (2A) gives

ϕ(x) ≡ δ(x − γ)(x − δ) (mod K(x)∗2),
ϕ2(x) ≡ γδx (mod K(x)∗2), ϕ3(x) ≡ γ(x − γ)(x − δ) (mod K(x)∗2),

and ϕ4(x) ≡ x (mod K(x)∗2). Hence, (1.1) holds with r = 4 and s = 0, and gn = 0
for all n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2C), then we take α1 = 0 and α2 = ∞, and let
β be the unique preimage of 0 with odd multiplicity, and γ be the unique preimage of
β with odd multiplicity. _us,

ϕ(x) = M(x − β) f (x)2

g(x)2 , ϕ(x) − β = u1(x)
g(x)2 , ϕ(x) − γ = u2(x)

g(x)2 ,

808

https://doi.org/10.4153/CJM-2018-026-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-026-x


Powers in Orbits of Rational Functions

where

u1(x) ∶= M(x − β) f (x)2 − βg(x)2 = b1(x − γ)h1(x)2 ,

u2(x) ∶= M(x − β) f (x)2 − γg(x)2 = b2xh2(x)2 .

Substituting x = γ and x = β into u1(x) gives βM(γ−β) ∈ K2 and b1βM(γ−β) ∈ K2,
respectively. Hence, b1 ∈ K2. Similar reasoning using u2 gives b2 ∈ K2. We now have
the following equivalencies modulo K(x)∗2:

ϕ(x) ≡ M(x − β), ϕ2(x) ≡ M(x − γ), ϕ3(x) ≡ Mx ,
ϕ4(x) ≡ (x − β), ϕ5(x) ≡ (x − γ), ϕ6(x) ≡ x ,

showing that (1.1) holds with r = 6 and s = 0, and gn = 0 for all n ≥ 1.
If either ϕ(x) or 1/ϕ(1/x) satisûes (2D), then we take α1 = 0 and α2 = ∞ and

let C be the unique preimage of ∞ with odd multiplicity. _en (7.1) and (7.2) give
ϕ2(x) ≡ Cx(x −C) (mod K(x)∗2), and ϕ3(x) ≡ Cbx ≡ x (mod K(x)∗2), showing
that (1.1) holds with r = 3 and s = 0, and gn = 0 for all n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2E), then we take α1 = ∞, α2 = 0, β1 to be the
unique preimage of∞with odd ramiûcation index, and β2 to be the unique preimage
of 0 with odd ramiûcation index. _is gives

ϕ(x) = β1
(x − β2) f (x)2

(x − β1)g(x)2 , ϕ(x) − β1 =
u1(x)

(x − β1)g(x)2 ,

ϕ(x) − β2 =
u2(x)

(x − β1)g(x)2 ,

where

u1(x) ∶= β1(x − β2) f (x)2 − β1(x − β1)g(x)2 = b1h1(x)2 ,

u2(x) ∶= β1(x − β2) f (x)2 − β2(x − β1)g(x)2 = b2xh2(x)2 .

Taking x = β1 in u1(x) and u2(x) gives b1β1(β1 − β2) ∈ K2 and b2β1(β1 − β2) ∈ K2,
which together imply b1b2 ∈ K2. It is now straightforward to check that ϕ2(x) ≡
b1b2x ≡ x (mod K(x)∗2), whence (1.1) holds with r = 2 and s = 0, and gn = 0 for all
n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2F), then we take α1 = ∞ and α2 = 0, and
we let C be the unique preimage of 0 with odd ramiûcation index. _en ϕ(x) =
B(x − C) f (x)2/g(x)2 and ϕ(x) − C = u(x)/g(x)2 with B,C ∈ K∗ and u(x) ∶=
B(x − C) f (x)2 − Cg(x)2 = bxh(x)2. Putting x = 0 in u(x) gives −B ∈ K2, and
putting x = C then gives b ∈ K2. It easily follows that ϕ2(x) ≡ x (mod K(x)∗2).
Hence, (1.1) holds with r = 2 and s = 0, and gn = 0 for all n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2G), then we take α1 = ∞ and α2 = 0, and
we let β1 , β2 be the elements of ϕ−1(∞) ∖ {0,∞} with ramiûcation index 1. _en for
i = 1, 2, we have

ϕ(x) = M f (x)2

x(x − β1)(x − β2)g(x)2 , ϕ(x) − β i =
u i(x)

x(x − β1)(x − β2)g(x)2 ,

where
u i(x) ∶= M f (x)2 − β ix(x − β1)(x − β2)g(x)2 = b ih i(x)2 .
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Putting x = 0 in u i(x) gives Mb i ∈ K2 for i = 1, 2 and multiplying yields b1b2 ∈ K2.
One now calculates

ϕ2(x) ≡ x(x − β1)(x − β2) (mod K(x)∗2),
ϕ3(x) ≡ Mx(x − β1)(x − β2) ≡ ϕ(x) (mod K(x)∗2).

Hence, (1.1) holds with r = 3 and s = 1, and gn = 1 for all n ≥ 1.
If either ϕ(x) or 1/ϕ(1/x) satisûes (2H), then we take α1 = ∞ and α2 = 0, we let β

be the unique element of ϕ−1(∞)∖{0} with ramiûcation index 1, and we let γ be the
unique element of ϕ−1(0) ∖ {∞} with ramiûcation index 1. _en

ϕ(x) = C (x − γ) f (x)2

x(x − β)g(x)2 , ϕ(x) − γ = u1(x)
x(x − β)g(x)2 ,

ϕ(x) − β = u2(x)
x(x − β)g(x)2 ,

where

u1(x) ∶= C(x − γ) f (x)2 − γx(x − β)g(x)2 = b1h1(x)2 ,

u2(x) ∶= C(x − γ) f (x)2 − βx(x − β)g(x)2 = b2h2(x)2 .

Putting x = 0 in u1(x) gives −Cγb1 ∈ K2, putting x = γ in u1(x) gives (β − γ)b1 ∈ K2,
and putting x = β in u1(x) gives C(β − γ)b1 ∈ K2. In particular, C ∈ K2. Putting
x = 0 in u2(x) yields −C − γb2 ∈ K2, and thus b1b2 ∈ K2. Now we obtain ϕ2(x) ≡
b1b2x(x − β)(x − γ) ≡ ϕ(x) (mod K(x)∗2). Hence, (1.1) holds with r = 2 and s = 1,
and gn = 1 for all n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2I), then we take α1 = ∞ and α2 = 0, and we let
β = ϕ(∞), and γ the unique element of ϕ−1(β) ∖ {∞} with ramiûcation index 1. An
argument similar to that of case (2H) shows that we have the following equivalences
modulo K(x)∗2: ϕ2(x) ≡ −βγ(x − γ), ϕ3(x) ≡ −γx(x − β), ϕ4(x) ≡ (x − γ), and
ϕ5(x) ≡ βx(x − β) ≡ ϕ(x). _us, (1.1) holds with r = 5 and s = 1, and gn = 0 for all
n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2J), then we take α1 = ∞ and α2 = 0, and we let
β = ϕ(0), and let γ be the unique element of ϕ−1(∞)∖{β}with ramiûcation index 1.
Arguing as in case (2H), we obtain ϕ2(x) ≡ x (mod K(x)∗2), and thus (1.1) holds
with r = 2 and s = 1, and we have gn = 0 for all n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2K), then we take α1 = ∞ and α2 = 0, and we
let γ1 and γ2 be the two preimages of 0 with ramiûcation index 1. _us,

ϕ(x) = M(x − γ1)(x − γ2) f (x)2

(xg(x)2)
, ϕ(x)−γ1 =

u1(x)
(xg(x)2)

, ϕ(x)−γ2 =
u2(x)

(xg(x)2)
,

where u i(x) ∶= M(x − γ1)(x − γ2) f (x)2 − γ ixg(x)2 = b ih i(x)2 for i = 1, 2. Putting
x = 0 in u i(x) yields Mb iγ1γ2 ∈ K2, whence b1b2 ∈ K2, and it follows that (ϕ(x) −
γ1)(ϕ(x) − γ2) ∈ K(x)∗2. One now calculates

ϕ2(x) ≡ x(x − γ1)(x − γ2) (mod K(x)∗2),
ϕ3(x) ≡ Mx(x − γ1)(x − γ2) ≡ ϕ(x) (mod K(x)∗2).

Hence, (1.1) holds with r = 3 and s = 1, and gn = 1 for all n ≥ 1.
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If either ϕ(x) or 1/ϕ(1/x) satisûes (2L), then we take α1 = ∞ and α2 = 0, and we
let β = ϕ(0) and γ be the non-zero preimage of β with ramiûcation index 1. Writing
ϕ(x) = M f (x)2/((x−β)g(x)2) and arguing as in case (2K), we obtain ϕ(x) ∈ M(x−
β)K(x)∗2, ϕ(x) − β ∈ Mx(x − β)(x − γ)K(x)∗2, and ϕ(x) − γ ∈ M(x − β)K(x)∗2.
It follows that ϕ2(x) ≡ x(x − β)(x − γ) (mod K(x)∗2), ϕ3(x) ≡ Mx(x − β)(x − γ)
(mod K(x)∗2), and ϕ4(x) ≡ ϕ2(x) (mod K(x)∗2). _us, (1.1) holds with r = 4 and
s = 2, and we have g1 = 0 and gn = 1 for all n ≥ 2. _is is the only case where gn is
non-constant.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2M), then we take α1 = ∞ and α2 = 0, and we
let C be the unique non-zero preimage of ∞ with odd ramiûcation index. Writing
ϕ(x) = B(x − C) f (x)2/g(x)2 with B ∈ K∗, we obtain ϕ(x) − C ∈ −CK(x)∗2, and
hence ϕn(x) ≡ −BC (mod K(x)∗2) for all n ≥ 2. _us, (1.1) holds with r = 3 and
s = 2, and gn = 0 for all n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2N), then we take α1 = ∞ and α2 = 0, and we
let β1 (resp. β2) be the unique preimage of∞ (resp. 0) with ramiûcation index 1. We
have

ϕ(x) = Mx(x − β2) f (x)2

(x − β1)g(x)2 , ϕ(x) − β1 =
u1(x)

(x − β1)g(x)2 ,

ϕ(x) − β2 =
u2(x)

(x − β1)g(x)2 ,

where u i(x) ∶= Mx(x − β2) f (x)2 − β i(x − β1)g(x)2 = b ih i(x)2 for i = 1, 2. Putting
x = 0 in u1(x) yields b1 ∈ K2. Putting x = β2 in u i(x) yields β i(β1 − β2)b i ∈ K2, and
putting x = β1 in u i(x) yields Mβ1(β1 − β2)b i ∈ K2. _e latter immediately implies
b1b2 ∈ K2, so b2 ∈ K2. Using β1(β1 − β2)b1 ∈ K2 and Mβ1(β1 − β2)b1 ∈ K2 implies
M ∈ K2, and it quickly follows that ϕ2(x) ≡ x(x−β1)(x−β2) ≡ ϕ(x) (mod K(x)2).
Hence (1.1) holds with r = 2 and s = 1, and gn = 1 for all n ≥ 1.

If either ϕ(x) or 1/ϕ(1/x) satisûes (2O), then we take α1 = ∞ and α2 = 0, and
we let C be the unique non-zero preimage of 0 with odd ramiûcation index. Writing
ϕ(x) = Bx(x−C) f (x)2/g(x)2 with B ∈ K∗, we obtain ϕ(x)−C ∈ −CK(x)∗2, whence
ϕ2(x) ≡ −Cx(x − C) (mod K(x)∗2) and ϕ3(x) ≡ ϕ(x) (mod K(x)∗2). _us (1.1)
holds with r = 3 and s = 1, and gn = 0 for all n ≥ 1.

9 Proofs of Remaining Results

Proof of Corollary 1.3 Let K be a ûnitely generated ûeld of characteristic zero, ûx
m ≥ 2, let ϕ ∈ K(x) have degree at least two, and assume there exists a ∈ P1(K) such
that O+

ϕ(a) ∩ P1(K)m is inûnite. Let Cn be the curve given by ϕn(x) = ym ; in the
notation of the discussion following Conjecture 1.6, we then have X = P1, Y = P1,
λ(x) = xm , and Zn = Cn . _en (1.8) implies that Cn(K) is inûnite for all n ≥ 1, and
it follows from Faltings’ _eorem that gn ≤ 1 for all n ≥ 1. Hence, ϕ falls into one
of the cases in _eorem 1.2 and satisûes (1.3) and (1.4), and ϕ also satisûes (1.1) with
ψ ∈ K(x).

Proof of_eorem 1.5 Let K be a ûnitely generated ûeld of characteristic zero, let
ϕ, λ ∈ K(x) have degree at least two, and suppose that λ is Möbius-conjugate (over
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K) to a power map. From equation (1.7) in the introduction, it suõces to show that
the set {n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} satisûes the conclusions of the theorem for any
ϕ ∈ K(x) and a ∈ P1(K). Take a ∈ P1(K), and note that the theorem holds when
Oϕ(a) ∩ P1(K)m is ûnite, by the discussion following the statement of _eorem 1.5.
Suppose for the rest of the proof that O+

ϕ(a) ∩ P1(K)m is inûnite. We will show that
{n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} is a union of at most three arithmetic progressions with
modulus at most m (or 6 if m = 2). As in the proof of Corollary 1.3, we use Faltings’
_eorem to derive gn ≤ 1 for all n ≥ 1, and hence Corollary 2.5 gives that 0 and∞ are
m-branch abundant points for ϕ.
By _eorem 1.1, there are r > s ≥ 0 with ϕr(x) ≡ ϕs(x) (mod K(x)∗m). _e

sequence (ϕn(x))n≥0 in the group K(x)∗/K(x)∗m therefore has the form

x , ϕ(x), . . . , ϕs(x), . . . , ϕr−1(x), ϕs(x), . . . , ϕr−1(x), ϕs(x), . . . .

Observe that if ψ ∈ K(x), b ∈ K, and ψ(b) /∈ {0,∞}, then ψ(b) ∈ Km if and
only if ψ̃(b) ∈ Km for every ψ̃ ∈ K(x) with ψ(x) ≡ ψ̃(x) (mod K(x)∗m). Let
J = {s ≤ n ≤ r − 1 ∶ ϕn(a) ∈ Km}. If O+

ϕ(a) ∩ {0,∞} = ∅, then it follows that

{n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} = I ∪ F

with

(9.1) I = ⋃
j∈J

( j + (r − s)N) and F = {0 ≤ n < s ∶ ϕn(a) ∈ Km}.

Suppose ûrst that ϕ ism-trivial with respect to {0,∞}, andwrite ϕ(x) = cx j(ψ0(x))m

as in Proposition 3.2. Let t be the minimal positive integer such that c t ∈ Km . If
j = 0 and t > 1, then we have c /∈ Km , and hence ϕ(b) /∈ Km for all b ∈ P1(K)
with ϕ(b) /∈ {0,∞}. _is forces O+

ϕ(a) ∩ P1(K)m to be ûnite, a contradiction. If
j = 0 and t = 1, then c ∈ Km , whence ϕ(b) ∈ Km for all b ∈ P1(K), implying that
{n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} = ℓ + MN0 with M = 1 and ℓ = 0 (if a ∈ Km) or ℓ = 1
(otherwise).

If j > 0, then because 0 < j < m and the order of any zero or pole of ψm is di-
visible by m, we must have ϕ(0) ∈ {0,∞} and ϕ(∞) ∈ {0,∞}. _e inûnitude of
O+

ϕ(a) then implies that O+
ϕ(a) ∩ {0,∞} = ∅. We could now use (9.1) to show that

{n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} is a union of ûnitely many arithmetic progressions, but
we wish to prove the stronger statement that it is a single arithmetic progression. Let ℓ
be the minimal non-negative integer with ϕℓ(a) ∈ P1(K)m , and because ϕℓ(a) ≠ ∞,
we can write ϕℓ(a) = bm for some b ∈ K. From (8.3) and the fact that O+

ϕ(a) ∩
{0,∞} = ∅, for all u ≥ 1 we have ϕℓ+u(a) ∈ Km if and only if c1+ j+⋅⋅⋅+ ju−1

∈ Km . _is
in turn is equivalent to

(9.2) 1 + j + ⋅ ⋅ ⋅ + ju−1 ≡ 0 mod t.

If gcd(t, j) ≠ 1, then (9.2) cannot hold for any u ≥ 1, giving the contradiction O+
ϕ(a)∩

P1(K)m = {ϕℓ(a)}. _erefore, gcd(t, j) = 1. If j = 1, then (9.2) holds if and only if
u is a multiple of t, and we have {n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} = ℓ + tN0. If j > 1,
then note that j is relatively prime to both j − 1 and t, and let M be the order of j in
(Z/t( j− 1)Z)∗. _en (9.2) is equivalent to ju − 1 ≡ 0 mod t( j − 1), which holds if and
only if u is a multiple of M. Hence, {n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} = ℓ +MN0.
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Suppose that ϕ is notm-trivial with respect to {0,∞}. _enm ≤ 4 by_eorem 3.8,
and so either ϕ(x) or ϕ1(x) ∶= 1/ϕ(1/x) is described by one of _eorems 4.6, 4.7,
or 5.3. Note that if O+

ϕ(0) and O+
ϕ(∞) are both ûnite, then Oϕ1(0) and Oϕ1(∞) are

also ûnite. Hence, if either ϕ or ϕ1 satisûes any of the conclusions of_eorems 4.6, 4.7,
or 5.3 except for (2M) and (2O) in _eorem 4.7, we have that O+

ϕ(0) and O+
ϕ(∞)

are both ûnite, whence the inûnitude of O+
ϕ(a) implies that O+

ϕ(a) ∩ {0,∞} = ∅.
We can then use (9.1) to conclude that {n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} consists of at
most s arithmetic progressions of modulus 0 (i.e., singletons) plus at most k inûnite
arithmetic progressions of modulus dividing r − s, where k = (r − s)/2 if r − s is even
and k = s − 1 if r − s is odd. From the proof of _eorem 1.1 we have in each case that
s + k ≤ 3, r − s ≤ m for m ≥ 3, and r − s ≤ 6 for m = 2.
Finally, suppose that either ϕ or ϕ1 satisûes (2M) or (2O) of _eorem 4.7. Be-

cause O+
ϕ(a) is inûnite, each of 0 and ∞ can appear at most once in the sequence

(ϕn(a))n≥0. In case (2M) we have ϕn(x) ≡ ϕ2(x) (mod K)(x)∗2 for all n ≥ 2, and
the inûnitude ofO+

ϕ(a)∩P1(K)m implies that ϕn(a) ∈ P1(K)m for all n ≥ 2. It follows
that {n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} is a union of at most two arithmetic progressions.
In case (2O), observe that precisely one of 0,∞ has inûnite forward orbit, and hence
at most one of them can appear in O+

ϕ(a); without loss of generality, say this is ∞.
From the last paragraph of the proof of _eorem 1.1, we can take r = 3 and s = 1 in
(1.1), and the inûnitude of O+

ϕ(a) ∩ P1(K)m implies that one of the following holds:
ϕn(a) ∈ P1(K)m for all n ≥ 1; ϕ2n(a) ∈ P1(K)m for all n ≥ 1 and ϕ2n−1(a) /∈ P1(K)m

for all n ≥ 1 except at most one value of n with ϕ2n−1(a) = ∞; or ϕ2n−1(a) ∈ P1(K)m

for all n ≥ 1 and ϕ2n(a) /∈ P1(K)m for all n ≥ 1 except at most one value of n with
ϕ2n(a) = ∞. In each of these cases, {n ≥ 1 ∶ ϕn(a) ∈ P1(K)m} is a union of at most
two arithmetic progressions, and thus {n ∈ N0 ∶ ϕn(a) ∈ P1(K)m} is a union of at
most three arithmetic progressions.

Finally, we prove Corollaries 1.8 and 1.9. _e following lemma aids in the proof of
Corollary 1.8.

Lemma 9.1 ( [20, Lemma 6, p. 26]) Let F be a ûeld of characteristic ≠ 2, and suppose
that

(Q(x) − q1)(Q(x) − q2) = (x − ξ1)(x − ξ2)(R(x))
2
,

for Q , R ∈ F[x], q1 , q2 , ξ1 , ξ2 ∈ F, q1 ≠ q2, ξ1 ≠ ξ2. _en Q = L ○ Tdeg Q ○M−1, where

L(x) = q1 − q2

4
x + q1 + q2

2
and M(x) = ξ1 − ξ2

4
x + ξ1 + ξ2

2
.

Proof of Corollary 1.8 Let K be a ûnitely generated ûeld of characteristic zero, ûx
m ≥ 2, let ϕ ∈ K[x] have degree d ≥ 2, and assume there exists a ∈ P1(K) such that
O+

ϕ(a)∩P1(K)m is inûnite. As in the proof of Corollary 1.3, we use Faltings’ _eorem
to derive gn ≤ 1 for all n ≥ 1; indeed, in this case we can use Siegel’s theorem to show
gn = 0 for all n ≥ 1, though we do not need this stronger conclusion. Corollary 2.5
then gives that 0 and∞ are m-branch abundant points for ϕ. If ϕ is m-trivial with
respect to {0,∞}, then Proposition 3.2 and Lemma 6.1 imply Corollary 1.8(i).
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Suppose that ϕ is notm-trivial with respect to {0,∞}. _enm ≤ 4 by_eorem 3.8,
and so either ϕ(x) or ϕ1(x) ∶= 1/ϕ(1/x) is described by one of _eorems 4.6, 4.7,
or 5.3. Minor modiûcations to the proof of Lemma 4.4 show that ϕ has at most one
3-branch abundant point in C, and at most two 2-branch abundant points in C. In-
deed, in the proof of Lemma 4.4, let V = {α1 , . . . , αk} ⊂ C be a set of p-branch
abundant points for ϕ. Because ∑z∈C(eϕ(z) − 1) = d − 1, the bound in (4.3) im-
plies that k = 1 if p = 3 and k ≤ 2 if p = 2, as desired. Hence, ϕ has at most three
2-branch abundant points in P1(C), and at most two 3-branch abundant points in
P1(C), and in both cases one of these is a ûxed point whose only preimage is itself.
_e same statements hold for ϕ1(x). _is rules out all cases of _eorems 4.6, 4.7,
and 5.3, except for (2F) (where d is odd) and (2O) (where d is even) in _eorem 4.7.
In both of those cases, let {∞, 0, β} be the 2-branch abundant points for ϕ, and note
that ∞ must be the ûxed point. It follows that the conditions of Lemma 9.1 are sat-
isûed with {q1 , q2} = {ξ1 , ξ2} = {0, β}, and thus L(x) = −(β/4)(єLx − 2) and
M(x) = −(β/4)(єMx − 2), with єL , єM ∈ {1,−1}. Setting c = −4/β, we then have

(9.3) cϕ(x/c) = єL(Td(єM(x + 2))) − 2.

If d is odd, then Td is an odd function, Td ûxes both 2 and −2, and ϕ(0) ≠ 0 from
2-ramiûcation structure (2F). Putting x = 0 in (9.3) gives єLєM = −1. Because d is odd,
Td is an odd function, and so in both cases єL = 1, єM = −1 and єL = −1, єM = 1, we have
cϕ(x/c) = −(Td(x + 2)) − 2. If d is even, then Td is an even function, Td(±2) = 2,
and ϕ(0) = 0 from 2-ramiûcation structure (2O). Putting x = 0 in (9.3) then gives
єL = −1, implying cϕ(x/c) = Td(±(x + 2)) − 2 = Td(x + 2) − 2.

It remains only to show that c ∈ K. But ϕ ∈ K[x] by assumption, and ϕ(x) ∈
(x − β)C[x]∗2 if d is odd and ϕ(x) ∈ x(x − β)C[x]∗2 if d is even. From _eorem 6.2
we have β ∈ K, whence c ∈ K.

Proof of Corollary 1.9 Let ϕ ∈ Q[x] have degree 2, and suppose that ϕ has a ratio-
nal orbit containing inûnitely many distinct squares. _en Corollary 1.8 implies that
either (1) ϕ(x) = c(g(x))2 for some g ∈ Q(x) or (2) cϕ(x/c) = T2(x+2)−2 = x2+4x
with c ∈ Q∗. In case (1), we must have c ∈ Q∗2, for otherwise ϕ has no rational orbits
with inûnitely many distinct squares; hence ϕ satisûes (i) of the present corollary. In
case (2), putting x = cX gives ϕ(X) = (c2X2 + 4cX)/c = cX2 + 4X, and so ϕ satisûes
(ii) of the present corollary.
Assume now that ϕ satisûes (i) or (ii) of the present corollary. For maps satisfying

(i), all inûnite orbits contain inûnitely many distinct squares. For maps satisfying
(ii), a simple calculation shows that ϕ2(x) = ϕ(x)(g2(x))2 for some g2 ∈ Q[x],
and it immediately follows that ϕ2(x) = ϕ(x)(gn(x))2 for some gn ∈ Q[x] for each
n ≥ 1. Hence for a ∈ Q, O+

ϕ(a) contains inûnitely many squares if and only if a is the
x-coordinate of a rational point on the curve C ∶ y2 = cx2 + 4x. But C has genus zero
and the rational point (0, 0), and thus C(Q) is inûnite. By Northcott’s theorem [16],
ϕ has only ûnitely many rational points with ûnite orbits, and hence there must be a
rational orbit of ϕ containing inûnitely many distinct squares.
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10 An Example

In this section we present an example of a rational function ϕ ∈ Q(x) of degree 2 and
a ∈ Q such that O+

ϕ(a) ∩ P1(Q)2 is inûnite and {n ∈ N0 ∶ ϕn(a) ∈ P1(Q)2} can-
not be written as union of fewer than three arithmetic progressions. By the proof of
_eorem 1.5, such an example cannot be 2-trivial with respect to {0,∞}, and hence
satisûes one of the conditions of _eorem 4.7. Our example satisûes (2O) of this the-
orem, and hence has the form (5d) in _eorem 1.2. In the notation of that theorem,
set f (x) = 1 and g(x) = x − s. _e discriminant of (Bx(x −C) −C(x − s)2)/(−C) is
BC(BC−4Cs+4s2), and tomake this discriminant zero we take B = 4s(C−s)/C. We
wish for s to have a rational preimage under ϕ, and so we ûnd that the discriminant
of the numerator of ϕ(x) − s is 16s2(C − s)3/C. We wish for this to be a square, and
hence we take (C − s)/C = d2, i.e., s = C(1 − d2). Doing so gives

ϕ−1(s) = {
C(d + 1)2

2d + 1
,−
C(d − 1)2

2d − 1
} .

Letting v = C(d+1)2/(2d+1), we have the orbit v ↦ s ↦∞↦ B ↦ ϕ(B) ↦ ⋅ ⋅ ⋅ . From
the last paragraph of the proof of _eorem 1.1, we have the following equivalences
modulo Q(x)∗2:

(10.1) ϕ(x) ≡ Bx(x−C), ϕ2(x) ≡ −Cx(x−C), and ϕn(x) ≡ ϕn−2(x) for all n ≥ 3.

We wish to have {n ∈ N0 ∶ ϕn(v) ∈ P1(Q)2} = {0, 2} ∪ {2n + 1 ∶ n ≥ 0}, which
cannot be written as a union of fewer than three arithmetic progressions. Assume for
a moment that O+

ϕ(v) is inûnite, and in particular, ϕn(v) ∈ Q for all n ≠ 2; we will
justify this later. From (10.1), it is suõcient for v and s to be in Q2 and ϕ(B) /∈ Q2.
Clearly, v ≡ C(2d + 1) mod Q2 and s ≡ C(1−d2) mod Q2, and one calculates ϕ(B) ≡
−C mod Q2. If d ∈ Q satisûes C(2d + 1) ∈ Q2 ,C(1− d2) ∈ Q2 , and −C /∈ Q2, then the
elliptic curve

E ∶ y2 = (2x + 1)(1 − x2)

has a point in E(Q) with x-coordinate d. _is curve has conductor 24 and is isomor-
phic to curve 24a1 in Cremona’s table [7]. It has rank zero over Q and Q-torsion
subgroup Z/2Z ⊗ Z/4Z. Among the seven ûnite torsion points are ûve with x ∈
{0,±1,−1/2}, and if d takes any of these values, then either v = 0, s = 0, or s = C,
which are impossible in our setting. _e other two points are (x , y) = (−2,±3), and
so we must have d = −2. With this choice, we can take C = −3t2 for any t ∈ Q ∖ {0},
giving s = 9t2 and v = t2. Hence,

ϕ(x) = 144t2x(x + 3t2)
(x − 9t2)2 t ∈ Q ∖ {0},

is the unique family in Q(x) satisfying our conditions. It remains to show that the
orbit
(10.2)

O+
ϕ(t2) = { t2 , 9t2 ,∞, 144t2 , 3( 112t

5
)

2
, (

151872t
11869

)
2
, 3(

17917453568t
807305405

)
2
, . . . }

is inûnite. Observe that if (10.2) is inûnite for t = 1, then the same holds for all t ∈
Q ∖ {0}. When t = 1 we obtain the map ϕ1(x) = 144x(x + 3)/(x − 9)2, which has
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good reduction at the primes 5 and 7. Writing Fp for the ûnite ûeld with p elements,
one checks that in P1(F5), ϕ1 has a ûxed point and a two-cycle and no other periodic
points, while in P1(F7), ϕ1 has a ûxed point and no other periodic points. It follows
from [22, _eorem 2.21] that all periodic points of ϕ1 in Q have period one or two.
A simple calculation shows that the numerator of ϕ2

1 (x) − x is irreducible, and so ϕ1
has no two-cycles in Q. Hence, the only periodic point for ϕ1 in Q is the ûxed point
0. _us, Oϕ1(1) is inûnite, as desired.
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